Page 1
Draft prETS 300 ???: Month YYYY

Page 9

Temporary document  N5-010STDCallLeg
Interim Joint 3GPP TSG_CN5/ ETSI SPAN 12
18-20 April  2001
Antwerp, Belgium

Source:
Alcatel

Title:
CallLeg State Transition Diagram and Actions.

Date:
18 April 2001

Document for:
API for Open Service Access.
Agenda item:


1 Introduction

This contribution indicates the proposals for a revised state transition diagram for the IpCallLeg. It replaces section 7.4.3. It is based on the discussions held in the Ad Hoc Group and is contributed to the meeting in order to advance the discussions. Resolution is required on the following inserted notes.

Note 1
Two interpretations for the connectionEnded are given here for further consideration:
Interpretation 1: This is the present situation. The connectionEnded is sent to indicate to the application that the connection has terminated in the network. The application can still receive some results. The application has to destroy the object by sending a deassign() method.
Interpretation 2: the connectionEnded is sent when the “last report” is detected in the Network_Released state. In this case all pending reports are handled in the “Network_Release” state. In this case the object can be automatically destroyed by the API gateway.

Note 2
The P_CALL_EVENT_RELEASE for the release causes P_PREMATURE_DISCONNECT  and P_DISCONNECT makes the connectionEnded superfluous. If there is a requirement then this can be fulfilled by arming the above mentioned disconnect events. It should be noted that in the case where e.g.  two call legs are instantiated then  two connectionEnded will be generated and additionally a callEnded will be sent.

Note 3 : 
Trigger criteria need further definition because they are too restricted, presently only criteria are defined for the TpAddressRange. In INAP also criteria are defined for e.g. class of service, bearer capability, nature of address etc.

Note 4:
Only one method must be specified for the creation of legs when the Progressing state is reached.

Note 5:
The handling of service code information must be agreed upon.

Note 6: 
When the Network_Released state is entered the order to be followed when a “release” indication  is received must be defined:
i) the possible call leg information requested with getInfoReq() and/ or superviseReq() is collected and send to the application.
ii) the release event handling is performed.
iii) the connectionEnded() method is sent to the application.

Note 7:
Is the handling of connectionEnded() still required if the event handling for release is also defined?

2 State Transition Diagram for IpCallLeg

7.4.3.1 Idle State

Entry events:

-
Receipt of a createCallLeg() method to start an application initiated call leg connection.

· Network release of a previous call leg connection by the sending of a connectionEnded() method

Note 1
Two interpretations for the connectionEnded are given here for further consideration:
Interpretation 1: This is the present situation. The connectionEnded is sent to indicate to the application that the connection has terminated in the network. The application can still receive some results. The application has to destroy the object by sending a deassign() method.
Interpretation 2: the connectionEnded is sent when the “last report” is detected in the Network_Released state. In this case all pending reports are handled in the “Network_Release” state. In this case the object can be automatically destroyed by the API gateway.

Note 2
The P_CALL_EVENT_RELEASE for the release causes P_PREMATURE_DISCONNECT  and P_DISCONNECT makes the connectionEnded superfluous. If there is a requirement then this can be fulfilled by arming the above mentioned disconnect events. It should be noted that in the case where e.g.  two call legs are instantiated then  two connectionEnded will be generated and additionally a callEnded will be sent.

Functions: 

-
In this state the interface connection is idled and supervision is being provided.

-
In this state the network checks the authority/ability of the party to place the connection to the remote party with the given properties.

Exit events:

-
Receipt of a routeReq() method from the application.

-
Supervision timer expiry indicating that no requests from the application have been received during a certain period.

-
Receipt of a deassign() method.

-
Receipt of a release() method.

7.4.3.2 Collect_Address State

Entry events:

· Receipt of a getMoreDialledDigitsReq() method in order to collect a variable number of digits.

· Sending of a reportNotification() method by the IPMultipartyCallControlManager for an Attempt_Authorised trigger criterion. The network has checked the authority/ability of the party to place the connection to the remote party with the given properties, before isueing .

Note 3 : 
Trigger criteria need further definition because they are too restricted, presently only criteria are defined for the TpAddressRange. In INAP also criteria are defined for e.g. class of service, bearer capability, nature of address etc.

Functions: 

-
The detection of a Attempt_Authorised trigger criterion suspends call leg processing.

-
Resumption of call leg processing occurs on receipt of a continueProcessing() method.

-
In this state the dialled address string from the calling party is being collected and is examined in accordance to the dialling plan in order to determine end of collection.

-
The reception of a getMoreDialledReq() method shall not cause a state transition when the indicated to be collected digits have been reached.

Exit events:

-
Detection of an  “Address_Collected” indication as a result of the availability of the complete initial information package/dialling string from the calling party.

-
Detection of an “release” indication as a result of a premature disconnect from the calling party.

-
Receipt of a deassign() method.

-
Receipt of a release() method.

7.4.3.3 Analyse_Address State

Entry events:

-
Receipt of an  “Address_Collected” indication as a result of the availability of the complete initial information package/dialling string from the calling party.

-
Receipt of a routeReq() method.

-
Sending of a reportNotification() method by the IPMultipartyCallControlManager for an Address_Collected trigger criterion.

Functions: 

-
The detection of a Address_Collected trigger criterion suspends call leg processing.

-
On receipt of the “Address_Collected” indication the following functions are performed:

i)
When the P_CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event P_CALL_EVENT_ADDRESS_COLLECTED then the event is intercepted and call leg processing is suspended.

ii)
When the P_CALL_MONITOR_MODE_NOTIFY is requested for the call leg event P_CALL_EVENT_ADDRESS_COLLECTED then the event is notified and call leg processing continues.

iii)
When the P_CALL_MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event P_CALL_EVENT_ADDRESS_COLLECTED then no monitoring is performed.

-
Resumption of call leg processing occurs on receipt of a continueProcessing() or a routeReq() method.

-
In this state the received information is being analysed  and/or translated according to the dialling plan to determine the routing address of the call leg connection and connection type (local, transit, gateway).

Exit events:

-
Detection of an  “Address_Analysed” indication as a result of the availability of the routing address and nature of address.

-
Detection of a “release” indication as a result of a premature disconnect from the calling party.

-
Receipt of a deassign() method.

-
Receipt of a release() method.

7.4.3.4 Progressing State

Entry events:

-
Receipt of an  “Address_Analysed” indication as a result of the availability of the routing address and nature of address.

-
Receipt of an  “Progress” indication as a result of receiving a call leg progress form the remote party.

-
Sending of a reportNotification() method by the IPMultipartyCallControlManager for an Address_Analysed trigger criterion.

-
Sending of a reportNotification() method by the IPMultipartyCallControlManager for a Progress trigger criterion

Functions: 

-
The detection of a Address_Analysed trigger criterion suspends call leg processing.

-
On receipt of the “Address_Analysed” indication the following functions are performed:

i)
When the P_CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event P_CALL_EVENT_ADDRESS_ANALYSED then the event is intercepted and call leg processing is suspended.

ii)
When the P_CALL_MONITOR_MODE_NOTIFY is requested for the call leg event P_CALL_EVENT_ADDRESS_ANALYSED then the event is notified and call leg processing continues.
{Method 1} A signal via the IpMultiPartyCallControl is sent to create a subsequent call leg and a legCreated() method is send to the application, provided the leg creation indicator is set to enable.
{Method 2} A signal via the IpMultiPartyCallControl is sent to create a subsequent call leg

iii)
When the P_CALL_MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event P_CALL_EVENT_ADDRESS_ANALYSED then no monitoring is performed. .
{Method 1} A signal via the IpMultiPartyCallControl is sent to create a subsequent call leg and a legCreated() method is send to the application, provided the leg creation indicator is set to enable.
{Method 2} A signal via the IpMultiPartyCallControl is sent to create a subsequent call leg

-
Resumption of call leg processing occurs on receipt of a continueProcessing() or a routeReq() method. 
{Method 1} When the call leg processing resumes on receipt of a continueProcessing() method, a signal via the IpMultiPartyCallControl is sent to create a subsequent call leg and a legCreated() method is send to the application, provided the leg creation indicator is set to enable. A passive leg will not be created when the routeReq() is received, since a transition to the "Analyse_Address" state occurs. the passive call leg is created when the subsequent "Address_Analysed" not armed event is received in the Processing state. 
{Method 2} The second call leg may be created by the application. When the resumption occurs on receipt of a continueProcessing and provided the state is entered via an “Address_Analysed” indication than a signal via the IpMultiPartyCallControl is sent to create a second call leg. A second call leg is not created when the application has already send a createLeg() method. A passive leg will not be created when the routeReq() is received, since a transition to the "Analyse_Address" state occurs. the passive call leg is created when the subsequent "Address_Analysed" not armed event is received in the Processing state. 

Note 4:
Only one method must be specified.

-
In this state the routing information is interpreted, the authority of the calling party to establish this connection is verified and the call leg connection is set up to the remote party. 

-
The detection of a “Progress” trigger criterion suspends call leg processing. It should be noted that the IpMultipartyCallControl has created two call leg objects (the active and passive IpCallLeg objects).

-
On receipt of the “Progress” indication the following functions are performed:

i)
When the P_CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event P_CALL_EVENT_PROGRESS then the event is intercepted and call leg processing is suspended.

ii)
When the P_CALL_MONITOR_MODE_NOTIFY is requested for the call leg event P_CALL_EVENT_PROGRESS then the event is notified and call leg processing continues.

iii)
When the P_CALL_MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event P_CALL_EVENT_PROGRESS then no monitoring is performed.

-
On receipt of the “service code” indication the following functions are performed:

i)
When the P_CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event P_CALL_EVENT_SERVICE_CODE then the event is intercepted and call leg processing is suspended.

ii)
When the P_CALL_MONITOR_MODE_NOTIFY is requested for the call leg event P_CALL_EVENT_SERVICE_CODE then the event is notified and call leg processing continues.

iii)
When the P_CALL_MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event P_CALL_EVENT_SERVICE_CODE then no monitoring is performed.

Note 5:
Is this handling required?

-
Susequent resumption of call leg processing occurs on receipt of a continueProcessing() or a routeReq() method.

Exit events:

-
Receipt of a routeReq() method from the application.

- 
Detection of a “release” indication as a result of the following events:

i)
Unable to select a route or indication from the remote party of the call leg connection cannot be presented (this is the network determined busy condition)

ii)
Occurrence of an authorisation failure when the authority to place the call leg connection was denied (e.g. business group restriction mismatch).

iii)
Detection of a route busy condition received from the remote call leg connection portion.

iv)
Detection of a no-answer condition received from the remote call leg connection portion.

v)
Detection that the remote party was not reachable.

vi)
Detection of a premature disconnect from the calling party.

-
Receipt of a deassign() method.

-
Receipt of a release() method.

-
Detection of an  “Alerting” indication as a result of the remote party being alerted.

-
Detection of an  “Answer” indication as a result of the remote party being connected (answered).

7.4.3.5 Alerting State

Entry events:

-
Detection of an  “Alerting” indication as a result of the remote party being alerted.

-
Sending of a reportNotification() method by the IPMultipartyCallControlManager for an “Alerting” trigger criterion.

Functions: 

-
The detection of a “Alerting” trigger criterion suspends call leg processing.

-
On receipt of the “Alerting” indication the following functions are performed:

i)
When the P_CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event P_CALL_EVENT_ALERTING then the event is intercepted and call leg processing is suspended.

ii)
When the P_CALL_MONITOR_MODE_NOTIFY is requested for the call leg event P_CALL_EVENT_ALERTING then the event is notified and call leg processing continues.

iii)
When the P_CALL_MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event P_CALL_EVENT_ALERTING then no monitoring is performed.

-
On receipt of the “service code” indication the following functions are performed:

i)
When the P_CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event P_CALL_EVENT_SERVICE_CODE then the event is intercepted and call leg processing is suspended.

ii)
When the P_CALL_MONITOR_MODE_NOTIFY is requested for the call leg event P_CALL_EVENT_SERVICE_CODE then the event is notified and call leg processing continues.

iii)
When the P_CALL_MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event P_CALL_EVENT_SERVICE_CODE then no monitoring is performed.

Note 5: Is this handling required ?

-
Resumption of call leg processing occurs on receipt of a continueProcessing() method.

-
In this state the network has indicated that the remote  party is alerted.

Exit events:

- 
Detection of a “release” indication as a result of the following events:

i)
Unable to select a route or indication from the remote party of the call leg connection cannot be presented (this is the network determined busy condition)

ii)
Occurrence of an authorisation failure when the authority to place the call leg connection was denied (e.g. business group restriction mismatch).

iii)
Detection of a route busy condition received from the remote call leg connection portion.

iv)
Detection of a no-answer condition received from the remote call leg connection portion.

v)
Detection that the remote party was not reachable.

vi)
Detection of a premature disconnect from the calling party.

-
Receipt of a deassign() method.

-
Receipt of a release() method.

-
Detection of an  “Answer” indication as a result of the remote party being connected (answered).

7.4.3.6 Active State

Entry events:

-
Detection of an  “Answer” indication as a result of the remote party being connected (answered).

-
Sending of a reportNotification() method by the IPMultipartyCallControlManager for an “Answer” trigger criterion.

Functions: 

-
The detection of a “Answer” trigger criterion suspends call leg processing.

-
On receipt of the “Answer” indication the following functions are performed:

i)
When the P_CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event P_CALL_EVENT_ANSWER then the event is intercepted and call leg processing is suspended.

ii)
When the P_CALL_MONITOR_MODE_NOTIFY is requested for the call leg event P_CALL_EVENT_ANSWER then the event is notified and call leg processing continues.

iii)
When the P_CALL_MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event P_CALL_EVENT_ANSWER then no monitoring is performed.

-
On receipt of the “service code” indication the following functions are performed:

i)
When the P_CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event P_CALL_EVENT_SERVICE_CODE then the event is intercepted and call leg processing is suspended.

ii)
When the P_CALL_MONITOR_MODE_NOTIFY is requested for the call leg event P_CALL_EVENT_SERVICE_CODE then the event is notified and call leg processing continues.

iii)
When the P_CALL_MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event P_CALL_EVENT_SERVICE_CODE then no monitoring is performed.

-
Resumption of call leg processing occurs on receipt of a continueProcessing() method.

-
In this state a connection to the call party is established. 

Exit events:

-
Detection of an “release” indication as a result of a  disconnect from the calling and called party.

-
Receipt of a deassign() method.

-
Receipt of a release() method from the application.

7.4.3.7 Network Released State

Entry events:

-
Detection of an  “Release” indication as a result of the network release initiated by one of the parties of the call leg connection.

-
Sending of a reportNotification() method by the IPMultipartyCallControlManager for an “Release” trigger criterion.

-


Functions: 

Note 6: 
It is proposed that the following order is followed when a “release” indication  is received:
i) the possible call leg information requested with getInfoReq() and/ or superviseReq() is collected and send to the application.
ii) the release event handling is performed.
iii) the connectionEnded() method is sent to the application.

-
In this state the connection to the call party has been released by the network . In this state the API Gateway collects the possible call leg information requested with getInfoReq() and/ or superviseReq(). When the information is ready it will be sent to the application and additionally the application will also be informed that the connected has ended, by sending the connectionEnded() method. In case that the application has not requested additional call leg related information a transition to the Idle state is made immediately and additionally the application will also be informed that the connection has ended.
-
The detection of a “Release” trigger criterion suspends call leg processing.

-
On receipt of the “Release” indication the following functions are performed:

-
The possible call leg information requested with the getInfoReq() and/or superviseReq() is collected and sent to the application with respectively the getInfoRes() and/or superviseRes() methods.

-
The release event handling is performed as follows:

i)
When the P_CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event P_CALL_EVENT_RELEASE then the event is intercepted and call leg processing is suspended.

ii)
When the P_CALL_MONITOR_MODE_NOTIFY is requested for the call leg event P_CALL_EVENT_RELEASE then the event is notified and call leg processing continues.

iii)
When the P_CALL_MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event P_CALL_EVENT_RELEASE then no monitoring is performed.

-
The connectionEnded() method is sent to the application.

Note 7: See note 2 for the sending of connectionEnded.

-
On receipt of the “service code” indication the following functions are performed:

i)
When the P_CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event P_CALL_EVENT_SERVICE_CODE then the event is intercepted and call leg processing is suspended.

ii)
When the P_CALL_MONITOR_MODE_NOTIFY is requested for the call leg event P_CALL_EVENT_SERVICE_CODE then the event is notified and call leg processing continues.

iii)
When the P_CALL_MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event P_CALL_EVENT_SERVICE_CODE then no monitoring is performed.

-
Resumption of call leg processing occurs on receipt of a continueProcessing() method.

Exit events:

-
Receipt of a deassign() method.

-
Receipt of a release() method.

-
After the API Gateway has collected the possible call leg information requested with getInfoReq() and/ or superviseReq() and having informed the application, it will end the call leg connection, by sending the connectionEnded() method. 

-
In case that the application has not requested additional call leg related information a transition to the Idle state is made immediately and additionally the application will also be informed that the connection has ended, by sending the connectionEnded() method.

7.4.3.8 Application Release  State

Entry events:

-
Sending of the release() method by the application.

Functions: 

-
In this state the application has requested to release the Call Leg object and the API Gateway collects the possible call leg information requested with getInfoReq() and / or superviseReq().When the last call leg information has been sent to the application, the Call Leg object will be destroyed.

-
In case the application has not requested additional call leg related information the Call Leg object is destroyed immediately.

Exit events:

7.4.3.9 Faulty State

Entry events:

-
A transition to this state is made when the Call leg object is in state Idle and no requests from the application have been received during a certain period.

Functions: 

-
In case the application requested for call leg related information previously, the application will be informed that this information is not available and additionally the application is informed that the call leg object is destroyed.

-
In case the application has not requested additional call related information the call object is destroyed immediately and additionally the application will be informed of this event.
Exit events:

-
Detection of the sending of the last call leg information to the application (the Call Leg object will be destroyed).


[image: image1.emf]Idle

Collect_Address

Analyse_Address

event "Address_Collected"[ "armed" ]/ ^IpAppCallLeg.even...

Progressing

event "Address_Analysed"[ "armed" ]/ ^IpAppCallLeg.eventRepo...

event "Address_Analysed"[ "state entered via "Address_Analysed...

event "Progress"[ "armed" ]/ ^IpAppCallLeg.eventReportRes("P...

Alerting

event "Alerting"[ "armed" ]/ ^IpAppCallLeg.ev...

Network_Released

event "Release"[ "InfoReq" ]/ ^IpAppCallLeg.getInfoRes

event "Release"[ "SuperviseReq" ]/ ^IpAppCallLeg.superviseRes

event "Release"( routing failed, no-answer,busy )[ "Armed" ]/ ^IpAppCallLeg.event...

event "release"( invalid address )/ ^IpAppCallLeg.eventReportErr

Active

event "Answer"[ "armed" ]/ ^IpAppCallLeg.eventReportRes("P_CA...

Application_R

eleased

All_States

Faulty

All States except Network_Released, 

Application_Released, Faulty

All States except 

Idle,Application_Released,Faulty

getMoreDialledDigitsReq

"Progress"

attachMedia

detachMedia

attachMedia

detachMedia

getLastRedirectedAddress

getCall

superviseReq

setAdviceOfCharge

setChargePlan

getInfoReq

eventReportReq

continueProcessing

Proposed STD for April Call 

Control API discussion

"last report" ^IpMultiPartyCall."leg released"

"last report" ^IpMultiPartyCall."leg released"

release

deassign ^IpMultiPartyCall."leg released"

Note 1:

The receive of  getMoreDialledReq 

in the Collect_Address state must 

not cause a state transition when 

the indicated to be collected digits 

have been reached.

"Address_Collected"

"Alerting"

"Answer"

routeReq

"Answer"

routeReq

"timer expires"

"Address_Analysed"

routeReq

getMoreDialledDigitsReq

"Release"

"Release"

routeReq

"last report" ^connectionEnded

IpMultiPartyCallControlManager

.reportNotification( "Answer" )

IpMultiPartyCallControlManager.

reportNotification( "Alerting" )

IpMultiPartyCallControlManager.

reportNotification( "Progress" )

IpMultiPartyCallControlManager.

reportNotification( "Address_Collected' )

IPMultiPartyCall.CreateCallLeg

IpMultiPartyCallControlManager.

reportNotification( "call_Attempt" )

IpMultiPartyCallControlManager.

reportNotification( "Release" )

IpMultiPartyCallControlManager.

reportNotification( "Address_Analysed" )


* Contact: 
Dirk De Gelder

Frans Haerens
(+32-3-240.42.12 / * dirk.de_gelder@alcatel.be
(+32-3-240.90.34 / * frans.haerens@alcatel.be

D:\API\2001_April_Interim_CC_Antwerp\contr\contr8STDCallLeg.doc

