[image: image1.png]

Draft C, 26 March 2001

3GPP TSG_CN5 (Open Service Architecture – OSA)

Tdoc N5-

Source:
BT

Title:
Call Control issues

Agenda Item:
Call Control
Document for:
Discussion
Category:

Work Item ID:

Doc Summary:

Specs involved:

Call Control Issues

Nick Edwards, James Chapman

This document contains a discussion of a number of open areas in call control concerning events both inside and outside the context of a call. A section at the end of this document proposes specific changes to the OSA specification.

Introduction

An important aspect of call control in Parlay is the capability to inform an application of network events and to allow it to respond. Parlay 2.1 offers an application extremely flexible and powerful interfaces for handling call events. However, the complexity of these interfaces makes the task of ensuring a consistent and robust environment for applications a major challenge.

In implementing call control, it has become apparent that there a number of open issues which need to be considered in call control with respect to handling of network events both within the context of a call and outside.

All Parlay events may be requested in one of two monitor modes:

In MONITOR_MODE_INTERRUPT, the normal processing of the call stops as soon as the event occurs. The application must then take action to cause the call processing to continue normally. If the application does not take action after a given time following an interrupt event, the callFaultDetected() method is called on the IpAppCall interface.

In MONITOR_MODE_NOTIFY, the normal processing of the call continues, but the application is notified that the event has occurred.

A number of proposals for changes to the specification are given in bold type throughout the document.

Interrupt events in the context of a call

The following sections examine the situation where events are requested in interrupt mode in the context of a call.

P_CALL_REPORT PROGRESS

This message indicates that progress has been made by the network in routing the call. It is not clear exactly at which stage in the call should this message be sent, or indeed whether it may not be sent, or may be sent more than once (for example, if it is mapped to the TRYING message on a SIP network). Its meaning in interrupt mode is even more ambiguous. Setting this event in interrupt mode could be used as a means of checking a network address but without actually causing any further action. Can the network actually be interrupted at this stage? If a call were interrupted, the only way to resume it is to route the call to the same address again but without requesting the progress event in interrupt mode. However, some networks may not allow calls to be routed more than once, and some networks may not be able to stop routing the call once the routing request has been given.

Recommendations

1. The circumstances in which the PROGRESS event should be sent need to be defined more specifically in the documentation. In particular defining exactly when the event should be sent, and the number of times it may be sent for a call.

2. The documentation should state whether the event should be allowed in interrupt mode (from the above analysis it appears that it should probably be only allowed in notify mode). If the PROGRESS event is allowed in interrupt mode, there should be a way for the application to resume the call without having to route it again from scratch. If there is a requirement for the application to check a network address without routing to it, then this would be better served by a method IpCall::checkAddress(address : in TpAddress) P_CALL_REPORT_ALERTING

The alerting message indicates that the called party address is now alerting. For an originating call leg (in third party call setup), it makes no sense to interrupt the call at this point, as the next stage in the call is the timing of the ANSWER event is not controlled by the network (it is when the called party answers the call). The only way to stop the called party answering the call is to release the call. Setting the event in interrupt mode could stop the gateway sending a NO_ANSWER event, but there is obvious reason to do this (because the application can do this simply by not requesting a NO_ANSWER report). For a destination call leg, requesting the alerting message in interrupt mode presumably means that the ringback is not sent on to the calling party. However, if this is the case, then the application has no way of resuming the normal processing of the call. For example, the application has no way of sending a network tone to a call leg (unless in-band signalling happens to be used, as in the case of the PSTN).

Recommendations

The documentation should clarify that the alerting event cannot be set in interrupt mode on an originating call leg in third-party call setup. For destination call legs, if ALERTING is made a a notify-only event the gateway would always send a ringback tone (or alerting message) to the originating party. Consideration needs to be given to whether the application could use a user interaction object at this stage to send a message to the calling party – “I am now ringing xxx” rather than the standard ringing tone.

Alternatively, if ALERTING is allowed in interrupt mode, then the application should have a facility for sending a network signal to the controlling party, e.g. a IpCall::sendNetworkSignal() method.
P_CALL_REPORT_ANSWER
The ANSWER event indicates that the called party has answered the call. When an answer message is received in interrupt mode, for an originating call leg it means that the call will not be routed to a destination party. The application can easily resume the call in this case with a RouteReq. For a destination call leg, it means that the media streams for the two parties will not be connected. In the generic call, the application cannot explictly attach the media streams.

Recommendations

If ANSWER is requested in Interrupt mode for a destination call leg, clarification is required on how the gateway will interrupt the call and how the application should resume processing if required.
P_CALL_REPORT_BUSY, P_CALL_REPORT_ROUTING_FAILURE, P_CALL_REPORT_NO_ANSWER

These three events indicate that the called party has not answered the call. For an originating call leg, it does not make much sense to request this in interrupt mode, as the gateway has no obvious default behaviour in this situation, and the call has no parties. For a destination call leg, the default behaviour of the gateway would be to send a network tone to the originating party (this is what would happen if these reports are not requested, or requested in Notify mode), so it makes sense to be able to stop the gateway from doing this. An example of when this might be useful is when the application routes the call to an alternative destination if it receives a busy, routing failure or no answer report. As discussed previously, an IpCall::sendNetworkSignal() method should be provided if these events can be set in interrupt mode.

Recommendations

These three events should not be allowed in interrupt mode for originating call legs, but should be allowed in interrupt mode for destination call legs. For destination call legs, the documentation should clarify how the gateway will interrupt the call and how the application should resume processing.
P_CALL_REPORT_DISCONNECT
This event indicates that the party is disconnected. It is unclear whether this event should be generated for any circumstance where a call leg changes from a connected state to another state, or whether it should only occur when the party actually hangs up the call. Furthermore, it is unclear whether this should be sent in addition to a callEnded message. For an originating call leg, this means that the call is ended, and the default behaviour would be to continue to release the other parties in the call. For a destination call leg, the default network behaviour would be to terminate the originating call leg when there are no other destination call legs in the call. If an application requests this event in interrupt mode, it could then route the originating call leg to another destination or use a user interaction to play a message to the calling party . An example of a use of such a facility is a follow-on call for charge-card type applications.

Recommendations

The documentation should define the exact circumstances in which a DISCONNECT message is sent to the application (e.g. when a party hangs up or when the network disconnects the call), and whether it should be sent when a call ends. It clearly should be allowed in interrupt mode on a destination call leg, but clarification is required on what the gateway’s behaviour should be when this is set in interrupt mode on an originating call leg.
P_CALL_REPORT_REDIRECTED

This event indicates that the network has redirected the call. In notify mode, the application will be informed that the network has redirected the call, and the call will be routed to the new destination. An application might want to set this event in interrupt mode to ensure that a call leg is not routed to any other destination. For example, an application could prevent a call being routed to a mobile messaging service. However, the application has no way of resuming the routing instruction to the new destination after the interrupt event.
P_CALL_REPORT_SERVICE_CODE

This indicates an event such as additional digits detected, hook, recall, etc. In notify mode, it is obvious how this event should work. However, in interrupt mode, it is difficult to define the behaviour as the events could occur at many different stages in the call. The action to be aborted by the gateway and the way in which the application can resume the call processing are thus ambiguous (in general there will not be a default behaviour for such events). If these events are to be allowed in interrupt mode, then every service code will have to be dealt with individually in the context of both originating and destination call legs for every possible stage in the call. This will be quite a complex matrix.

Recommendations

It is proposed that this event should be made only available in NOTIFY mode.
Timeout on Interrupt

If an application requests an event in interrupt mode and then does not respond as expected, the gateway may use the callFaultDetected method on IpAppCall to inform the application that it is releasing the call.

One possibility is that the application does not return the execution thread after the function call on routeRes. In this case, it is obvious that the application is not responding correctly. However, it may not be possible to call the callFaultDetected method on the same interface if the application is single threaded or restricts the access of multiple threads on the same IpAppCall interface instance with a mutex. In this case, sending callFaultDetected may simple cause a second thread to be consumed by the call object. In this circumstance, the gateway could use the IpAppCallControlManager::callAborted() method.

Another possibility is that the application takes an action before returning from the callEventNotify() or RouteRes() method. The Parlay specification does not specify whether the application can do this, or whether it cannot do this or whether it may choose to do this. In the context of an interrupt event, the order of events can be used to indicate that a particular action is being taken in response to the event.

A third possibility is that the execution thread returns after the function call. In this case, it is not clear how the gateway knows when the application has ‘resumed’ normal processing after an interrupt event. Possible actions following an interrupt event by the gateway include

1) releasing the call

2) routing a call

3) using a user interaction on the call

Recommendations

The documentation must define what constitutes the resuming of call processing by an application after an interrupt event (in other words, when should the gateway release the ‘call fault’ timer).
Call Events Outside of a Call

The Parlay specification also supports call events outside the context of a call. Examples of where these are used are to detect an incoming call, or to detect that calls to a particular number have been unsuccessful.

Requests for events are requested using the enableCallNotification method on the IpCallControlManager interface. When an event occurs which matches the criteria, then the callEventNotify method on IpAppCallControlManager is used to inform the application.

enableCallNotification Issues

CallEventName

This parameter indicates the type of event to be detected, e.g. OFFHOOK, ADDRESS_ANALYSED, BUSY, etc

The naming of the TpCallEventName types is not consistent with the more concise TpCallReport types. If these refer to the same network events then they should be made the same, e.g.

P_EVENT_GCCS_ANSWER_FROM_CALL_PARTY vs P_CALL_REPORT_ANSWER
P_EVENT_GCCS_ROUTE_SELECT_FAILURE vs P_CALL_REPORT_ROUTING_FAILURE
etc

Some of the events are prefixed P_EVENT_GCCS... even if though they are used in MPCCS, CCCS, etc.

It is also noticeable that P_CALL_REPORT_DISCONNECT, P_CALL_REPORT_REDIRECTED and P_CALL_REPORT_SERVICE_CODE are not represented in the TpCallEventName type. These might be useful to applications. For example, in notify mode, P_CALL_REPORT_DISCONNECT could be used to log charging information without being involved in the call, and in interrupt mode, it could be used in conjunction with a UICall to announce the charging information to a caller.

Recommendations

It is proposed that the TpCallEventName data type is changed as follows:

P_EVENT_NAME_UNDEFINED -> P_EVENT_CC_UNDEFINED

P_EVENT_GCCS_OFFHOOK_EVENT -> P_EVENT_CC_OFFHOOK_EVENT

P_EVENT_GCCS_ADDRESS_COLLECTED_EVENT -> P_EVENT_CC_ADDRESS_COLLECTED_EVENT

P_EVENT_GCCS_ADDRESS_ANALYSED_EVENT -> P_EVENT_CC_ADDRESS_ANALYSED_EVENT

P_EVENT_GCCS_CALLED_PARTY_BUSY -> P_EVENT_CC_BUSY

P_EVENT_GCCS_CALLED_PARTY_UNREACHABLE -> P_EVENT_CC_UNREACHABLE

P_EVENT_GCCS_NO_ANSWER_FROM_CALLED_PARTY ->P_EVENT_CC_NO_ANSWER

P_EVENT_GCCS_ROUTE_SELECT_FAILURE ->P_EVENT_GCCS_ROUTING_FAILURE

P_EVENT_GCCS_NO_ANSWER_FROM_CALL_PARTY -> P_EVENT_GCCS_NO_ANSWER

And the events

P_EVENT_CCS_DISCONNECT, P_EVENT_CC_REDIRECTED and P_EVENT_CC_SERVICE_CODE are added
CallNotificationType

Indicates whether it is related to the originating or terminating user in the call. It is only used for routed calls, and does not apply to calls created by the application (third-party call setup). This parameter appears to be unnecessary as it should be obvious from the call event whether the it is associated with the originating or terminating user, as follows:

Name
Party
Explanation

OFFHOOK
ORIGINATING
For terminating party, OFFHOOK event is an ANSWER event

ADDRESS_COLLECTED
ORIGINATING
Address is not collected from terminating party

ADDRESS_ANALYSED
ORIGINATING
Address is not analysed for terminating party

CALLED_PARTY_BUSY
TERMINATING
Originating party cannot be busy

CALLED_PARTY_UNREACHABLE
TERMINATING
Originating party cannot be unreachable

NO_ANSWER
TERMINATING
Originating party is already participating in call

ROUTE_SELECT_FAILURE
TERMINATING
Call is not routed to originating party for incoming calls

ANSWER
TERMINATING
Originating party is already participating in call

Note that in determining the appropriate party automatically, it does not stop either a range of originating or destination addresses being used. Any of the events could be used with masks on originating and/or terminating addresses.

It therefore appears that this parameter is unnecessary for the reasons described above.

Recommendations

Unless there some other reason for CallNotificationType, it is proposed that this is removed altogether, and the table above used to define the call notification type based on the event type.

The new events proposed above in TpCallEventName if added would all be of TERMINATING type.

MonitorMode

This parameter indicates whether the event is in interrupt or notify mode. The following table analyses each of the events in interrupt mode, with the action which the gateway would normally do if not in interrupt mode

In the table, there are a number of places where the gateway’s response is to send a network signal. As discussed in the in-call events, it would appear to be a limitation of the current Parlay in not providing a facility for the application to send a network signal except by means of in-band signalling (using a user interaction).

Apart from being able to resume the default behaviour of the call, it also would allow an application to choose to send a busy tone on an address without having to route the call to another destination.

Name
Gateway Default Action

OFFHOOK
sendNetworkSignal(DIALTONE)

ADDRESS_COLLECTED
getMoreDialledDigits()

ADDRESS_ANALYSED
RouteReq (to destination)

CALLED_PARTY_BUSY
sendNetworkSignal(BUSY)

CALLED_PARTY_UNREACHABLE
sendNetworkSignal(UNREACHABLE)

NO_ANSWER
sendNetworkSignal(NO_ANSWER)

ROUTE_SELECT_FAILURE
sendNetworkSignal(ROUTING_FAILURE)

ANSWER
sendNetworkSignal(ANSWER)

Recommendations

It is proposed that a table similar to the above is added to the documentation defining the gateway’s default action after each event type.

Destination and Originating Address

These parameters contain the address ranges which must be matched for destination and originating parties. It is proposed that the following minimal set of rules should apply, although gateways may need to impose further restrictions beyond these.

Recommendations

The following rules should be used as a minimum for Destination and Originating addresses in TpCallEventCriteria. Any enableCallNotification request which does not meet these requirements should be rejected by the gateway

1) An application may choose not to specify an address range parameter by sending an address with a plan set to P_ADDRESS_PLAN_NOT_PRESENT. For example, an application may specify an Originating address range with P_ADDRESS_PLAN_NOT_PRESENT and a destination address range of 441473649155. In this case, the application would be notified of calls from ANY address to 441473649155, and this will include originating addresses of any address plan.

2) The application must always give at least one valid address range (it can’t ask for all calls from any address to any address)

3) A terminating address range may not be given for off-hook and address collected events

callEventNotify Issues

In the specification it should be made clear that the callReference parameter in callEventNotify may have a NULL IpCallRef and a sessionID=0. This should be the case whenever a call event is requested in notify mode, and the application has chosen not to have control of the call. When the callReference parameter is NULL, the application obviously does not need to send an IpAppCallRef as a return parameter.

An alternative approach would be to have two methods:

callEventNotify(eventInfo : in TpCallEventInfo, assignmentID : in TpAssignmentID): TpResult

callEventInterrupt(callReference : TpCallIdentifier, eventInfo : in TpCallEventInfo, assignmentID : in TpAssignmentID , appCall : out IpAppCallRefRef): TpResult

This has the advantage that the application does not have to deal with null call references and the gateway with null appCall references.

The specification should also clarify what happens if an application requests multiple event names on a range of addresses which are not mutually exclusive. For example, suppose the application requests

(P_EVENT_GCCS_ADDRESS_ANALYSED OR P_EVENT_GCCS_CALLED_PARTY_BUSY) for a range of addresses with a single enableCallNotification command.

In this case, if an incoming call which matches the required criteria is routed to an address which returns busy, then two events will be generated for the same call. In this case, the specification should state that the same callReference will be given to the application (otherwise the application will have two call objects which represent the same network call).

In this situation, a further complication arises if the application requests the P_CALL_REPORT_BUSY event when it routes the incoming call to a destination, as it has now requested the same network event through both the callEventNotify and the CallReportRes routes. Unpredictable behaviour will result if both requests are in interrupt mode!

Clearly restrictions need to be made in the specification to ensure that interrupt events are only requested through one channel.

Recommendations

The documentation needs to consider how TpCall and TpAppCall pointers should be set for notify only events, and either clarify this or separate methods IpAppCall::callEventNotify and IpAppCall::callEventInterrupt.

It is also proposed that when an application sends an enableCallNotifcation request, that the only circumstance in which more than one event name may be set is where the events are mutually exclusive, i.e.

BUSY, UNREACHABLE, NO_ANSWER, ROUTE_SELECT_FAILURE, ANSWER

An application may set any combination of these events, but otherwise must only set one event type.

Resume Parameter after Interrupt Event

One possible extension that could be considered is a ‘resume’ parameter, which can be set by an application after receiving an interrupt event that causes the default processing of the call to continue. This would allow an application to choose either to take an alternative action or to continue normal processing.

It is interesting to compare JCC in JAIN, where the JccConnection class (equivalent to the Parlay call leg) supports methods such as isBlocked() and continueProcessing() for interrupt events.

Summary of Recommendations

It seems that the use of interrupt events needs to be clarified in the Parlay specification to include

1) details of which events may be requested in interrupt mode (this may be different for originating and destination call legs),

2) the actions which will be not executed by the gateway in each case, and

3) the method for the application to resume normal call processing if required

4) the conditions which constitute a call fault or actions by the application which are deemed to resume call processing

There seems to be a limitation in the Parlay specification in not allowing an application to send a network message to a party, e.g. busy, routing failure, ringing, etc both in the context of a call, and outside of it. A method IpCall::sendNetworkSignal() method would provide many new options for applications in call processing.

In-call events and out-of-call events need to be made more consistent. Furthermore, the specification needs to be ensure that an application cannot get in a situation whether the same event is requested more than once in interrupt mode in different contexts.

In an ideal situation, the interface specification should, by its design, ensure that the application does not make requests which do not make sense, or gets into circumstances where the integrity of a call is compromised. Where this cannot be easily achieved, then error codes and documentation can be used to ensure consistency in different implementations of Parlay.

Proposed Changes to OSA Specification

1)
It is proposed that the definition of TpCallReportType is replaced with the following table. The new version offers the additional report type QUEUED together with more explanation on PROGRESS and DISCONNECT.

Name
Value
Description

P_CALL_REPORT_UNDEFINED
0
Undefined

P_CALL_REPORT_PROGRESS
1
Call routing progress event:an indication from the network that progress has been made in routing the call to the requested call party. This message may be sent more than once, or may not be sent at all by the gateway with respect to routing a given call leg to a given address.

P_CALL_REPORT_ALERTING
2
Call is alerting at the call party

P_CALL_REPORT_ANSWER
3
Call answered at address

P_CALL_REPORT_BUSY
4
Called address refused call due to busy

P_CALL_REPORT_NO_ANSWER
5
No answer at called address

P_CALL_REPORT_DISCONNECT
6
The media stream of the called party has disconnected but the call has not ended (if the call is ended, the callEnded method is called). This event can occur both when the called party hangs up, or when the application explicitly releases the leg using IpCallLeg::release()

P_CALL_REPORT_REDIRECTED
7
Call redirected to new address: an indication from the network that the call has been redirected to a new address.

P_CALL_REPORT_SERVICE_CODE
8
Mid-call service code received

P_CALL_REPORT_ROUTING_FAILURE
9
Call routing failed - re-routing is possible

P_CALL_REPORT_QUEUED
10
The call is being held in a queue. This event may be sent more than once during the routing of a call.

2) It is proposed that the following table is used to explain the use of P_CALL_MONITOR_MODE_INTERRUPT for events within the context of a call. This should be added to the description of the responseRequested parameter of the IpCall::RouteReq method. Where the function in Interrupt mode is not defined, setting in interrupt mode is the same as setting in notify mode.
Report Type
Function in Interrupt Mode, and Example of Use

PROGRESS
Not defined

ALERTING
Not defined for originating call legs during third-party call setup.

For destination call legs, ringback tone is not sent to the calling party. An example of where this might be useful is to allow an alternative ringback indication to be given to the calling party

ANSWER
The party is not attached to the call. An example of where this could be used is where the application wants to play a user interaction message to the connected party before they are attached to the call.

BUSY, ROUTING_FAILURE, NO_ANSWER
Not defined for originating call legs.

For destination call legs, setting in interrupt mode prevents the appropriate network signal being sent to the calling party. An example of where this could be used is in a call blasting application, where the unsuccessful routing results are suppressed until a response has been received from all call legs. A suitable response is then returned using the sendNetworkSignal() method.

DISCONNECT
Prevents the automatic release of other call legs in the call. An example of where this might be useful is to allow charging information to the calling party to be given once the called party has disconnected from the call.

REDIRECTED
If set in interrupt mode, the call leg is not routed to the new address. An example of where this could be useful is where the application want to route to a specific address such as a desktop terminal, and does not want to continue processing the call if it is diverted to a mobile address.

SERVICE_CODE
Not defined

QUEUED
Not defined

3)
The following method should be added to the IpCall interface

sendNetworkSignal (report : in TpCallReportType) : TpResult

This method may be used to send a given response to the calling party in the call.

Method

sendNetworkSignal()

This method sends the given call report signal to the calling party in the call.

Parameters

report : in TpCallReport

Specifies the call report to be sent to the calling party. Acceptable report types are P_CALL_REPORT_PROGRESS, P_CALL_REPORT_ALERTING, P_CALL_REPORT_BUSY, P_CALL_REPORT_REDIRECTED, P_CALL_REPORT_ROUTING_FAILURE, P_CALL_REPORT_QUEUED

4)
It is proposed that the definition of the TpCallEventName is redefined as follows:

TpCallEventName

Defines the names of event being notified. The following events are supported. The values may be combined by a logical ‘OR’ function when requesting the notifications. Additional events that can be requested / received during the call process are found in the TpCallReportType data-type.

In notify mode, any combination of events may be set. However, if the event is set in interrupt mode, then events which are not mutually exclusive must not be set. Thus the legal combinations are:

1. Only one of:

OFFHOOK, ADDRESS_COLLECTED, ADDRESS_ANALYSED, REDIRECTED, DISCONNECT

2. Any combination of

BUSY, UNREACHABLE, NO_ANSWER, ROUTING_FAILURE, ANSWER

Name
Value
Description

P_EVENT_CC_UNDEFINED
0
Undefined

P_EVENT_CC_OFFHOOK
1
CC – Offhook event
This can be used for hot-line features. In case this event is set in the TpCallEventCriteria, only the originating address(es) may be specified in the criteria.

P_EVENT_CC_ADDRESS_COLLECTED
2
CC – Address information collected
The network has collected the information from the A-party, but not yet analysed the information. The number can still be incomplete. Applications might set notifications for this event when part of the number analysis needs to be done in the application (see also the getMoreDialledDigits method on the call class).

P_EVENT_CC_ADDRESS_ANALYSED
4
CC – Address information is analysed
The dialled number is a valid and complete number in the network.

P_EVENT_CC_BUSY
8
CC – Called party is busy

P_EVENT_CC_UNREACHABLE
16
CC – Called party is unreachable (e.g., the called party has a mobile telephone that is currently switched off).

P_EVENT_CC_NO_ANSWER
32
CC – No answer from called party

P_EVENT_CC_ROUTING_FAILURE
64
CC – Failure in routing the call

P_EVENT_CC_ANSWER
128
CC – Party answered call.

P_EVENT_CC_REDIRECTED
256
CC – Party redirected

P_EVENT_CC_DISCONNECT
512
CC – Party disconnected (i.e. the called party has terminated the call whilst in the connected state, but the call has not ended)

5)
It is proposed that the definition of TpCallNotificationType is removed, and the member CallNotificationType is removed from the datatypes TpCallEventCriteria and TpCallEventInfo.

Instead, the following definition could be used for TpCallEventCriteria:

TpCallEventCriteria

Defines the Sequence of Data Elements that specify the criteria for a event notification.

Of the addresses only the Plan and the AddrString are used for the purpose of matching the notifications against the criteria.

The following rules should be used as a minimum for Destination and Originating addresses in TpCallEventCriteria. Any enableCallNotification request which does not meet these requirements should be rejected.

· An application may choose not to specify an address range parameter by sending an address with a plan set to P_ADDRESS_PLAN_NOT_PRESENT

For example, an application may specify an Originating address range with P_ADDRESS_PLAN_NOT_PRESENT and a destination address range of 123456789. In this case, the application would be notified of calls from ANY address to 123456789, and this will include originating addresses of any address plan.

· The application must always give at least one valid address range (it can’t ask for all calls from any address to any address)

· A terminating address range may not be given for off-hook and address collected events
Sequence Element Name
Sequence Element Type
Description

DestinationAddress
TpAddressRange
Defines the destination address or address range for which the notification is requested.

OriginatingAddress
TpAddressRange
Defines the origination address or a address range for which the notification is requested.

CallEventName
TpCallEventName
Name of the event(s)

MonitorMode
TpCallMonitorMode
Defines the mode that the call is in following the notification.
Monitor mode P_CALL_MONITOR_MODE_DO_NOT_MONITOR is not a legal value here.

The following table defines whether the event is related to the originating or terminating address:

Name
CallNotificationType
Explanation

OFFHOOK
ORIGINATING
For terminating party, OFFHOOK event is an ANSWER event

ADDRESS_COLLECTED
ORIGINATING
Address is not collected from terminating party

ADDRESS_ANALYSED
ORIGINATING
Address is not analysed for terminating party

BUSY
TERMINATING
Originating party cannot be busy

UNREACHABLE
TERMINATING
Originating party cannot be unreachable

NO_ANSWER
TERMINATING
Originating party is already participating in call

ANSWER
TERMINATING
Originating party is already participating in call

ROUTING_FAILURE
TERMINATING
Call is not routed to originating party for incoming calls

REDIRECTED
TERMINATING
Call is not routed to originating party for incoming calls

DISCONNECT
TERMINATING
The disconnect message is not sent for the originating party as the call will automatically end

6)
The definition of IpAppCall::CallEventNotify should be modified as follows:

callEventNotify()

This method notifies the application of the arrival of a call-related event.

Parameters

callReference : in TpCallIdentifier

Specifies the reference to the call interface to which the notification relates. If the event is in NOTIFY mode, then this parameter will be set to NULL.

eventInfo : in TpCallEventInfo

Specifies data associated with this event.

assignmentID : in TpAssignmentID

Specifies the assignment id which was returned by the enableNotification() method. The application can use assignment id to associate events with event specific criteria and to act accordingly.

appCall : out IpAppCallRefRef

Specifies a reference to the application interface which implements the callback interface for the new call. This parameter should be set to NULL if no callback is required.

Raises

TpGCCSException,TpGeneralException

7) The following text should be added to the table in the definition of the AddrString member of TpAddress

Address Plan
AddrString Format Description
Example

P_ADDRESS_PLAN_SIP

A valid SIP address string
sip:user@parlay.org

<sip:enquiries@1.2.3.4:5060> Enquiries

8)
The following text should replace the description of TpAddressRange in 5.6.9

This type is identical to TpAddress with the difference that the AddrString can contain wildcards.

Two wildcards are allowed: * which matches zero or more characters and ? which matches exactly one character.

For E164 addresses, wildcards are only allowed at the end of the string. Some examples for E164 addresses:

· "123"

matches specifies number;

· "123*"

matches all numbers starting with 123 (including 123 itself);

· "123??*"

matches all numbers starting with 123 and at least 5 digits long;

· "123???"

matches all numbers starting with 123 and exactly 6 digits long;

The following address ranges are illegal:

· 1?3

· 1*3

· ?123*

Legal occurrences of the '*' and '?' characters in AddrString should be escaped by a '\' character. To specify a '\' character '\\' must be used.

For e-mail style addresses, the wildcards are allowed at the beginning of the AddrString:

· "*@parlay.org"
matches all email addresses in the parlay.org domain.

For SIP addresses, wildcards are allowed between the ‘sip:’ and the ‘@’ in the AddrString, e.g.

· "sip:*@parlay.org"
matches all SIP addresses at parlay.org:5060.

� It should be noted that two SIP addresses will be regarded as equivalent by a gateway if they correspond to the same user at the same network address. The textual form of the two addresses need not be the same. For example, sip:enquiries@parlay.org will be deemed to match <sip:Enquiries@1.2.3.4:5060>Enquiries (if parlay.org resolves to 1.2.3.4).

Address
Name
Dr N. H. Edwards
British Telecommunications plc

Registered Office:

81 Newgate Street London EC1A 7AJ

Registered in England no. 1800000

BT is an ISO 9001 Registered Company

B28 Room 2A

Adastral Park

Martlesham Heath

Ipswich IP5 3RE, UK
Tel
+44 1473 649155

Fax
+44 1473 646886

Mobile
+44 7711 859290

Email
nick.edwards@bt.com

[image: image2.png]BT;/ig

BTexaCT, advanced communication technologies from
www.btexact.com

Page 18 of 1

Page 18 of 1

