[image: image9.png]ETSI

“H





DTS/SPAN-120070-11 V0.0.4 (2001-03)
Open Service Access;

Application Programming Interface;

Part 11: Account Management;

Reference

DTS/SPAN-120070-11
Keywords

API, OSA, IDL, AM, Account Management

ETSI

650 Route des Lucioles

F-06921 Sophia Antipolis Cedex - FRANCE
Tel.: +33 4 92 94 42 00   Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C

Association à but non lucratif enregistrée à la

Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org
The present document may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at http://www.etsi.org/tb/status/
If you find errors in the present document, send your comment to:
editor@etsi.fr
Copyright Notification

Reproduction is only permitted for the purpose of standardization work undertaken within ETSI.
The copyright and the foregoing restrictions extend to reproduction in all media.
© European Telecommunications Standards Institute 2000.

All rights reserved.


Contents

5Intellectual Property Rights

Foreword
5
Introduction
5
1
Scope
6
2
References
6
3
Definitions, symbols and abbreviations
7
3.1
Definitions
7
3.2
Symbols
7
3.3
Abbreviations
7
4
Account Management SCF
7
5
Sequence Diagrams
8
5.1
Standard Query Handling
8
5.2
Standard Notification handling
9
6
Class Diagrams
9
7
The Service Interface Specifications
13
7.1
Interface Specification Format
13
7.1.1
Interface Class
13
7.1.2
Method descriptions
13
7.1.3
Parameter descriptions
13
7.1.4
State Model
13
7.2
Base Interface
13
7.2.1
Interface Class IpInterface
13
7.3
Service Interfaces
14
7.3.1
Overview
14
7.4
Generic Service Interface
14
7.4.1
Interface Class IpService
14
8
Account Management Interface Classes
15
8.1
Interface Class IpAccountManager
15
8.2
Interface Class IpAppAccountManager
17
9
State Transition Diagrams
20
9.1
State Transition Diagrams for IpAccountManager
20
9.1.1
Active State
21
9.1.2
Notifications created State
21
10
Data Definitions
22
10.1
Account Management Data Definitions
22
Annex A (normative): OMG IDL Description of Account Management SCF
27
Annex <zz> (informative): Bibliography
28
History
30


Intellectual Property Rights

Foreword

Introduction

1
Scope

The scope of this document is to consider the interface specification of an API for accessing Third Party Service Applications. UML techniques have been utilized for this purpose.  This document specifies the Account Management aspects of the interface for ‘Access to Third Party Service provision.  All aspects of Account Management are defined here, these being:

· Sequence Diagrams

· Class Diagrams

· Interface specification plus detailed method descriptions

· State Transition diagrams

· Data definitions

The process by which this task is accomplished is through the use of Object modeling techniques described by the Unified Modeling Language (UML).  UML is a combined tools and methodology process, which results in a comprehensive set of specifications representing, in this case, an interface between client and server applications.  Further information can be found in the latest version of the ITU-T Recommendation Q.65.

The reader should note that this specification has been defined in co-operation with 3GPP CN5 and two industry consortiums, PARLAY and JAIN. 

2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

· References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

· For a specific reference, subsequent revisions do not apply.

· For a non-specific reference, subsequent revisions do apply.

For the purposes of this Technical Report, the following references apply:

[1]
ETSI EN 301 234 (V2.1.1 onwards): "Example 1".

[2]
ETSI EG 201 568 (V1.3.5): "Example 2".

[3]
ETSI ETS 300 499 (1996): "Example 3".

[4]
ETSI ETS 300 999: "Example 4".

OR

ETSI EN 301 234 (V2.1.1 onwards): "Example 1".

ETSI EG 201 568 (V1.3.5): "Example 2".

ETSI ETS 300 499 (1996): "Example 3".

ETSI ETS 300 999: "Example 4".

OR

[EN301234]
ETSI EN 301 234 (V2.1.1 onwards): "Example 1".

[EG201568]
ETSI EG 201 568 (V1.3.5): "Example 2".

[ETS300499]
ETSI ETS 300 499 (1996): "Example 3".

[ETS300999]
ETSI ETS 300 999: "Example 4".

3
Definitions, symbols and abbreviations

3.1
Definitions

For the purposes of the present document, the following terms and definitions apply:

<defined term>: <definition>

example: text serving as an example

3.2
Symbols

For the purposes of the present document, the following symbols apply:

<symbol>
<Explanation>

<2nd symbol>
<2nd Explanation>

3.3
Abbreviations

For the purposes of the present document, the following abbreviations apply:

<ACRONYM1>
<Explanation>

<ACRONYM2>
<Explanation>

<ACRONYM3>
<Explanation>

4 Account Management SCF

The following sections describe each aspect of the Account Management  Service Capability Feature (SCF). 

The order is as follows:

· The Sequence diagrams give the reader a practical idea of how each of the service capability features is implemented. 

· The Class relationships section show how each of the interfaces applicable to the SCF, relate to one another 

· The Interface specification section describes in detail each of the interfaces shown within the Class diagram part.

·  The State Transition Diagrams (STD) show the progression of internal processes either in the application, or Gateway.

· The Data definitions section shows a detailed expansion of each of the data types associated with the methods within the classes.  Note that some data types are used in other methods and classes and are therefore defined within the Common Data types part of this specification. 

5 Sequence Diagrams

5.1 Standard Query Handling 

 The following sequence diagram shows how an application queries an account balance from the Account Management service.  

[image: image1.wmf] : IpAppAccountManager

 : IpAccountManager

Application is requesting to query 

the balance

1: queryBalanceReq(in TpAddressSet, out TpSessionIDRef)

2: queryBalanceRes(in TpSessionID, in TpBalanceSet)

3: queryBalanceReq(in TpAddressSet, out TpSessionIDRef)

Application is requesting to query 

the balance

Application is requesting to query 

the balance

Application is requesting to query the 

balance, but there is at least one error in the 

parameters that is detected by the 

IpAccountManager service.

4: queryBalanceReq(in TpAddressSet, out TpSessionIDRef)

Application is requesting to query the 

balance, but a network error occurs

5: queryBalanceErr(in TpSessionID, in TpBalanceQueryError)

 

1:
This message is used to query the balance of the account of one or several users. 

2:
This message passes the result of the balance query for one or several users to its callback object. 

3:
This scenario shows the case where at least one error in the parameters of the message is detected by the IpAccountManager object. An exception will be thrown.

4:
This scenario shows the case where a network error occurs.

5:
This message passes the error of the balance query. No exception is thrown

5.2 Standard Notification handling 

The following sequence diagram shows how an application can use the notification functionality to receive notifications on charging events from the Account Management service.  


[image: image2.wmf] : 

IpAppAccountManager

 : 

IpAccountManager

1: 

createNotification

(in 

IpAppAccountManagementRef, in 

TpChargingEventCriteria, out 

TpAssignmentIDRef)

2: 

reportNotification

(in 

TpChargingEventInfo, in 

TpAssignmentID, out 

IpAppAccountManagementRefRef)

3: 

getNotification

(out 

TpChargingEventCriteria)

4: 

changeNotification

(in 

TpAssignmentID, in 

TpChargingEventCriteria)

5: 

reportNotification

(in 

TpChargingEventInfo, in 

TpAssignmentID, out 

IpAppAccountManagementRefRef)

6: 

destroyNotification

( )

 

 1:
This message is used by the application to request notifications from the IpAccountManager service on certain criteria for one or several users.

2:
This message is used by the IpAccountManager service to report a charging event that meets the criteria set in the createNotification message.

3:
The application can request the current criteria set in the IpAccountManager service by invoking the getNotification method.

4:
This message is used by the application to change the criteria initially created by createNotification, and previously obtained by getNotification.

5:
This message is used by the IpAccountManager service to report a charging event that meets the new criteria.

6:
This message is used by the application to disable the charging notification.



6 Class Diagrams




[image: image4.wmf]IpAppAccountManager

reportNotification()

queryBalanceRes()

queryBalanceErr()

(

from am)

<<Interface>>

IpAccountManager

createNotification()

destroyNotification()

queryBalanceReq()

changeNotification()

get

Notification

Criteria

()

(

from am)

<<Interface>>

<<

uses>>

IpInterface

(

from 

open_service_access)

<<Interface>>

 Figure: Application Interfaces 



[image: image6.wmf]IpAccountManager

createNotification()

destroyNotification()

queryBalanceReq()

changeNotification()

get

Notification

Criteria

()

(

from am)

<<Interface>>

IpService

setCallback()

setCallbackWithSessionID()

(

from 

open_service_access)

<<Interface>>


Figure: Service Interfaces
7 The Service Interface Specifications

7.1 Interface Specification Format

This section defines the interfaces, methods and parameters that form a part of the  API specification. The Unified Modelling Language (UML) is used to specify the interface classes. The general format of an interface specification is described below.

7.1.1 Interface Class

This shows a UML interface class description of the methods supported by that interface, and the relevant parameters and types. The Service and Framework interfaces for enterprise-based client applications are denoted by classes with name Ip<name>. The callback interfaces to the applications are denoted by classes with name IpApp<name>.  For the interfaces between a Service and the Framework, the Service interfaces are typically denoted by classes with name IpSvc<name>, while the Framework interfaces are denoted by classes with name IpFw<name>

7.1.2 Method descriptions

Each method (API method “call”) is described. All methods in the  API return a value of type TpResult, indicating, amongst other things, if the method invocation was sucessfully executed or not.
Both synchronous and asynchronous methods are used in the  API. Asynchronous methods are identified by a 'Req' suffix for a method request, and, if applicable, are served by asynchronous methods identified by either a 'Res' or 'Err' suffix for method results and errors, respectively. To handle responses and reports, the application or service developer must implement the relevant IpApp<name> or IpSvc<name> interfaces to provide the callback mechanism.

7.1.3 Parameter descriptions

Each method parameter and its possible values are described. Parameters described as 'in' represent those that must have a value when the method is called. Those described as 'out' are those that contain the return result of the method when the method returns.

7.1.4 State Model

If relevant, a state model is shown to illustrate the states of the objects that implement the described interface.

7.2 Base Interface

7.2.1 Interface Class IpInterface

All application, framework and service interfaces inherit from the following interface. This API Base  Interface does not provide any additional methods.

<<Interface>>

IpInterface





7.3 Service Interfaces

7.3.1 Overview

The Service Interfaces provide the interfaces into the capabilities of the underlying network - such as call control, user interaction, messaging, mobility and connectivity management.

The interfaces that are implemented by the services are denoted as 'Service Interface'. The corresponding interfaces that must be implemented by the application (e.g. for API callbacks) are denoted as 'Application Interface'.

7.4 Generic Service Interface

7.4.1 Interface Class IpService
Inherits from: IpInterface 
All service interfaces inherit from the following interface. 

<<Interface>>

IpService



setCallback (appInterface : in IpInterfaceRef) : TpResult

setCallbackWithSessionID (appInterface : in IpInterfaceRef, sessionID : in TpSessionID) : TpResult



Method

setCallback()

This method specifies the reference address of the callback interface that a service uses to invoke methods on the application. 

Parameters

appInterface : in IpInterfaceRef

Specifies a reference to the application interface, which is used for callbacks
Raises

TpGeneralException

Method

setCallbackWithSessionID()

This method specifies the reference address of the application's callback interface that a service uses for interactions associated with a specific session ID: e.g. a specific call, or call leg. 

Parameters

appInterface : in IpInterfaceRef

Specifies a reference to the application interface, which is used for callbacks
sessionID : in TpSessionID

Specifies the session for which the service can invoke the application's callback interface.
Raises

TpGeneralException

8 Account Management Interface Classes

8.1 Interface Class IpAccountManager 

Inherits from: IpService.
The account management interface provides methods for monitoring accounts. Applications can use this interface to enable or disable charging-related event notifications and to query account balances. 

<<Interface>>

IpAccountManager



createNotification (appAccountManagerRef : in IpAppAccountManagementRef, ChargingEventCriteria : in TpChargingEventCriteria, assignmentId : out TpAssignmentIDRef) : TpResult

destroyNotification (assignmentId : in TpAssignmentID) : TpResult

queryBalanceReq (users : in TpAddressSet, queryId : out TpSessionIDRef) : TpResult

changeNotification (assignmentID : in TpAssignmentID, eventCriteria : in TpChargingEventCriteria) : TpResult

getNotification (eventCriteria : out TpChargingEventCriteria) : TpResult
retrieveTransactionHistoryReq(user : in TpAddress, transactionInterval : in TpTimeInterval, retrievalID : out TpSessionID) : TpResult


Method

createNotification()

This method is used by the application to enable charging event notifications to be sent to the application. 

Parameters

appAccountManagerRef : in IpAppAccountManagementRef

If this parameter is set (i.e. not NULL), it specifies a reference to the application interface that is used for callbacks. If it is set to NULL, the application interface defaults to the interface specified via the setCallback() method.
ChargingEventCriteria : in TpChargingEventCriteria

Specifies the event specific criteria used by the application to define the charging event required. Individual addresses or address ranges may be specified for subscriber accounts. Example of events are "charging" and "recharging".
assignmentId : out TpAssignmentIDRef

Specifies the ID assigned by the account management object for this newly enabled event notification.
Raises

TpAMException,TpGeneralException
Method

destroyNotification()

This method is used by the application to disable charging notifications. 

Parameters

assignmentId : in TpAssignmentID

Specifies the assignment ID that was given by the account management object when the application enabled the charging notification.
Raises

TpAMException,TpGeneralException
Method

queryBalanceReq()

This method is used by the application to query the balance of an account for one or several users. 

Parameters

users : in TpAddressSet

Specifies the user(s) for which the balance is queried.
queryId : out TpSessionIDRef

Specifies the ID of the balance query request.
Raises

TpAMException,TpGeneralException
Method

changeNotification()

Parameters

assignmentID : in TpAssignmentID

Specifies the ID assigned by the manager interface for the event notification.
eventCriteria : in TpChargingEventCriteria

Specifies the new set of event criteria used by the application to define the event required. Only events that meet these criteria are reported
Method

getNotification()

This method is used by the application to query the event criteria set with createNotification or changeNotification. 

Parameters

eventCriteria : out TpChargingEventCriteria

Specifies the event criteria used by the application to define the event required. Only events that meet these criteria are reported.
Method

retrieveTransactionHistoryReq()

This asynchronous method is used by the application to retrieve a transaction history of a subscriber’s account.  The history is a set of Detailed Records.

Parameters

user : in TpAddress

Specifies the subscriber for whose account the transaction history is to be retrieved.

transactionInterval : in TpTimeInterval

Specifies the time interval for which the transaction history is to be retrieved.
retrievalID : out TpSessionID

Specifies the retrieval ID of the transaction history retrieval request.

Raises

TpAMException,TpGeneralException
8.2 Interface Class IpAppAccountManager 

Inherits from: IpInterface.
The account management application interface is implemented by the client application developer and is used to handle charging event notifications and query balance responses. 

<<Interface>>

IpAppAccountManager



reportNotification (chargingEventInfo : in TpChargingEventInfo, assignmentId : in TpAssignmentID, appAccountManager : out IpAppAccountManagementRefRef) : TpResult

queryBalanceRes (queryId : in TpSessionID, balances : in TpBalanceSet) : TpResult

queryBalanceErr (queryId : in TpSessionID, cause : in TpBalanceQueryError) : TpResult
retrieveTransactionHistoryRes(retrievalID : in TpSessionID, transactionHistory : in TpTransactionHistorySet) : TpResult

retrieveTransactionHistoryErr(retrievalID : in TpSessionID) : TpResult



Method

reportNotification()

This method is used to notify the application of a charging event. 

Parameters

chargingEventInfo : in TpChargingEventInfo

Specifies data associated with this charging event. These data include the charging event being notified, the current value of the balance after the notified event occurred, and the time at which the charging event occurred.
assignmentId : in TpAssignmentID

Specifies the assignment ID that was returned by the createNotification() method. The application can use the assignment ID to associate events with event-specific criteria and to act accordingly.
appAccountManager : out IpAppAccountManagementRefRef

Specifies a reference to the application object, which implements the callback interface for the new charging session.
Raises

TpAMException,TpGeneralException
Method

queryBalanceRes()

This method indicates that the request to query the balance was successful and it reports the requested balance of an account to the application. 

Parameters

queryId : in TpSessionID

Specifies the ID of the balance query request.
balances : in TpBalanceSet

Specifies the balance for one or more user accounts.
Raises

TpAMException,TpGeneralException
Method

queryBalanceErr()

This method indicates that the request to query the balance failed and it reports the cause of failure to the application. 

Parameters

queryId : in TpSessionID

Specifies the ID of the balance query request.
cause : in TpBalanceQueryError

Specifies the error that led to the failure.
Raises

TpAMException,TpGeneralException
Method

retrieveTransactionHistoryRes()

This method indicates that the request to retrieve the transaction history was successful and it returns the requested transaction history. 

Parameters

retrievalID : in TpSessionID

Specifies the retrievalID of the transaction history retrieval request.

transactionHistoryStatusCode : in TpTransactionHistoryStatus

Specifies the status code for retrieving the transaction history.

transactionHistory : in TpTransactionHistorySet

Specifies the requested transaction history.
Raises

TpAMException,TpGeneralException
Method

retrieveTransactionHistoryErr()

This method indicates that the request to retrieve the transaction history failed and it reports the cause of failure to the application.

Parameters

retrievalID : in TpSessionID

Specifies the retrievalID of the transaction history retrieval request..

transactionHistoryError : in TpTransactionHistoryStatus

Specifies the error that occurred while retrieving the transaction history.
Raises

TpAMException,TpGeneralException






9 State Transition Diagrams

9.1 State Transition Diagrams for IpAccountManager 


[image: image7.wmf]Active

Notifications

created

Creation of 

IpAccountManager

by Service Factory

queryBalanceReq

changeNotification

get

Notification

Criteria

queryBalanceReq

IpAccess.terminateServiceAgreement

destroyNotification

IpAccess.terminateServiceAgreement

createNotification

retrieveTransactionHistoryReq

retrieveTransactionHistoryReq

 

Figure : Application view on the IpAccountManager 

9.1.1 Active State

In this state a relation between the Application and the Account Management has been established. The state allows the application to indicate that it is interested in charging related events, by calling createNotification. In case such an event occurs, Account Manager will inform the application by invoking the operation reportNotification() on the IpAppAccountManager interface. The application can also indicate it is no longer interested in certain charging related events by calling destroyNotification().
9.1.2 Notifications created State

When the Account Manager is in the Notifications created state, events requested with createNotification() will be forwarded to the application. In this state the application can request to change the notifications or query the Account Manager for the notifications currently set.

10 Data Definitions

10.1 Account Management Data Definitions

This section provides the Account Management specific data definitions necessary to support the OSA interface specification.

This document is written using Hypertext link, to aid navigation through the data structures. Underlined text represents Hypertext links.

The general format of a data definition specification is the following:

· 
Data type, that shows the name of the data type.

· 
Description, that describes the data type.

· 
Tabular specification, that specifies the data types and values of the data type.

· 
Example, if relevant, shown to illustrate the data type.

TpBalanceQueryError

Defines an error that is reported by the Charging service capability feature as a result of a balance query request. 

Name
Value
Description

P_BALANCE_QUERY_OK
0
No error occurred while processing the request

P_BALANCE_QUERY_ERROR_UNDEFINED
1
General error, unspecified

P_BALANCE_QUERY_UNKNOWN_SUBSCRIBER
2
Subscriber for which balance is queried is unknown

P_BALANCE_QUERY_UNAUTHORIZED_APPLICATION
3
Application is not authorized to query balance

P_BALANCE_QUERY_SYSTEM_FAILURE
4
System failure. The request could not be handled







































TpChargingEventName

Defines the charging event for which notifications can be requested by the application.

Name
Value
Description

P_AM_CHARGING
0
End user's account has been charged by an application

P_AM_RECHARGING
1
End user has recharged the account

P_AM_ACCOUNT_LOW
2
Account balance is below the balance threshold

P_AM_ACCOUNT_ZERO
3
Account balance is at zero

P_AM_ACCOUNT_DISABLED
4
Account has been disabled















TpBalanceInfo

Defines the structure of data elements that specifies detailed balance info.

Structured Member Name
Structured Member Type
Description

Currency
TpString
Currency unit according to ISO-4217:1995

ValuePartA
TpInt32
This data type is identical to a TpInt32 and specifies the most significant part of the composed value. A currency amount is composed as follows:

( (ValuePartA*232+ ValuePartB) * 0.0001 )

ValuePartB
TpInt32
This data type is identical to a TpInt32 and specifies the least significant part of the composed value.

Exponent
TpInt32
Specifies the position of the decimal point in the currency amount made up of the unitPart and the fractionPart, as described above. E.g. an exponent of 4 means a pure integer value, whereas an exponent of 2 means an accuracy of 0.01.

AdditionalInfo
TpString
Descriptive string, containing additional information, which is sent to the application without prior evaluation.

As an example, the currency amount composed of a Currency of EUR, a ValuePartA of 0, a ValuePartB of 10000, and an exponent of 2 yields a currency amount of € 100.00.
Valid Currencies are:

ADP, AED, AFA, ALL, AMD, ANG, AON, AOR, ARS, ATS, AUD, AWG, AZM, BAM, 

BBD, BDT, BEF, BGL, BGN, BHD, BIF, BMD, BND, BOB, BOV, BRL, BSD, BTN, 

BWP, BYB, BZD, CAD, CDF, CHF, CLF, CLP, CNY, COP, CRC, CUP, CVE, CYP, 

CZK, DEM, DJF, DKK, DOP, DZD, ECS, ECV, EEK, EGP, ERN, ESP, ETB, EUR, 

FIM, FJD, FKP, FRF, GBP, GEL, GHC, GIP, GMD, GNF, GRD, GTQ, GWP, GYD, 

HKD, HNL, HRK, HTG, HUF, IDR, IEP, ILS, INR, IQD, IRR, ISK, ITL, JMD, 

JOD, JPY, KES, KGS, KHR, KMF, KPW, KRW, KWD, KYD, KZT, LAK, LBP, LKR, 

LRD, LSL, LTL, LUF, LVL, LYD, MAD, MDL, MGF, MKD, MMK, MNT, MOP, MRO, 

MTL, MUR, MVR, MWK, MXN, MXV, MYR, MZM, NAD, NGN, NIO, NLG, NOK, NPR, 

NZD, OMR, PAB, PEN, PGK, PHP, PKR, PLN, PTE, PYG, QAR, ROL, RUB, RUR, 

RWF, SAR, SBD, SCR, SDD, SEK, SGD, SHP, SIT, SKK, SLL, SOS, SRG, STD, 

SVC, SYP, SZL, THB, TJR, TMM, TND, TOP, TPE, TRL, TTD, TWD, TZS, UAH, 

UGX, USD, USN, USS, UYU, UZS, VEB, VND, VUV, WST, XAF, XAG, XAU, XBA, 

XBB, XBC, XBD, XCD, XDR, XFO, XFU, XOF, XPD, XPF, XPT, XTS, XXX, YER, 

YUM, ZAL, ZAR, ZMK, ZRN, ZWD.

XXX is used for transactions where no currency is involved. 

TpChargingEventInfo

Defines the structure of data elements that specifies charging event information.

Structured Member Name
Structured Member Type
Description

chargingEventName
TpChargingEventName
The charging event for which notifications can be requested by the application

currentBalanceInfo
TpBalanceInfo
The current balance of the user’s account

chargingEventTime
TpTime
The time at which the charging event occurred.

TpChargingEventCriteria

Defines the structure of data elements that specifies charging event criteria.

Structured Member Name
Structured Member Type
Description

users
TpAddressSet
Specifies the user(s) for which the charging events are requested to be reported.

chargingEventName
TpChargingEventName
Specifies the specific charging event criteria used by the application to define the event required.

TpBalance

Defines the structure of data elements that specifies a balance.

Structured Member Name
Structured Member Type
Description

UserID
TpAddress
Specifies the user to whom the account belongs to.

StatusCode
TpBalanceQueryError
Specifies the status code for the balance query request.

BalanceInfo
TpBalanceInfo
Specifies the balance information for the user.

TpBalanceSet

Defines a collection of TpBalance elements.





































TpTransactionHistory

This data type is a sequence of data elements that describes the transaction history.

Sequence Element

Name
Sequence Element

Type
Description

transactionID
TpAssignmentID
Specifies the ID of the specific transaction

timeStamp
TpDateAndTime
Specifies the date and time when the specific transaction was processed.

additionalInfo
TpString
Specifies a free format string providing additional information on the specific transaction. This could be the applicationDescription provided with the actual transaction.

TpTransactionHistorySet
Defines a collection of TpTransactionHistory elements.

TpTransactionHistoryStatus

Defines a status code that is reported by the Account Manager service capability feature as a result of a transaction history retrieval request. 

Name
Value
Description

P_AM_TRANSACTION_OK
0
No error occurred while processing the request

P_AM_TRANSACTION_ERROR_UNSPECIFIED
1
General error, unspecified

P_AM_TRANSACTION_INVALID_INTERVAL
2
An invalid interval for the transaction history was specified.

P_AM_TRANSACTION_UNKNOWN_ACCOUNT
3
No account for the specified user is known.

P_AM_TRANSACTION_UNAUTHORIZED_APPLICATION
4
Application is not authorized to query balance.

P_AM_TRANSACTION_PROCESSING_ERROR
5
A processing error occurred while compiling the transaction history.

P_AM_TRANSACTION_SYSTEM_FAILURE
6
System failure. The request could not be handled































Annex A (normative):
OMG IDL Description of Account Management SCF

The OMG IDL representation of this interface specification is contained in a text file (am.idl contained in archive ??????.ZIP) which accompanies the present document.
Annex <zz> (informative):
Bibliography

The annex entitled "Bibliography" is optional.

Exception: Please use style"Heading 9" and no indication of (informative) or (normative) within a Technical Report.

Bibliography format

· <Publication>: "<Title>".

OR

<Publication>: "<Title>".

History

Document history

<Version>
<Date>
<Milestone>

v0.0.1
19 Jan 2001
First draft generated from UML model

v0.0.2
1 Mar 2001
Version based on the split up of Account Management and Charging, decided in Helsinki (6-8 February 2001)

v0.0.3
3 Mar 2001
Version based on the Charging Ad Hoc session in Antwerp, Belgium, on the 2nd of March

v0.0.4
7 Mar 2001
Draft incorporating all agreements reached during the 10th CN5 meeting in Antwerp, Belgium, 5-7 March 2001

[image: image9.png]_1045396873.doc
[image: image1.emf][image: image2.emf]

IpAccountManager







createNotification()







destroyNotification()







queryBalanceReq()







changeNotification()







getNotificationCriteria()







(from am)







<<Interface>>







IpService







setCallback()







setCallbackWithSessionID()







(from open_service_access)







<<Interface>>












_1045396917.doc
[image: image1.emf][image: image2.emf][image: image3.emf][image: image4.emf]

IpAppAccountManager







reportNotification()







queryBalanceRes()







queryBalanceErr()







(from am)







<<Interface>>







IpAccountManager







createNotification()







destroyNotification()







queryBalanceReq()







changeNotification()







getNotificationCriteria()







(from am)







<<Interface>>







<<uses>>







IpInterface







(from open_service_access)







<<Interface>>












_1045399596.doc


Active







Notifications 







created







Creation of IpAccountManager 







by Service Factory







queryBalanceReq







changeNotification







getNotificationCriteria







queryBalanceReq







IpAccess.terminateServiceAgreement







destroyNotification







IpAccess.terminateServiceAgreement







createNotification







retrieveTransactionHistoryReq







retrieveTransactionHistoryReq












_1045291364.doc


 : IpAppAccountManager







 : IpAccountManager







1: createNotification(in IpAppAccountManagementRef, in TpChargingEventCriteria, out TpAssignmentIDRef)







2: reportNotification(in TpChargingEventInfo, in TpAssignmentID, out IpAppAccountManagementRefRef)







3: getNotification(out TpChargingEventCriteria)







4: changeNotification(in TpAssignmentID, in TpChargingEventCriteria)







5: reportNotification(in TpChargingEventInfo, in TpAssignmentID, out IpAppAccountManagementRefRef)







6: destroyNotification( )












