I might not understand option 1 well enough. Here is my try: Ericsson presented a contribution in which they do a step back, have a look at the call leg object and define what it should represent. They came up with two ways to deal with call legs (no definitions!): one for which no STD could be given by Ericsson, and one for which I have an STD in my mind, one that was briefly outlined and agreed upon during break-outs in the previous Antwerp meeting (March) and contributed during the previous ad-hoc meeting in Antwerp (January). These states and definitions were also socialized during JCC-Parlay alignment meetings throughout the year 2000.

Lets have a look at this STD. The STD I have in my mind is found in a document known as “Telcordia 5” (Chapter-7.3.6-7.3.6-7.6.2.doc). I gave a brief presentation of the concepts found in this document. Some of the concepts were recognized and well-received! Others need further clarification and justification. I recall the following issues that were frowned upon:

1. Omitting the network events that cause state transitions: “call attempt”, “answer”, etc. FIXABLE!
2. Introduction of the AUTHORIZE_ATTEMPT state. This state models the fact that a connection owner (represented by the field originatingAddress, given by createCallLeg or the network event “call Attempt”) should be authorized before starting to use the resources in the network. However, if it is specified that such a function is executed at another point in time (e.g. before creating the call leg, thus in the ‘black dot’ state), then Telcordia is willing to adjust the contribution and remove this state. FIXABLE!
3. DetachMedia() should be renamed and reworded in GetMedia(). As GetMedia() was introduced as replacement for DetachMedia() by Telcordia this was clearly overlooked. FIXABLE!
4. Unclear wording or even irrelevant (for this level of abstraction) used in the ‘function’ section of some the call leg states (things like “Interface (line/trunk) is idled”). Very valid remark! FIXABLE!
5. The routeReq in the IDLE state is missing, an oversight! The pre/post conditions show it was intended. FIXABLE!
6. Telcordia found that sending events prior to starting the processing of the state that was just entered more powerful than sending the event in mid-transition. The moment of event sending is not clearly defined in the specification at the moment. This moment is very important as it allows applications to modify state processing! Note that in mid-transition there is no processing to be interrupted, modified or overruled. Note also that the Alcatel contribution has two initial event inputs for the PROGRESSING state. Sending the events on state entry can prevent this anomaly! IMPORTANT!
7. Renaming the P_CALL_LEG_CALL_ATTEMPT into P_CALL_LEG_CREATING and adjusting the corresponding description is a valuable change in light of option 1 and option 2! In case of option 1 it allows for multiple points of control _and_ application controlled authorization! (Valuable the case AUTHORIZE_ATTEMPT is withdrawn). IMPORTANT!
8. PROCESSING has changed names into CALL_DELIVERY. After considering the function of this state CALL_DELIVERY was found to be a more descriptive name. In this state the O-CallLeg is setup & routed.

Although the contribution known as “Telcordia 5” was welcomed with clear of un-enthusiasm I would like to point out that a best effort was made to preserve the MPCCS characteristics (application view vs. network view, deassign, and others), while introducing the valuable lessons learned from the AIN/IN and JCC implementations. Both technologies are widely studied, well understood and (JCC is even freely) available. Therefore, Telcordia would suggest having a careful look at these technologies and learn from them.

This contribution was written in the spirit to retain MPCCS characteristics. However, some things were overlooked. Furthermore, and due to circumstances beyond control Telcordia was unable to give a truly effective presentation (the overlooked things found during the meeting are, to my best recollection, listed above) (note that this contribution was only granted time to be ‘overviewed’). It is acknowledged that this contribution does not meet the high quality we are used to. I apologize for that. I do want to emphasize this is a working meeting! Telcordia has every intention to drive the work forward and we are open for suggestions!

Other observations I made later today …

1. Even in this STD mutable call legs are not supported as the API does not support a method for modifying a call leg.

2. Precisely for the previous reason a routeReq is not suitable for translating the target address. Therefore a rerouteReq() method is needed.

Option 1, the Gateway Call Leg

In the Ericsson contribution a definition of this type of call leg is not given. From the use cases it became clear that the difference must be found in the following scenario: suppose an application wants to translate a number. It can arm the ADDRES_ANALYZED state. Upon receipt of the P_CALL_EVENT_ADDRESS_ANALYSED event the application will invoke the following methods:

// This method translates address A in to B, it is only invoked if address A is

// called and the O-CallLeg hits AddressAnalysed

ReportNotification(callRef,CallLegRef,notInfo,assID) {

Call c=eg1.getCall(callLegRef,callRef);

AppCallLeg appLeg2=new AppCallLeg();

AppInfo appInfo=new AppInfo(/* some info */);

ConnectionProperties connectionProperties=new ConnectionProperties();

Leg leg2=c.createAndRouteCallLeg(callSessionID, “no events”, “B”, originatingAddress, appInfo, appLeg2, connectionProperties
)
;

}

CAUTION! ReportNotification(P_CALL_EVENT_ADDRESS_ANALYSED) will result in moving the callLeg to PROGRESSING state according to the Alcatel interpretation of events and states!
CLARIFY! It is assumed that the createAndRouteCallLeg() somehow has the knowledge that it is not invoked to setup a third party connection. It is not clear how this knowledge is conveyed to the call object! If such knowledge is not conveyed, the O-CallLeg would not be told to stop idling in the ADDRESS_ANALYZED/-PROGRESSING state. Additionally, the O-CallLeg would not be told not to setup the second callleg to A in the progressing state.

POSSIBLE ANSWER! Put a property in the connectionProperties. The property could read ‘IS_THIS_THIRD_PARTY_CALLLEG_ROUTE_REQUEST = FALSE’. This information would cause the call object to compare the originatingAddresses of all call legs with the originatingAddress given as an input parameter. As soon as it finds the O-Call Leg it will invoke an internal method that unblocks the ADDRESS_ANALYSE or PROGRESSING state and prevent the normal processing to happen. The normal processing would be: analyse the address in ADDRESS_ANALYSE, route the destination leg in PROGRESSING.

Option 2, The Network Call Leg

Does this scenario result in questions or assumptions in the option 2 approach? No! Assuming we again BLOCK for ADDRESS_ANALYSE and events are sent on state entry. Assume ReportNotification(P_CALL_EVENT_ADDRESS_ANALYSED) will setup a call leg in the ADDRESS_ANALYZED state. The code for ReportNotification(…) would look like:

// This method translates address A in to B, it is only invoked if address A is

// called and the O-CallLeg hits AddressAnalysed

ReportNotification(callRef,CallLegRef,notInfo,assID) {

ConnectionProperties connectionProperties=new ConnectionProperties();

c.reroute(callRef, “B”, callLegRef, connectionProperties
);

}

The target address attribute of the O-CallLeg is changed thru invoking rerouteReq(…). It is assumed that the rerouteReq(…) method implies a continueProcessing(). Following the rerouteReq(…) invocation the state processing will unblock and the given address will be analyzed in ADDRESS_ANALYZED state and the T-CallLeg will be routed in the PROGRESSING state.

What baffles me …

In event that the previous option 1 questions/assumptions are somehow solved and clearly specified without modifying the current API … why does the application create a T-CallLeg if it want to translate an address, effectively bypassing the ADDRESS_ANALYZED and PROGRESSING states for the O-CallLeg, while it does not bypass state transition after the getMoreDialedDigitsReq invocation?

Assume an application wants more digits. It can invoke getMoreDialedDigitsReq() while the O-CallLeg is in the ADDRESS_COLLECTED state. After the application is satisfied with the digits it received thru ^getMoreDialedDigitsRes(), it assumes the state machine resumes processing and proceeds to the ADDRESS_ANALYSED and PROGRESSING state. The state machine will do the things it has to do in these states, checking the targetAddress against the number plan, analyzing the address, and routing to the destination call leg.

Assuming not relying on the state machine’s progressing is one approach (for number translation), why do we rely on the state machine’s progressing in the case of a Variable Length Number Plan?

� Currently, the createandroutecalleg method does not contain a “connectionProperties : in TpCallLegConnectionProperties” argument. I took the liberty to assume this is the intention.

� It is not immediately clear how the application finds out about the sessionID and the originatingAddress values. Please clarify.

� It is assumed the reroute method must be able to change the connection’s properties. However, there is no getConnectionProperties() on the current call Leg.

