3GPP TSG_CN WG5#9

Tdoc N5-xxxxxx

Antwerp, Belgium

18th – 20th April, 2001

Source:
Sun Microsystems
Title:
Handling Exceptions in 120070
Agenda item:

Document for:
DISCUSSION/APPROVAL
1. Introduction

This contribution is a follow-up from the last Antwerp meeting. The purpose is to stimulate discussion prior to agreement of a solution to handle exceptions in the 120070 specifications.

2. Example IDL for writing exceptions

Taking the routeReq method as an example, exceptions and the method signature should be written as:

exception TpTaskCancelledException {

};

exception TpTaskRefusedException {

};

exception TpInvalidAddressException {

};

exception TpInvalidNetworkStateException {

};

void routeReq (in TpSessionID callLegSessionID)

raises
(TpTaskCancelledException,

 TpTaskRefusedException,

 TpInvalidAddressException,

 TpInvalidNetworkStateException);

3. MultiParty Call Control IDL

As a working way forward, it is recommeded that the methods in the “mpccs” module no longer raise TpGeneralException or TpGCCSException. Within the specification text of one method, destroyNotification, in IpMultiPartyCallControlManager it is stated that the P_INVALID_ASSIGNMENT_ID exception can be raised. The rest of the text in this service doesn’t mention exceptions, so possible exceptions should be worked out during the discussion. Once this task is done for MPCCS it should be carried out for all framework and services.

4. Representing exceptions in UML

The following picture gives an example of how exceptions could be modelled in UML (example taken from “The UML User Guide, Booch, Rumbaugh & Jacobson, 1998, Addison-Wesley)

Appendix A. org.omg.CORBA.SystemException

The following are standard CORBA system exceptions (taken from the latest CORBA specification, v.2.4.2). In CORBA IDL, all signatures implicitly include the system exceptions.

 exception UNKNOWN

// the unknown exception

 exception BAD_PARAM

// an invalid parameter was passed

 exception NO_MEMORY

// dynamic memory allocation failure

 exception IMP_LIMIT

// violated implementation limit

 exception COMM_FAILURE

// communication failure

 exception INV_OBJREF

// invalid object reference

 exception NO_PERMISSION

// no permission for attempted op.

 exception INTERNAL

// ORB internal error

 exception MARSHAL

// error marshaling param/result

 exception INITIALIZE

// ORB initialization failure

 exception NO_IMPLEMENT

// operation implementation unavailable

 exception BAD_TYPECODE

// bad typecode

 exception BAD_OPERATION

// invalid operation

 exception NO_RESOURCES

// insufficient resources for req.

 exception NO_RESPONSE

// response to req. not yet available

 exception PERSIST_STORE

// persistent storage failure

 exception BAD_INV_ORDER

// routine invocations out of order

 exception TRANSIENT

// transient failure – reissue request

 exception FREE_MEM

// cannot free memory

 exception INV_IDENT

// invalid identifier syntax

 exception INV_FLAG

// invalid flag was specified

 exception INTF_REPOS

// error accessing interface repository

 exception BAD_CONTEXT

// error processing context object

 exception OBJ_ADAPTER

// failure detected by object adapter

 exception DATA_CONVERSION

// data conversion error

 exception OBJECT_NOT_EXIST

// non-existent object, delete reference

 exception TRANSACTION_REQUIRED
// transaction required

 exception TRANSACTION_ROLLEDBACK
// transaction rolled back

 exception INVALID_TRANSACTION
// invalid transaction

 exception INV_POLICY

// invalid policy

 exception CODESET_INCOMPATIBLE
// incompatible code set

 exception REBIND

// rebind needed

 exception TIMEOUT

// operation timed out

 exception TRANSACTION_UNAVAILABLE
// no transaction

 exception TRANSACTION_MODE

// invalid transaction mode

 exception BAD_QOS

// bad quality of service

The following extract from the specification gives more detail on the exception types.

4.11.3.1 UNKNOWN

This exception is raised if an operation implementation throws a non-CORBA exception (such as an exception specific to the implementation's programming language), or if an operation raises a user exception that does not appear in the operation's raises expression. UNKNOWN is also raised if the server returns a system exception that is unknown to the client. (This can happen if the server uses a later version of CORBA than the client and new system exceptions have been added to the later version.)

4.11.3.2 BAD_PARAM

A parameter passed to a call is out of range or otherwise considered illegal. An ORB may raise this exception if null values or null pointers are passed to an operation (for language mappings where the concept of a null pointers or null values applies). BAD_PARAM can also be raised as a result of client generating requests with incorrect parameters using the DII.

4.11.3.3 NO_MEMORY

The ORB run time has run out of memory.

4.11.3.4 IMP_LIMIT

This exception indicates that an implementation limit was exceeded in the ORB run time. For example, an ORB may reach the maximum number of references it can hold simultaneously in an address space, the size of a parameter may have exceeded the allowed maximum, or an ORB may impose a maximum on the number of clients or servers that can run simultaneously.

4.11.3.5 COMM_FAILURE

This exception is raised if communication is lost while an operation is in progress, after the request was sent by the client, but before the reply from the server has been returned to the client.

4.11.3.6 INV_OBJREF

This exception indicates that an object reference is internally malformed. For example, the repository ID may have incorrect syntax or the addressing information may be invalid. This exception is raised by ORB::string_to_object if the passed string does not decode correctly. An ORB may choose to detect calls via nil references (but is not obliged to do detect them). INV_OBJREF is used to indicate this.

4.11.3.7 NO_PERMISSION

An invocation failed because the caller has insufficient privileges.

4.11.3.8 INTERNAL

This exception indicates an internal failure in an ORB, for example, if an ORB has detected corruption of its internal data structures.

4.11.3.9 MARSHAL

A request or reply from the network is structurally invalid. This error typically indicates a bug in either the client-side or server-side run time. For example, if a reply from the server indicates that the message contains 1000 bytes, but the actual message is shorter or longer than 1000 bytes, the ORB raises this exception. MARSHAL can also be caused by using the DII or DSI incorrectly, for example, if the type of the actual parameters sent does not agree with IDL signature of an operation.

4.11.3.10 INITIALIZE

An ORB has encountered a failure during its initialization, such as failure to acquire networking resources or detecting a configuration error.

4.11.3.11 NO_IMPLEMENT

This exception indicates that even though the operation that was invoked exists (it has an IDL definition), no implementation for that operation exists. NO_IMPLEMENT can, for example, be raised by an ORB if a client asks for an object's type definition from the interface repository, but no interface repository is provided by the ORB.

4.11.3.12 BAD_TYPECODE

The ORB has encountered a malformed type code (for example, a type code with an invalid TCKind value).

4.11.3.13 BAD_OPERATION

This indicates that an object reference denotes an existing object, but that the object does not support the operation that was invoked.

4.11.3.14 NO_RESOURCES

The ORB has encountered some general resource limitation. For example, the run time may have reached the maximum permissible number of open connections.

4.11.3.15 NO_RESPONSE

This exception is raised if a client attempts to retrieve the result of a deferred synchronous call, but the response for the request is not yet available.

4.11.3.16 PERSIST_STORE

This exception indicates a persistent storage failure, for example, failure to establish a database connection or corruption of a database.

4.11.3.17 BAD_INV_ORDER

This exception indicates that the caller has invoked operations in the wrong order. For example, it can be raised by an ORB if an application makes an ORB-related call without having correctly initialized the ORB first.

4.11.3.18 TRANSIENT

TRANSIENT indicates that the ORB attempted to reach an object and failed. It is not an indication that an object does not exist. Instead, it simply means that no further determination of an object's status was possible because it could not be reached. This exception is raised if an attempt to establish a connection fails, for example, because the server or the implementation repository is down.

4.11.3.19 FREE_MEM

The ORB failed in an attempt to free dynamic memory, for example because of heap corruption or memory segments being locked.

4.11.3.20 INV_IDENT

This exception indicates that an IDL identifier is syntactically invalid. It may be raised if, for example, an identifier passed to the interface repository does not conform to IDL identifier syntax, or if an illegal operation name is used with the DII.

4.11.3.21 INV_FLAG

An invalid flag was passed to an operation (for example, when creating a DII request).

4.11.3.22 INTF_REPOS

An ORB raises this exception if it cannot reach the interface repository, or some other failure relating to the interface repository is detected.

4.11.3.23 BAD_CONTEXT

An operation may raise this exception if a client invokes the operation but the passed context does not contain the context values required by the operation.

4.11.3.24 OBJ_ADAPTER

This exception typically indicates an administrative mismatch. For example, a server may have made an attempt to register itself with an implementation repository under a name that is already in use, or is unknown to the repository. OBJ_ADAPTER is also raised by the POA to indicate problems with application-supplied servant managers.

4.11.3.25 DATA_CONVERSION

This exception is raised if an ORB cannot convert the representation of data as marshaled into its native representation or vice-versa. For example, DATA_CONVERSION can be raised if wide character codeset conversion fails, or if an ORB cannot convert floating point values between different representations.

4.11.3.26 OBJECT_NOT_EXIST

The OBJECT_NOT_EXIST exception is raised whenever an invocation on a deleted object was performed. It is an authoritative “hard” fault report. Anyone receiving it is allowed (even expected) to delete all copies of this object reference and to perform other appropriate “final recovery” style procedures. Bridges forward this exception to clients, also destroying any records they may hold (for example, proxy objects used in reference translation). The clients could in turn purge any of their own data structures.

4.11.3.27 TRANSACTION_REQUIRED

The TRANSACTION_REQUIRED exception indicates that the request carried a null transaction context, but an active transaction is required.

4.11.3.28 TRANSACTION_ROLLEDBACK

The TRANSACTION_ROLLEDBACK exception indicates that the transaction associated with the request has already been rolled back or marked to roll back. Thus, the requested operation either could not be performed or was not performed because further computation on behalf of the transaction would be fruitless.

4.11.3.29 INVALID_TRANSACTION

The INVALID_TRANSACTION indicates that the request carried an invalid transaction context. For example, this exception could be raised if an error occurred when trying to register a resource.

4.11.3.30 INV_POLICY

INV_POLICY is raised when an invocation cannot be made due to an incompatibility between Policy overrides that apply to the particular invocation.

4.11.3.31 CODESET_INCOMPATIBLE

This exception is raised whenever meaningful communication is not possible between client and server native code sets. See Section 13.7.2.6, “Code Set Negotiation,” on page 13-34.

4.11.3.32 REBIND

REBIND is raised when the current effective RebindPolicy, as described in Section 22.2.1.2, “interface RebindPolicy,” on page 22-5, has a value of NO_REBIND or NO_RECONNECT and an invocation on a bound object reference results in a LocateReply message with status OBJECT_FORWARD or a Reply message with status LOCATION_FORWARD. This exception is also raised if the current effective RebindPolicy has a value of NO_RECONNECT and a connection must be re-opened. The invocation can be retried once the effective RebindPolicy is changed to TRANSPARENT or binding is re-established through an invocation of CORBA::Object::validate_connection.

4.11.3.33 TIMEOUT

TIMEOUT is raised when no delivery has been made and the specified time-to-live period has been exceeded. It is a standard system exception because time-to-live QoS can be applied to any invocation.

4.11.3.34 TRANSACTION_UNAVAILABLE

TRANSACTION_UNAVAILABLE exception is raised by the ORB when it cannot process a transaction service context because its connection to the Transaction Service has been abnormally terminated.

4.11.3.35 TRANSACTION_MODE

TRANSACTION_MODE exception is raised by the ORB when it detects a mismatch between the TransactionPolicy in the IOR and the current transaction mode.

4.11.3.36 BAD_QOS

The BAD_QOS exception is raised whenever an object cannot support the quality of service required by an invocation parameter that has a quality of service semantics associated with it.

Appendix B. TpGeneralExceptions

The following are the general exceptions defined in the current ETSI OSA specification (DES/SPAN-120070-1 (2001-03)).

	P_RESULT_INFO_UNDEFINED
	0000h
	No further information present

	P_INVALID_DOMAIN_ID
	0001h
	Invalid client ID

	P_INVALID_AUTH_CAPABILITY
	0002h
	Invalid authentication capability

	P_INVALID_AGREEMENT_TEXT
	0003h
	Invalid agreement text

	P_INVALID_SIGNING_ALGORITHM
	0004h
	Invalid signing algorithm

	P_INVALID_INTERFACE_NAME
	0005h
	Invalid interface name

	P_INVALID_SERVICE_ID
	0006h
	Invalid service ID

	P_INVALID_EVENT_TYPE
	0007h
	Invalid event type

	P_SERVICE_NOT_ENABLED
	0008h
	The service ID does not correspond to a service that has been enabled

	P_INVALID_ASSIGNMENT_ID
	0009h
	The assignment ID is invalid

	P_INVALID_PARAMETER
	000Ah
	The method has been called with an invalid parameter

	P_INVALID_PARAMETER_VALUE
	000Bh
	A method parameter has an invalid value

	P_PARAMETER_MISSING
	000Ch
	A mandatory parameter has not been specified in the method call

	P_RESOURCES_UNAVAILABLE
	000Dh
	The required resources in the network are not available

	P_TASK_REFUSED
	000Eh
	The requested method has been refused

	P_TASK_CANCELLED
	000Fh
	The requested method has been cancelled

	P_INVALID_DATE_TIME_FORMAT
	0010h
	Invalid date and time format provided

	P_NO_CALLBACK_ADDRESS_SET
	0011h
	The requested method is refused because no callback address is set

	P_INVALID_SIGNATURE
	0012h
	Invalid digital signature

	P_INVALID_SERVICE_TOKEN
	0013h
	The service token has not been issued, or it has expired.

	P_ACCESS_DENIED
	0014h
	The client is not currently authenticated with the framework

	P_INVALID_PROPERTY
	0015h
	The framework does not recognise the property supplied by the client

	P_METHOD_NOT_SUPPORTED
	0016h
	The method is not allowed or supported within the context of the current service agreement.

	P_NO_ACCEPTABLE_AUTH_CAPABILITY
	0017h
	An authentication mechanism, which is acceptable to the framework, is not supported by the client

	P_INVALID_INTERFACE_TYPE
	0018h
	The interface reference supplied by the client is the wrong type.

	P_INVALID_ACCESS_TYPE
	0019h
	The framework does not support the type of access interface requested by the client.

	P_SERVICE_ACCESS_DENIED
	001Ah
	The client application is not allowed to access this service.

	P_USER_NOT_SUBSCRIBED
	0030h
	An application is unauthorised to access information and request services with regards to users that are not subscribed to the application.

	P_APPLICATION_NOT_ACTIVATED
	0031h
	An application is unauthorised to access information and request services with regards to users that have deactivated that particular application.

	P_USER_PRIVACY
	0032h
	An application is unauthorised to access information and request services with regards to users that have set their privacy flag regarding that particular service.

Appendix C. TpGeneralExceptions accommodated by CORBA

After analysis, the current ETSI OSA specification (DES/SPAN-120070-1 (2001-03)) exceptions have been identified as already being accommodated by the equivalent CORBA exceptions, as shown in the table. Other ETSI exceptions are identified as Framework exceptions and other exceptions require further consideration.

	P_RESULT_INFO_UNDEFINED
	*G

	P_INVALID_DOMAIN_ID
	IpInitial

	P_INVALID_AUTH_CAPABILITY
	IpAppAPILevelAuthentication, IpAPILevelAuthentication

	P_INVALID_AGREEMENT_TEXT
	IpAppAccess, IpAccess

	P_INVALID_SIGNING_ALGORITHM
	IpAppAccess, IpAccess

	P_INVALID_INTERFACE_NAME
	IpAccess

	P_INVALID_SERVICE_ID
	IpAccess

	P_INVALID_EVENT_TYPE
	*-

	P_SERVICE_NOT_ENABLED
	*-

	P_INVALID_ASSIGNMENT_ID
	IpEventNotification

	P_INVALID_PARAMETER
	BAD_PARAM – 15, bad name argument

	P_INVALID_PARAMETER_VALUE
	BAD_PARAM – 25, enum out of range

	P_PARAMETER_MISSING
	MARSHALL – 3, does not describe all the parameters

	P_RESOURCES_UNAVAILABLE
	NO_RESOURCES

	P_TASK_REFUSED
	*G

	P_TASK_CANCELLED
	*G

	P_INVALID_DATE_TIME_FORMAT
	IpOAM

	P_NO_CALLBACK_ADDRESS_SET
	*IpService

	P_INVALID_SIGNATURE
	IpAppAccess, IpAccess

	P_INVALID_SERVICE_TOKEN
	IpAppAccess, IpAccess

	P_ACCESS_DENIED
	IpAppAPILevelAuthentication, IpAuthentication, IpAPILevelAuthentication

	P_INVALID_PROPERTY
	IpAccess

	P_METHOD_NOT_SUPPORTED
	*E

	P_NO_ACCEPTABLE_AUTH_CAPABILITY
	IpAPILevelAuthentication

	P_INVALID_INTERFACE_TYPE
	IpInitial, IpAuthentication, IpAccess

	P_INVALID_ACCESS_TYPE
	IpAuthentication

	P_SERVICE_ACCESS_DENIED
	IpAccess

	P_USER_NOT_SUBSCRIBED
	*-

	P_APPLICATION_NOT_ACTIVATED
	*-

	P_USER_PRIVACY
	*-

Cells marked:

*G are candidates for general user defined exceptions (i.e. TpGeneralException)

*IpService are candidates for the IpService interface exception list

*E are assumed to be elementary exceptions that should be handled by underlying stsyems (e.g. CORBA / Java)

*- require further consideration

In addition the following Framework exceptions were identified in the specification text, however they are not formally specified.

IpServiceDiscovery:
P_ILLEGAL_SERVICE_TYPE

P_UNKNOWN_SERVICE_TYPE

IpFWServiceRegistration:
as above plus

P_PROPERTY_TYPE_MISMATCH

P_READONLY_DYNAMIC_PROPERTY

P_MISSING_MANDATORY_PROPERTY

P_DUPLICATE_PROPERTY_NAME

--- End of Contribution ---

<<exception>>

Exception

setHandler()

firstHandler()

lastHandler()

<<exception>>

Duplicate

<<exception>>

Overflow

<<exception>>

Underflow

Set

add()

remove()

<<send>>

<<send>>

<<send>>

Page 2

