	3GPP TSG_CN5 (Open Service Architecture – OSA)

Meeting #10bis, Antwerp, BELGIUM, 18-20 March 2001
	Tdoc N5-010___

Source:
Ericsson

Title:
Definition of the call leg concept
Agenda Item:

Document for:
Approval
Category:
Report
Work Item ID:
OSA
Doc Summary:

Specs involved:

1 Introduction

During the last joint API meeting the new proposals for the MPCC Call and Call Leg STDs were analysed. In the Call Control drafting session we analysed a Number Translation use case and concluded there are two options for achieving this with the MPCC API.

The two options relate to different understanding of the Call leg concept. Before discussion the STDs it should be decided what the call leg concept actually means and how it should be used by applications.

In the following of this report both options are outlined and compared.
Jorgen and Ard-Jan, thanks for sharing your interpretation of the call leg STD. Find questions included. I would appreciate it if you or somebody else can address them prior to the meeting.
Note that your notion of “current API with Gateway CallLegs” is debatable as document ‘N5-010114’ was distributed and party discussed during the previous meeting.
2 Number translation use case

Two use cases are analysed:

2.1 Simple Number translation use case

The use case begins when the SCS is informed that a party is interested in placing a call. The party has entered a specific number that has been analysed by the network (e.g. switch). The call processing is suspended and the SCS is granted control over the call. The SCS informs the application of the event and in turn the application translates the address the party entered to another number and informs the SCS to route the call to the new address. The application is not interested in any further call events.

2.1.1 Destination address checking application

This is a variation on the Simple Number translation use case. In this case, however, the number is not translated but the application just checks the destination address.

2.2 Number translation with conformation

The use case begins when the SCS is informed that a party is interested in placing a call. The party has entered a specific number that has been analysed by the network (e.g. switch). The call processing is suspended and the SCS is granted control over the call. The SCS informs the application of the event and in turn the application translates the address the party entered to another number and informs the SCS to route the call to the new address. The application also indicates to the SCS that it wants to be notified when the called party answers.

3 Simple NT Scenarios

3.1 Simple NT with current API (Gateway CallLegs).

Below it is sketched how the use case can be implemented using the current MPCC API.

[image: image1.emf]Leg1 Call AppCCM AppLeg1 AppLeg2 Network Leg2 AppCall CCM

"inform continue is needed"

"inform network"

"network event: trigger on ADDRESS_ANALYSED"

reportNotification(ADDRESS_ANALYSED)

new

createCallLeg

new

new

new

routeReq

state transition to "Analyse Address"

"translate address"

new

state transition to "progressing"

no event request

needed.

deassign

Basically, the SCS is informed of the network event and creates a corresponding Call and Call Leg object. After this it informs the application. The application translates the address, requests the SCS to create a CallLeg corresponding to the B-party and request to route the call by means of invoking the routeReq operation on the new Call Leg.
This short description raises a couple of questions, here are some:
What happens to “Leg1” now that it has notified the application of the ADDRESS_ANALYZED event? Apparently call processing on this leg was suspended and it will not be resumed.

Can the application never invoke an attachMedia()” on this callleg? The CallLeg remains in ‘ADDRESS_ANALYZED’ and never proceeds to ‘CONNECTED’.
Obviously, if the processing is resumed, leg1 will setup a callleg to the original target address. The call will than have one call object with three call legs instead of Leg1 and Leg2 only.
The newly created “Leg2” hits ADDRESS_ANALYZED? What address is analysed? Assume the application also has registered for B-party’s address + ADDRESS_ANALYZED state, what address will be delivered to the application is a reportNotification(B-party’s address + ADDRESS_ANALYZED) occurs?
The point we try to make is that the state machines, moment of event notification with respect to state processing, states and its processing, and allowed transitions of the API are highly unclear (simply undocumented). We feel the interpretation demonstrated here is counter-intuitive as call processing seems to be blocked mid-way and definity hard to grasp when looking at the current state of “DES/SPAN-120070-4 V0.0.43 (2001-0203)”.
As the application is not interested in any further network event, it doesn’t request for event notifications and also deassigns the call after routing.

3.1.1 Destination checking application.

The sequence for this use case would be exactly the same. The only difference is that the application does not translate the destination number, but just creates a new call leg with the destination number that was received in the initial triggering notification.
The Destination Checking Application is not clear. Could you elaborate? I recall from earlier contributions and agreement that destination legs are not newly created but reused. Is it proposed that destination call legs are considered mutable in some rerouting applications (or worse MPCCS implementations of different vendors) and immutable in others? If the current state of the specification allows for these different views we should do a lot of clarification before submitting this specification for approval to our parent bodies!
3.2 Simple NT with Network CallLegs

Below the scenario is outlined in case one considers the call legs identical to callLegs in the switch (or softswitch).

Note that a softswitch is generally seen as an application that enables the integration of networks and allows for deployment of applications over these networks. A softswitch thus encapsulates gateway functionality! Then, what is the difference between a softswitch and gateway approach?
[image: image2.emf]Leg1 Call AppCCM AppLeg1 Network AppCall CCM

"network event: trigger on "ADDRESS_ANALYSED"

reportNotification(ADDRESS_ANALYSED)

new

new

setTargetAddress

"inform network"

continueProcessing

new

state transition to "progressing"

deassign

Also here, the SCS is informed of the network event and creates a corresponding Call and Call Leg object. After this it informs the application. The application translates the address, sets the target address of the incoming call leg to the new value and requests the SCS to continue call processing.
In a contribution earlier distributed by Telcordia it is outlined that the routeReq can be reused for rerouting an application. Additionally, routeReq or a method called setTargetAddress should unblock call processing, therefore there is no need for a separate call to continueProcessing.
As the application is not interested in any further network event, it doesn’t request for event notifications and also deassigns the call after routing.

3.2.1 Destination checking application.

The sequence for this use case would be the same as for the Simple NT use case, except that no setTargetAddress would be needed, depending on the fact whether the initial target address is present for the incoming call leg.

4 NT with confirmation scenarios.

4.1 NT with current API

The following sequence outlines how the NT would be implemented using the current API.

[image: image3.emf]Leg1 Call AppCCM AppLeg1 AppLeg2 Network Leg2 AppCall CCM

createCallLeg

reportNotification(ADDRESS_ANALYSED)

new

new

new

new

eventReportReq

routeReq

"translate address"

Two options:

1. routeReq leads to implicit

continue for leg 1.

2. explicit continueProcessing

needed for leg 1.

"network event: trigger on ADDRESS_ANALYSED"

new

state transition to "Progressing"

state transition to "Analyse Address"

"inform continue is needed"

"inform network"

"answer"

eventReportRes("answer")

state transition to "Active"

"inform"

state transition to "Active"

The SCS is informed of the network event and creates a corresponding Call and Call Leg object. After this it informs the application. The application translates the address, requests the SCS to create a CallLeg corresponding to the B-party. Next, the application indicates it is interested in B answer event by invoking eventReportReq, and then request to route the call by means of invoking the routeReq operation on the new Call Leg. The SCS then informs the network that a call to the B-party has to be setup and call processing has to be resumed. In case the B-party answers the call, the SCS is informed and the SCS informs the application by calling eventReportRes on the corresponding AppCallLeg interface.

As shown in the figure, there are two alternatives for the application to continue the call processing. Either call processing is continued implicitly after invoking routeReq on the “outgoing” Call Leg or the application also has to invoke the operation continueProcessing on the incoming callLeg. In my opinion the first option is preferred in order to simplify the usage of the API: the SCS is the entity that knows what needs to be done in order to continue call processing, if it means that the incoming leg needs to be told to continue, the SCS can deal with this.
The method ‘continueProcessing’ is intended for application use, not for internal use within the API. We strongly feel that MPCCS API’s scope should be limited to usage between application and service and not impose restriction on the different vendor’s implementations of the API, i.e. this specification should prescribe any specific ways to do implementations.
If the processing on Leg1 is simply resumed (either way), how to prevent leg1 from setting up a callleg to the original destination? The call would then have 3 call legs! Leg 1, Leg2, and a Leg with the untranslated address!
Clearly. the implementation needs to do some massaging of ‘Leg1’ under the water. Unspecified activity going on underwater may result in APIs that prohibit portable applications and complicate state processing (resulting in implementation bugs)! Lots of different interpretations of the MPCCS APIs may inhibit its success and result in ignoring it altogether.
4.2 NT with network view Call Legs.

In case one considers the call legs to be closely identical to the concept of call legs in switches, the scenario would look like:

[image: image4.emf]Leg1 Call AppCCM AppLeg1 AppLeg2 Network Leg2 AppCall CCM

reportNotification(ADDRESS_ANALYSED)

new

new

setTargetAddress

continueProcessing

enableLegCreatedNotification

createCallLeg

callLegCreated

new

How to request events for B

party ?. This would only work

when application is informed

of new call leg in interrupt

mode.

eventReportReq(answer)

continueProcessing

"network event: trigger on "ADDRESS_ANALYSED"

new

state transition to "Progressing"

"inform network"

"network event: connection to B-party being setup"

call processing must be

stopped at this point in time

in order to allow the

application to set requests for

events

"inform network"

state transition to "analyse address"

network event: answer

state transition to "active"

state transition to "active"

eventReportRes("answer")

new

Why do you propose a method like enableLegCreatedNotification? If an application want to learn about the creation of a new callleg, it can register for the event “P_CALL_EVENT_LEG_CREATING” + TpAdditionalCallEventCriteria = {P_CALL_EVENT_CONNECTING} on Leg2. The “P_CALL_EVENT_LEG_CREATING” event is also reported if a party goes off-hook.
Other comments regarding the introduction of new methods and usage of continueProcessing still apply.
The SCS is informed of the network event and creates a corresponding Call and Call Leg object. After this it informs the application. The application translates the address, requests the SCS to be informed when a new CallLeg is created, sets the new target address for the incoming call leg and requests the SCS to continue call processing.

When the network detects the new connection to the B-party is being setup, the SCS is informed, and a new CallLeg is created. The application is informed of the new call leg and indicates it wants to be notified when the B-party answers. After this it informs the SCS that call processing can be continued. In case the B-party answers, the SCS is informed by the network and the SCS informs the application.

The issue with this scenario is that call processing must be stopped when the connection to the B-party is created in order to allow the application interact with the new call leg and indicate what kind of events it is interested in.

5 Comparision of the alternatives.

Notice: The pro and con should better be weighted, i.e. not all counts equally,
e.g. 1p2 may be considered "heavy weight" .

	Gateway Call Legs Option 1
	Network call legs Option 2

	PRO:

*1p1: No impact on current API

*1p2: Matches with how applications use the Generic Call Control !!.
 Note 1

*1p3: Compared to leg objects in switches, another abstraction layer is needed. Note 2

*1p4: clear definition of leg concept, i.e. a leg represents a route or a party connected in the call

*1p5: Details of call processing should be hidden from application developers as much as possible. Don't require telecom competence. Raising the abstraction level...

*1p6: Being able to address leg2 before it is physically created, creates advantages mainly because event monitoring can be requested on beforehand. Note 3
*1p7: Related to the previous observation, this soltion also allows better handling of multi-point of control in case this is to be solved at the API level. Note 4
*1p8: Supports introduction of very simple Call Control API. Note 5
	PRO:

*2p1: Easy alignment with JAIN CC.

*2p2: May be more easy to implement on already existing leg objects in switches / soft-switches ? Note8

*2p3: Easier to grasp for telecom specialists ??. Questionable.

	CON:

*1c1: Call Legs in SCS need to communicate, especially when implicit continuation of call processing is needed. Capacity disadvantage ?
 Note 6

* 1c2: Alignment with JAIN CC more difficult: Note 7
	CON:

* 2c1: New methods needed:

-setTargetAddress

-enableLegCreatedNotification

* 2c2: Methodology of using MPCC slightly different from GCC

*2c3: not clear what a leg represents
Note 9

*2c4: Suspending call processing in order to enable event arming every time leg2 is created is not very efficient.!!
It might cause unnecessary traffic load too.

	

Notes to the Table:

Note 1:
 Easier for application developers, usually less method invocations are needed and matches with how applications use the generic call control.

For the OSA application designer moving from GCC to MPCC, it is advantegeous to keep concepts similar. For changing conceptual view on legs between GCC and MPCC you need a very good reasoning! You cannot piss off/violate/ignore the existing service application developer community.
Note 2:
This is a pure implementation issue, for systems with call/call leg hierarchy the needed coordination between objects is no problem. Resumption of processing for complete call is easy if a call leg can use call coordination provided by call object (CCM) then informing all other legs by itself.

This is SCS business. SCS shields application developers from the fact how it is done (e.g. in IN Considering call resumption for the applied scenarios the resumption in CCF/SSF is on leg1 - not on leg 2 -but you would allow event arming for leg2 to be created later when processing is resumed - implying CCF will create leg 2).

However, for a good coordination between the application and the network it is necessary that the events that can be monitored by the call leg are network events.

Note 3

Its much more intuitive to route leg2 to a certain address than setting a property of leg1 and order the continuation of the call process.

Note4

In case multi-point of control is to be solved on API level, it is easier for applications to detect that there is already an outstanding request to setup a connection within the concept of gateway calllegs. This means that when a second application tries to create a call Leg in order to route it, it will detect that there is already a call leg present, ordered by application 1. In the other alternative, it should be captured in the state of the call object that there is an outstanding request to setup a connection, although no call leg object is yet present at the gateway.

This may not be important if only one service application is invoked and has the control, but where more service applications are acting on the call, the "final" changes in data (e.g. target address could have been changed by a subsequent invoked application) may different from what a service application has requested. For example the first applications instruct a call leg to be created, a subsequent invoked service application could however e.g. instruct the call to be forwarded or even redirected. A "getAddress" like method may be needed. But this is also possible with option 1!!.

Note5

There is a need for a very simple call control API, even simpler than the current GCC. This API would be batch oriented: ie application requesting the SCS to setup a call and inform of the result, all in e.g. one or a few method invocation(s). This would be easier to specify when using the gateway call leg concept: at request of the application the necessary gateway objects will be created and then the gateway starts to setup the call.

Note 6

However, this is considered as SCS internal implementation (leg2 implicit request to leg 1 via call control manager to resume call processing). The increased message flow may be considered as a minor disadvatage with regarding capacity, but otherwise an advantage for the SCS as the coordination of leg(s) via call manager object may become very useful, i.e. should not be regarded only as a disadvantage !!

Note 7
For option 1: Properbly adapter needed for mapping JAIN CC to Parlay and vice versa that is not transparent (contains logic).
For option 2: It may be arguably easier to adapt ' Option 2' to JAIN CC but also not transparent. JAIN CC also uses Call-Call Leg model. What may be needed for easier alignment in option 2 is a different event model.

Note 8:
 This is an implementation issue, purely depending on existing implementation. Therefore questionable.

Note 9
If you set the target address of the call on leg1 what then does leg1 represent? In option2 the concepts call and leg are blurred into the leg1 object.

6 Conclusion

The OSA API forward looking vision for service development independent of signaling evolution. A key point for the OSA is to stay independent of the underlying network constrains (including call control protocols used) as far as possible. Keeping this in mind, OSA is an excellent approach to get access to a telecom network not knowing too much of the network structure itself. The service control protocol in use, e.g. CAP and/or SIP+, shall remain transparent to OSA clients offering services. OSA API shall stay as an abstraction of network capabilities. In order to keep this approach, the OSA API has to be simple and independent of any service control protocol (like SIP+. CAP, INAP).
The main issue here is how to view and handle call legs from an application viewpoint for controlling the actual connection towards an end party (or address), i.e. an abstraction of a call leg in the switch. Two options are considered. Both options have pro’s and con’s. The main difference is the concept of the OSA/Parlay CallLeg: is it identical to how a Call Leg is modelled in a (soft) switch or is it to be seen as implementing an easy interface for controlling the actual connection towards an end party (or address), ie an abstractisation of a call leg in the switch. (In the past this was referred to as network view versus gateway view of the CallLeg.)

A synchronised view between SCS call view and application view is not always required, it is strictly based upon application needs, and may in fact be achieved with event reporting. This applies to both options.

In favour of option two seems therefore only to be a somewhat easier adaptation to JAIN CC. Against 'Option 2' is that it may cause more complex behaviour especially when having more parties involved in call (and particular in SIP networks where every party can do anything, like initiating or modifying sessions/calls, adding new legs or subconferences). A number of pro,s have been found for option 1 !

So, our choice is 'Option 1' for the reasons exposed.
Conclusion

The conclusion is that option 1 shall be chosen !

With this is meant that the concept of the call leg should be a gateway call leg, but the events should be network events. This should be made explicit in the specification.

7 Future extensions

When considering the two options the following useful extensions to the API have been discovered. The notification about creation of leg may become very useful - but is applicable on both models of call leg.
When the switch creates the leg, the application has the possibility to get notified - and arm for possible events. This is outside of the discussion on what the Call Legs should model. A method for informing applications of a new created CallLeg is useful, see also contribution N5-000329 to the Scottsdale meeting. This could also be extended to enable the application to get informed in case the call is forwarded or redirected.

Furthermore, separate method(s) for data setting could be useful for future applications considering SIP as the call control signalling protocol like in S-CSCF where mapping to "SIP+" for service control applies. :One may think of possible types of specific SIP related data like e.g. add media content data (e.g. HTML, gif, mpeg7, etc.). These so-called setters were also discussed in document N5-010039 to the Helsinki meeting.

� Contact information: Jorgen Dyst, Ericsson Denmark, tel: +45 33 88 33 25, e-mail: �HYPERLINK "mailto:Jorgen.Dyst@lmd.ericsson.se"��Jorgen.Dyst@lmd.ericsson.se�, Ard-Jan Moerdijk, Ericsson Eurolab Netherlands, tel: +31 161242777, e-mail: �HYPERLINK "mailto:Ard.Jan.Moerdijk@eln.ericsson.se"��Ard.Jan.Moerdijk@eln.ericsson.se�,

