	3GPP TSG_CN5 (Open Service Architecture – OSA)

Meeting #10, Antwerp, BELGIUM, 5 – 7 March 2001
	Tdoc N5-010201

Source:
Ericsson

Title:
Call Control IDL
Agenda Item:

Document for:
Approval
Category:
Report
Work Item ID:
OSA
Doc Summary:

Specs involved:

1 Introduction

This contribution outlines the call control IDL, generated from the UML model. There are at the moment 4 different files:

· gcc_data.idl, capturing the generic call control data types

· gcc_interfaces.idl, capturing the generic call control interfaces

· mpcc_data.idl, capturing the multi-party call control data types

· mpcc_interfaces.idl, capturing the multi-party call control interfaces.

Depending the decision on generic versus multi-party call control, the IDL might be re-structured. This contribution just shows the IDL based on the current specification.

2 Generic Call Control data-types

/* Source file: gcc_data.idl */

#ifndef __GCC_DATA_DEFINED

#define __GCC_DATA_DEFINED

/* CmIdentification

%X% %Q% %Z% %W% */

#include "osa.idl"

#include "ui.idl"

module org {

module open_service_access {

module cc {

/* Defines the names of event being notified. The following events are supported. The values may be combined by a logical 'OR' function when requesting the notifications. Additional events that can be requested / received during the call process are found in the TpCallReportType data-type. */

typedef TpInt32 TpCallEventName;

/* Undefined */

const TpInt32 P_EVENT_NAME_UNDEFINED = 0;

/* GCCS - Offhook event. This can be used for hot-line features.This can be used for hot-line features. In case this event is set in the TpCallEventCriteria, only the originating address(es) may be specified in the criteria */

const TpInt32 P_EVENT_GCCS_OFFHOOK_EVENT = 1;

/* GCCS - Address information collected. The network has collected the information from the A-party, but not yet analysed the information.The number does not yet have to be can still be incomplete. Applications might set notifications for this event when part of the number analysis needs to be done in the application (see also the getMoreDialledDigits method on the call class). */

const TpInt32 P_EVENT_GCCS_ADDRESS_COLLECTED_EVENT = 2;

/* GCCS - Called party is busy. */

const TpInt32 P_EVENT_GCCS_CALLED_PARTY_BUSY = 8;

/* GCCS - Called party is unreachable (e.g., the called party has a mobile telephone that is currently switched off). */

const TpInt32 P_EVENT_GCCS_CALLED_PARTY_UNREACHABLE = 16;

/* GCCS - No answer from called party */

const TpInt32 P_EVENT_GCCS_NO_ANSWER_FROM_CALLED_PARTY = 32;

/* GCCS - Failure in routing the call */

const TpInt32 P_EVENT_GCCS_ROUTE_SELECT_FAILURE = 64;

/* GCCS - Party answered the call */

const TpInt32 P_EVENT_GCCS_ANSWER_FROM_CALL_PARTY = 128;

/* Defines the type of notification. Indicates whether it is related to the originating of the terminating user in the call. */

enum TpCallNotificationType {

P_ORIGINATING,

/* Indicates that the notification is related to the originating user in the call. */

P_TERMINATING

/* Indicates that the notification is related to the terminating user in the call. */

};

/* Defines the mode that the call will monitor for events, or the mode that the call is in following a detected event. */

enum TpCallMonitorMode {

P_CALL_MONITOR_MODE_INTERRUPT,

/* The call event is intercepted by the call control service and call processing is interrupted. The application is notified of the event and call processing resumes following an appropriate API call or network event (such as a call release) */

P_CALL_MONITOR_MODE_NOTIFY,

/* The call event is detected by the call control service but not intercepted. The application is notified of the event and call processing continues. */

P_CALL_MONITOR_MODE_DO_NOT_MONITOR

/* Do not monitor for the event */

};

/* Defines the Tagged Choice of Data Elements that specify the criteria for an event notification to be generated.

Of the addresses only the Plan and the AddrString are used for the purpose of matching the notifications against the criteria. */

struct TpCallEventCriteria {

TpAddressRange DestinationAddress;

TpAddressRange OriginatingAddress;

TpCallEventName CallEventName;

TpCallNotificationType CallNotificationType;

/* Defines the mode that the call is in following the notification.

Monitor mode P_CALL_MONITOR_MODE_DO_NOT_MONITOR is not a legal value here. */

TpCallMonitorMode MonitorMode;

};

/* This data type is identical to a TpInt32, and defines the mechanism that will be used to alert a call party. The values of this data type are operator specific. */

typedef TpInt32 TpCallAlertingMechanism;

/* Defines a specific call error. */

enum TpCallErrorType {

P_CALL_ERROR_UNDEFINED,

/* Undefined; the method failed or was refused, but no specific reason can be given. */

P_CALL_ERROR_INVALID_ADDRESS,

/* The operation failed because an invalid address was given. */

P_CALL_ERROR_INVALID_STATE

/* The call was not in a valid state for the requested operation. */

};

/* Defines the Tagged Choice of Data Elements that specify additional call error and call error specific information. This is also used to specify call leg errors and call information errors. */

union TpCallAdditionalErrorInfo switch(TpCallErrorType) {

case P_CALL_ERROR_INVALID_ADDRESS: TpAddressError CallErrorInvalidAddress;

default: short Dummy;
//allows initialisation of the union in the default case

};

/* Defines the Sequence of Data Elements that specify the additional information relating to an undefined call error. */

struct TpCallError {

TpDateAndTime ErrorTime;

TpCallErrorType ErrorType;

TpCallAdditionalErrorInfo AdditionalErorInfo;

};

/* Defines the cause of the call fault detected. */

enum TpCallFault {

P_CALL_FAULT_UNDEFINED,

/* Undefined */

P_CALL_TIMEOUT_ON_RELEASE,

/* This fault occurs when the final report has been sent to the application, but the application did not explicitly release or deassign the call object, within a specified time.

The timer value is operator specific. */

P_CALL_TIMEOUT_ON_INTERRUPT

/* This fault occurs when the application did not instruct the gateway how to handle the call within a specified time, after the gateway reported an event that was requested by the application in interrupt mode.

The timer value is operator specific */

};

/* Defines the following type of call information requested and reported:

P_CALL_INFO_UNDEFINED

P_CALL_INFO_TIMES

P_CALL_INFO_RELEASE_CAUSE

P_CALL_INFO_INTERMEDIATE

These values may be combined by a logical 'OR' function. */

typedef TpInt32 TpCallInfoType;

/* Undefined */

const TpInt32 P_CALL_INFO_UNDEFINED = 0;

/* Report the relevant call times */

const TpInt32 P_CALL_INFO_TIMES = 1;

/* Report the call release cause. */

const TpInt32 P_CALL_INFO_RELEASE_CAUSE = 2;

/* Send only intermediate reports. When this is not specified the information report will only be sent when the call has ended. When intermediate reports are requested a report will be generated between follow-on calls, i.e., when a party leaves the call. */

const TpInt32 P_CALL_INFO_INTERMEDIATE = 4;

/* Defines the Sequence of Data Elements that specify the service code and type of service code received during a call. The service code type defines how the value string should be interpreted. */

enum TpCallServiceCodeType {

P_CALL_SERVICE_CODE_UNDEFINED,

/* The type of service code is unknown. The corresponding string is operator specific. */

P_CALL_SERVICE_CODE_DIGITS,

/* The user entered a digit sequence during the call. The corresponding string is an ascii representation of the received digits. */

P_CALL_SERVICE_CODE_FACILITY,

/* A facility information element is received. The corresponding string contains the facility information element as defined in ITU Q.932 */

P_CALL_SERVICE_CODE_U2U,

/* A user-to-user message was received. The associated string contains the content of the user-to-user information element. */

P_CALL_SERVICE_CODE_HOOKFLASH,

/* The user performed a hookflash, optionally followed by some digits. The corresponding string is an ascii representation of the entered digits. */

P_CALL_SERVICE_CODE_RECALL

/* The user pressed the register recall button, optionally followed by some digits. The corresponding string is an ascii representation of the entered digits. */

};

/* Defines the Sequence of Data Elements that specify the service code and type of service code received during a call. The service code type defines how the value string should be interpreted. */

struct TpCallServiceCode {

TpString ServiceCodeValue;

TpCallServiceCodeType CallServiceCodeType;

};

/* Defines the following responses from the call control service for calls that are supervised:

P_CALL_SUPERVISE_TIMEOUT

P_CALL_SUPERVISE_CALL_ENDED

P_CALL_SUPERVISE_TONE_APPLIED

These values may be combined by a logical 'OR' function. */

typedef TpInt32 TpCallSuperviseReport;

/* The call supervision timer has expired. */

const TpInt32 P_CALL_SUPERVISE_TIMEOUT = 1;

/* The call has ended, either due to timer expiry or call party release. In case the called party disconnects but a follow-on call can still be made also this indication is used. */

const TpInt32 P_CALL_SUPERVISE_CALL_ENDED = 2;

/* A warning tone has been applied as a result of the expiry of the supervision timer. This is only sent in combination with P_CALL_SUPERVISE_TIMEOUT */

const TpInt32 P_CALL_SUPERVISE_TONE_APPLIED = 4;

/* The user interaction has finished. */

const TpInt32 P_CALL_SUPERVISE_UI_FINISHED = 8;

/* Defines the following treatment of the call by the call control service when the call supervision event occurs.

P_CALL_SUPERVISE_RELEASE

P_CALL_SUPERVISE_RESPOND

P_CALL_SUPERVISE_APPLY_TONE

These values may be combined by a logical 'OR' function. */

typedef TpInt32 TpCallSuperviseTreatment;

/* Release the call when the call supervision event occurs. */

const TpInt32 P_CALL_SUPERVISE_RELEASE = 1;

/* Notify the application when the call supervision event occurs */

const TpInt32 P_CALL_SUPERVISE_RESPOND = 2;

/* Send a warning tone to the originating party when the call supervision event occurs. If call release is requested, then the call will be released following the tone after an administered time period. */

const TpInt32 P_CALL_SUPERVISE_APPLY_TONE = 4;

/* Defines a specific call event report type. */

enum TpCallReportType {

P_CALL_REPORT_UNDEFINED,

/* Undefined */

P_CALL_REPORT_PROGRESS,

/* Call routing progress event: an indication from the network that progress has been made in routing the call to the requested call party <<?>> */

P_CALL_REPORT_ALERTING,

/* Call is alerting at call party. */

P_CALL_REPORT_ANSWER,

/* Call answered at address */

P_CALL_REPORT_BUSY,

/* Called address refused call due to busy */

P_CALL_REPORT_NO_ANSWER,

/* No answer at called address */

P_CALL_REPORT_DISCONNECT,

/* Call disconnect requested by call party. */

P_CALL_REPORT_REDIRECTED,

/* Call redirected to new address: an indication from the network that the call has been redirected to a new address. */

P_CALL_REPORT_SERVICE_CODE,

/* Mid-call service code received */

P_CALL_REPORT_ROUTING_FAILURE

/* Call routing failed - re-routing is possible */

};

/* Defines the Tagged Choice of Data Elements that specify specific criteria for certain report types. */

union TpCallAdditionalReportCriteria switch(TpCallReportType) {

case P_CALL_REPORT_NO_ANSWER: TpDuration NoAnswerDuration;

case P_CALL_REPORT_SERVICE_CODE: TpCallServiceCode ServiceCode;

default: short Dummy;
//allows initialisation of the union in the default case

};

/* Defines the Sequence of Data Elements that specify the criteria relating to call report requests. */

struct TpCallReportRequest {

TpCallMonitorMode MonitorMode;

TpCallReportType CallReportType;

TpCallAdditionalReportCriteria AdditionalCallEventCriteria;

};

/* Defines a Numbered Set of Data Elements of TpCallReportRequest. */

typedef sequence <TpCallReportRequest> TpCallReportRequestSet;

/* Defines the call admission rate of the call load control mechanism used.Tthis data type indicates the interval (in milliseconds) between calls that are admitted. 0 means no calls are admitted. */

typedef TpInt32 TpCallLoadControlIntervalRate;

/* Infinite interval (do not admit any calls) */

const TpInt32 P_CALL_LOAD_CONTROL_ADMIT_NO_CALLS = 0;

/* Defines the type of call load control mechanism to use. */

enum TpCallLoadControlMechanismType {

P_CALL_LOAD_CONTROL_PER_INTERVAL

/* Admit one call per interval */

};

/* Defines the Tagged Choice of Data Elements that specify the applied mechanism and associated parameters. */

union TpCallLoadControlMechanism switch(TpCallLoadControlMechanismType) {

case P_CALL_LOAD_CONTROL_PER_INTERVAL: TpCallLoadControlIntervalRate CallLoadControlPerInterval;

};

/* Defines the treatment for calls that will be handled only by the network. */

enum TpCallTreatmentType {

P_CALL_TREATMENT_DEFAULT,

/* Default treatment. Defined by the network operator. */

P_CALL_TREATMENT_RELEASE,

/* Release the call without informing the user. */

P_CALL_TREATMENT_SIAR

/* Send information to the user, and release the call (Send Info & Release) */

};

/* Defines the Tagged Choice of Data Elements that specify the information to be sent to a call party. */

union TpCallAdditionalTreatmentInfo switch(TpCallTreatmentType) {

case P_CALL_TREATMENT_SIAR: ui::TpUIInfo InformationToSend;

default: short Dummy;
//allows initialisation of the union in the default case

};

exception TpGCCSException {

};

/* Information relating to the Call Control service could not be found */

const TpInt32 P_GCCS_SERVICE_INFORMATION_MISSING = 256;

/* Fault detected in the Call Control service */

const TpInt32 P_GCCS_SERVICE_FAULT_ENCOUNTERED = 257;

/* Unexpected sequence of methods, i.e., the sequence does not match the specified state diagrams for the call or the call leg. */

const TpInt32 P_GCCS_UNEXPECTED_SEQUENCE = 258;

/* Invalid address specified */

const TpInt32 P_GCCS_INVALID_ADDDRESS = 259;

/* Invalid criteria specified */

const TpInt32 P_GCCS_INVALID_CRITERIA = 260;

/* Although the sequence of method calls is allowed by the parlay gateway, the underlying protocol can not support it.

E.g., in some protocols some methods are only allowed by the protocol, when the call processing is suspended, e.g., after reporting an event that was monitored in interrupt mode. */

const TpInt32 P_GCCS_INVALID_NETWORK_STATE = 261;

/* This data type defines the type of call application-related specific information (Q.931: Information Transfer Capability, and 3G TS 22.002) */

enum TpCallBearerService {

P_CALL_BEARER_SERVICE_UNKNOWN,

/* Bearer capability information

unknown at this time */

P_CALL_BEARER_SERVICE_SPEECH,

/* Speech */

P_CALL_BEARER_SERVICE_DIGITALUNRESTRICTED,

/* Unrestricted digital information */

P_CALL_BEARER_SERVICE_DIGITALRESTRICTED,

/* Restricted digital information */

P_CALL_BEARER_SERVICE_AUDIO,

/* 3.1 kHz audio */

P_CALL_BEARER_SERVICE_DIGITALUNRESTRICTEDTONES,

/* Unrestricted digital information

with tones/announcements */

P_CALL_BEARER_SERVICE_VIDEO

/* Video */

};

/* This data defines the bearer capabilities associated with the call. (3G TS 24.002) This information is network operator specific and may not always be available because there is no standard protocol to retrieve the information */

enum TpCallNetworkAccessType {

P_CALL_NETWORK_ACCESS_TYPE_UNKNOWN,

/* Network type information unknown at this time */

P_CALL_NETWORK_ACCESS_TYPE_POT,

/* POTS */

P_CALL_NETWORK_ACCESS_TYPE_ISDN,

/* ISDN */

P_CALL_NETWORK_ACCESS_TYPE_DIALUPINTERNET,

/* Dial-up Internet */

P_CALL_NETWORK_ACCESS_TYPE_XDSL,

/* xDSL */

P_CALL_NETWORK_ACCESS_TYPE_WIRELESS

/* Wireless */

};

/* This data type defines the category of a calling party. (Q.763: Calling Party Category / Called Party Category) */

enum TpCallPartyCategory {

P_CALL_PARTY_CATEGORY_UNKNOWN,

/* calling party's category unknown at this time */

P_CALL_PARTY_CATEGORY_OPERATOR_F,

/* operator, language French */

P_CALL_PARTY_CATEGORY_OPERATOR_E,

/* operator, language English */

P_CALL_PARTY_CATEGORY_OPERATOR_G,

/* operator, language German */

P_CALL_PARTY_CATEGORY_OPERATOR_R,

/* operator, language Russian */

P_CALL_PARTY_CATEGORY_OPERATOR_S,

/* operator, language Spanish */

P_CALL_PARTY_CATEGORY_ORDINARY_SUB,

/* ordinary calling subscriber */

P_CALL_PARTY_CATEGORY_PRIORITY_SUB,

/* calling subscriber with priority */

P_CALL_PARTY_CATEGORY_DATA_CALL,

/* data call (voice band data) */

P_CALL_PARTY_CATEGORY_TEST_CALL,

/* test call */

P_CALL_PARTY_CATEGORY_PAYPHONE

/* payphone */

};

/* This data type defines the tele-service associated with the call. (Q.763: User Teleservice Information, Q.931: High Layer Compatitibility Information, and 3G TS 22.003) */

enum TpCallTeleService {

P_CALL_TELE_SERVICE_UNKNOWN,

/* Teleservice information unknown at this time */

P_CALL_TELE_SERVICE_TELEPHONY,

/* Telephony */

P_CALL_TELE_SERVICE_FAX_2_3,

/* Facsimile Group 2/3 */

P_CALL_TELE_SERVICE_FAX_4_I,

/* Facsimile Group 4, Class I */

P_CALL_TELE_SERVICE_FAX_4_II_III,

/* Facsimile Group 4, Classes II and III */

P_CALL_TELE_SERVICE_VIDEOTEX_SYN,

/* Syntax based Videotex */

P_CALL_TELE_SERVICE_VIDEOTEX_INT,

/* International Videotex interworking via gateways or interworking units */

P_CALL_TELE_SERVICE_TELEX,

/* Telex service */

P_CALL_TELE_SERVICE_MHS,

/* Message Handling Systems */

P_CALL_TELE_SERVICE_OSI,

/* OSI application */

P_CALL_TELE_SERVICE_FTAM,

/* FTAM application */

P_CALL_TELE_SERVICE_VIDEO,

/* Videotelephony */

P_CALL_TELE_SERVICE_VIDEO_CONF,

/* Videoconferencing */

P_CALL_TELE_SERVICE_AUDIOGRAPH_CONF,

/* Audiographic conferencing */

P_CALL_TELE_SERVICE_MULTIMEDIA,

/* Multimedia services */

P_CALL_TELE_SERVICE_CS_INI_H221,

/* Capability set of initial channel of H.221 */

P_CALL_TELE_SERVICE_CS_SUB_H221,

/* Capability set of subsequent channel of H.221 */

P_CALL_TELE_SERVICE_CS_INI_CALL,

/* Capability set of initial channel associated with an active 3.1 kHz audio or speech call. */

P_CALL_TELE_SERVICE_DATATRAFFIC,

/* Data traffic. */

P_CALL_TELE_SERVICE_EMERGENCY_CALLS,

/* Emergency Calls */

P_CALL_TELE_SERVICE_SMS_MT_PP,

/* Short message MT/PP */

P_CALL_TELE_SERVICE_SMS_MO_PP,

/* Short message MO/PP */

P_CALL_TELE_SERVICE_CELL_BROADCAST,

/* Cell Broadcast Service */

P_CALL_TELE_SERVICE_ALT_SPEECH_FAX_3,

/* Alternate speech and facsimile group 3 */

P_CALL_TELE_SERVICE_AUTOMATIC_FAX_3,

/* Automatic Facsimile group 3 */

P_CALL_TELE_SERVICE_VOICE_GROUP_CALL,

/* Voice Group Call Service */

P_CALL_TELE_SERVICE_VOICE_BROADCAST

/* Voice Broadcast Service */

};

/* Defines the type of charging to be applied. */

enum TpCallChargeOrderCategory {

P_CALL_CHARGE_PER_TIME,

/* Charge per time */

P_CALL_CHARGE_NETWORK

/* Operator specific charge plan specification, e.g. charging table name / charging table entry */

};

/* Defines the Tagged Choice of Data Elements that specify the charge plan for the call. */

union TpCallChargeOrder switch(TpCallChargeOrderCategory) {

case P_CALL_CHARGE_PER_TIME: TpChargePerTime ChargePerTime;

case P_CALL_CHARGE_NETWORK: TpString NetworkCharge;

};

/* Defines the Sequence of Data Elements that specify the charge plan for the call This data type is identical to a TpString, and defines the call charge plan to be used for the call. The values of this data type are operator specific. */

struct TpCallChargePlan {

/* Charge order */

TpCallChargeOrder ChargeOrderType;

TpString AdditionalInfo;

TpString Currency;

};

/* GCCS - Address information is analysed. The dialled number is a valid and complete number in the network. */

const TpInt32 P_EVENT_GCCS_ADDRESS_ANALYSED_EVENT = 4;

/* Defines the type of call application-related specific information. */

enum TpCallAppInfoType {

P_CALL_APP_UNDEFINED,

/* Undefined */

P_CALL_APP_ALERTING_MECHANISM,

/* The alerting mechanism or pattern. */

P_CALL_APP_NETWORK_ACCESS_TYPE,

/* The network access type (e.g. ISDN) */

P_CALL_APP_TELE_SERVICE,

/* Indicates the tele-service (e.g. speech) and related info such as clearing programme */

P_CALL_APP_BEARER_SERVICE,

/* Indicates the bearer service (e.g. 64kb/s unrestricted data). */

P_CALL_APP_PARTY_CATEGORY,

/* The category of the calling party */

P_CALL_APP_PRESENTATION_ADDRESS,

/* The address to be presented to other call parties */

P_CALL_APP_GENERIC_INFO,

/* Carries unspecified application-service Capability information. */

P_CALL_APP_ADDITIONAL_ADDRESS,

/* Indicates an additional address */

P_CALL_APP_ORIGINAL_DESTINATION_ADDRESS,

P_CALL_APP_REDIRECTING_ADDRESS

};

/* Defines the Tagged Choice of Data Elements that specify call application-related specific call information <<ADD? WHEN SENT TO THE APPLICATION (E.G., IN A CALLEVENTNOTIFY) THE INFORMATION REFERS TO THE ORIGINATING PARTY, WHEN USED DURING ROUTING THE INFORMATION IS SEEN AS A REQUEST BY THE APPLICATION FOR SETTING SPECIFIC PARAMETERS FOR THE TERMINATING PARTY. IT SHOULD BE REGARDED AS A HINT TO THE GATEWAY, THE GATEWAY OR THE NETWORK MAY DECIDE TO IGNORE THIS INFORMATION>> */

union TpCallAppInfo switch(TpCallAppInfoType) {

case P_CALL_APP_ALERTING_MECHANISM: TpCallAlertingMechanism CallAppAlertingMechanism;

case P_CALL_APP_NETWORK_ACCESS_TYPE: TpCallNetworkAccessType CallAppNetworkAccessType;

case P_CALL_APP_TELE_SERVICE: TpCallTeleService CallAppTeleService;

case P_CALL_APP_BEARER_SERVICE: TpCallBearerService CallAppBearerService;

case P_CALL_APP_PARTY_CATEGORY: TpCallPartyCategory CallAppPartyCategory;

case P_CALL_APP_PRESENTATION_ADDRESS: TpAddress CallAppPresentationAddress;

case P_CALL_APP_GENERIC_INFO: TpString CallAppGenericInfo;

case P_CALL_APP_ADDITIONAL_ADDRESS: TpAddress CallAppAdditionalAddress;

case P_CALL_APP_ORIGINAL_DESTINATION_ADDRESS: TpAddress CallAppOriginalDestinationAddress;

case P_CALL_APP_REDIRECTING_ADDRESS: TpAddress CallAppRedirectingAddress;

default: short Dummy;
//allows initialisation of the union in the default case.

};

/* Defines a numbered Set of Data Elements of TpCallAppInfo. */

typedef sequence <TpCallAppInfo> TpCallAppInfoSet;

/* Defines the Sequence of Data Elements that specify the information returned to the application in a Call event notification. */

struct TpCallEventInfo {

TpAddress DestinationAddress;

TpAddress OriginatingAddress;

TpAddress OriginalDestinationAddress;

TpAddress RedirectingAddress;

TpCallAppInfoSet CallAppInfo;

TpCallEventName CallEventName;

TpCallNotificationType CallNotificationType;

/* The monitor mode of the received event. */

TpCallMonitorMode MonitorMode;

};

struct TpCallEventCriteriaResult {

TpAssignmentID AssignmentID;

TpCallEventCriteria CallEventCriteria;

};

/* Defines a set of TpCallEventCriteriaResult. */

typedef sequence <TpCallEventCriteriaResult> TpCallEventCriteriaResultSet;

/* Defines a refernce to TpCallEventCriteriaResultSet. */

typedef TpCallEventCriteriaResultSet TpCallEventCriteriaResultSetRef;

/* Defines the Sequence of Data Elements that specify the cause of the release of a call. Note: the Value and Location are specified as in ITU-T recommendation Q.850. */

struct TpCallReleaseCause {

TpInt32 Value;

TpInt32 Location;

};

/* Defines the Sequence of Data Elements that specify the reason for the call ending. */

struct TpCallEndedReport {

TpSessionID CallLegSessionID;

TpCallReleaseCause Cause;

};

/* Defines the Sequence of Data Elements that specify the call information requested. Information that was not requested is invalid.

A callInfoReport will be generated at the end of user interaction and at the end of the connection with the associated address. This means that either the destination related information is present or the resource related information, but not both. */

struct TpCallInfoReport {

TpCallInfoType CallInfoType;

TpDateAndTime CallInitiationStartTime;

TpDateAndTime CallConnectedToResourceTime;

TpDateAndTime CallConnectedToDestinationTime;

TpDateAndTime CallEndTime;

TpCallReleaseCause Cause;

};

/* Defines the Tagged Choice of Data Elements that specify additional call report information for certain types of reports. */

union TpCallAdditionalReportInfo switch(TpCallReportType) {

case P_CALL_REPORT_BUSY: TpCallReleaseCause Busy;

case P_CALL_REPORT_DISCONNECT: TpCallReleaseCause CallDisconnect;

case P_CALL_REPORT_REDIRECTED: TpAddress ForwardAddress;

case P_CALL_REPORT_SERVICE_CODE: TpCallServiceCode ServiceCode;

case P_CALL_REPORT_ROUTING_FAILURE: TpCallReleaseCause RoutingFailure;

default: short Dummy;
//allows initialisation of the union in the default case

};

/* Defines the Sequence of Data Elements that specify the call report and call leg report specific information. */

struct TpCallReport {

TpCallMonitorMode MonitorMode;

TpDateAndTime CallEventTime;

/* The event that occured. */

TpCallReportType CallReportType;

TpCallAdditionalReportInfo AdditionalReportInfo;

};

/* Defines the Tagged Choice of Data Elements that specify the treatment for calls that will be handled only by the network (for example, calls which are not admitted by the call load control mechanism). */

struct TpCallTreatment {

TpCallTreatmentType CallTreatmentType;

TpCallReleaseCause ReleaseCause;

TpCallAdditionalTreatmentInfo AdditionalTreatmentInfo;

};

};

/* module services */

};

/* module parlay */

};

#endif
3 Generic Call Control interfaces

//Source file: gcc_interfaces.idl

#ifndef __GCC_INTERFACES_DEFINED

#define __GCC_INTERFACES_DEFINED

/* CmIdentification

 %X% %Q% %Z% %W% */

#include "gcc_data.idl"

#include "osa.idl"

module org {

module open_service_access {

module cc {

module gccs {

/* The generic call application interface is implemented by the client application developer and is used to handle call request responses and state reports. */

interface IpAppCall : IpInterface {

/* This asynchronous method indicates that the request to route the call to the destination was successful, and indicates the response of the destination party (for example, the call was answered, not answered, refused due to busy, etc.).

@roseuid 38B05E4602B8 */

void routeRes (

in TpSessionID callSessionID,
//Specifies the call session ID of the call.

in TpCallReport eventReport,
//Specifies the result of the request to route the call to the destination party. It also includes the network event, date and time, monitoring mode and event specific information such as release cause.

in TpSessionID callLegSessionID
//Specifies the sessionID of the associated call leg. This corresponds to the sesion ID returned at the routeReq() and can be used to correlate the response with the request.

)

raises (TpGCCSException,TpGeneralException);

/* This asynchronous method indicates that the request to route the call to the destination party was unsuccessful - the call could not be routed to the destination party (for example, the network was unable to route the call, the parameters were incorrect, the request was refused, etc.).

@roseuid 38B05E4602BC */

void routeErr (

in TpSessionID callSessionID,
//Specifies the call session ID of the call.

in TpCallError errorIndication,
//Specifies the error which led to the original request failing.

in TpSessionID callLegSessionID
//Specifies the sessionID of the associated call leg. This corresponds to the sessionID returned at the routeReq() and can be used to correlate the error with the request.

)

raises (TpGCCSException,TpGeneralException);

/* This asynchronous method reports time information of the finished call or call attempt as well as release cause depending on which information has been requested by getCallInfoReq. This information may be used e.g. for charging purposes. The call information will possibly be sent after routeRes in all cases where the call or a leg of the call has been disconnected or a routing failure has been encountered.

@roseuid 38B05E4602CD */

void getCallInfoRes (

in TpSessionID callSessionID,
//Specifies the call session ID of the call.

in TpCallInfoReport callInfoReport
//Specifies the call information requested.

)

raises (TpGCCSException,TpGeneralException);

/* This asynchronous method reports that the original request was erroneous, or resulted in an error condition.

@roseuid 38B05E4602D7 */

void getCallInfoErr (

in TpSessionID callSessionID,
//Specifies the call session ID of the call.

in TpCallError errorIndication
//Specifies the error which led to the original request failing.

)

raises (TpGCCSException,TpGeneralException);

/* This asynchronous method reports a call supervision event to the application when it has indicated it's interest in these kind of events.

It is also called when the connection is terminated before the supervision event occurs. Furthermore, this method is invoked as a response to the request also when a tariff switch happens in the network during an active call.

@roseuid 38B05E4602DA */

void superviseCallRes (

in TpSessionID callSessionID,
//Specifies the call session ID of the call

in TpCallSuperviseReport report,
//Specifies the situation which triggered the sending of the call supervision response.

in TpDuration usedTime
//Specifies the used time for the call supervision (in milliseconds).

)

raises (TpGCCSException,TpGeneralException);

/* This asynchronous method reports a call supervision error to the application.

@roseuid 38B05E4602E3 */

void superviseCallErr (

in TpSessionID callSessionID,
//Specifies the call session ID of the call.

in TpCallError errorIndication
//Specifies the error which led to the original request failing.

)

raises (TpGCCSException,TpGeneralException);

/* This method indicates to the application that a fault in the network has been detected. The call may or may not have been terminated.

The system deletes the call object. Therefore, the application has no further control of call processing. No report will be forwarded to the application.

@roseuid 38B05E4602E6 */

void callFaultDetected (

in TpSessionID callSessionID,
//Specifies the call session ID of the call in which the fault has been detected.

in TpCallFault fault
//Specifies the fault that has been detected.

)

raises (TpGCCSException,TpGeneralException);

/* This asynchronous method returns the collected digits to the application.

@roseuid 37F4B01F02FC */

void getMoreDialledDigitsRes (

in TpSessionID callSessionID,
//Specifies the call session ID of the call.

in TpString digits
//Specifies the additional dialled digits if the string length is greater than zero.

)

raises (TpGeneralException,TpGCCSException);

/* This asynchronous method reports an error in collecting digits to the application.

@roseuid 37F4B01F02FF */

void getMoreDialledDigitsErr (

in TpSessionID callSessionID,
//Specifies the call session ID of the call.

in TpCallError errorIndication
//Specifies the error which led to the original request failing.

)

raises (TpGeneralException,TpGCCSException);

/* This method indicates to the application that the call has terminated in the network. However, the application may still receive some results (e.g., getCallInfoRes) related to the call. The application is expected to deassign the call object after having received the callEnded.

Note that the event that caused the call to end might also be received separately if the application was monitoring for it.

@roseuid 392AD1A1031F */

void callEnded (

in TpSessionID callSessionID,
//Specifies the call sessionID.

in TpCallEndedReport report
//Specifies the reason the call is terminated.

)

raises (TpGeneralException,TpGCCSException);

};

/* The generic Call provides the possibility to control the call routing, to request information from the call, control the charging of the call, to release the call and to supervise the call. It does not give the possibility to control the legs directly and it does not allow control over the media. The first capability is provided by the multi-party call and the latter as well by the multi-media call. The call is limited to two party calls, although it is possible to provide 'follow-on' calls, meaning that the call can be rerouted after the terminating party has disconnected or routing to the terminating party has failed. Basically, this means that at most two legs can be in connected or routing state at any time. */

interface IpCall : IpService {

/* This asynchronous method requests routing of the call (and inherently attached parties) to the destination party, via a new call leg (which is implicitly created).

The extra address information (i.e., originalDestinationAddress, redirectingAddress, originatingAddress) is optional. If not present (i.e., the plan is set to P_ADDRESS_PLAN_NOT_PRESENT), the information provided in corresponding addresses from the route is used, otherwise the network or gateway provided numbers will be used.

@roseuid 38B05E460346 */

void routeReq (

in TpSessionID callSessionID,
//Specifies the call session ID of the call.

in TpCallReportRequestSet responseRequested,
//Specifies the set of observed events that will result in zero or more routeRes() being generated.

in TpAddress targetAddress,
//Specifies the destination party to which the call should be routed.

in TpAddress originatingAddress,
//Specifies the address of the originating (calling) party.

in TpAddress originalDestinationAddress,
//Specifies the original destination address of the call.

in TpAddress redirectingAddress,
//Specifies the address from which the call was last redirected.

in TpCallAppInfoSet appInfo,
//Specifies application-related information pertinent to the call (such as alerting method, tele-service type, service identities and interaction indicators).

out TpSessionID callLegSessionID
//Specifies the sessionID assigned by the gateway. This is the sessionID of the implicitly created call leg. The same ID will be returned in the routeRes or Err. This allows the application to correlate the request and the result.

)

raises (TpGCCSException,TpGeneralException);

/* This method requests the release of the call object and associated objects. The call will also be terminated in the network. If the application requested reports to be sent at the end of the call (e.g., by means of getCallInfoReq) these reports will still be sent to the application.

The application should always either release or deassign the call when it is finished with the call, unless a callFaultDetected is received by the application.

@roseuid 38B05E4603E1 */

void release (

in TpSessionID callSessionID,
//Specifies the call session ID of the call.

in TpCallReleaseCause cause
//Specifies the cause of the release.

)

raises (TpGCCSException,TpGeneralException);

/* This method requests that the relationship between the application and the call and associated objects be de-assigned. It leaves the call in progress, however, it purges the specified call object so that the application has no further control of call processing. If a call is de-assigned that has event reports, call information reports or call Leg information reports requested, then these reports will be disabled and any related information discarded.

The application should always either release or deassign the call when it is finished with the call, unless callFaultDetected is received by the application.

@roseuid 38B05E4603E6 */

void deassignCall (

in TpSessionID callSessionID
//Specifies the call session ID of the call.

)

raises (TpGCCSException,TpGeneralException);

/* This asynchronous method requests information associated with the call to be provided at the appropriate time (for example, to calculate charging). This method must be invoked before the call is routed to a target address. Two types of reports can be requested; a final report or intermediate reports.

A final call report is sent when the call is ended. The call object will exist after the call is ended if information is required to be sent to the application at the end of the call. The call information will be sent after any call event reports.

Intermediate reports are received when the destination leg or party terminates or when the call ends. In case the originating party is still available the application can still initiate a follow-on call using routeReq.

@roseuid 38B05E4603E8 */

void getCallInfoReq (

in TpSessionID callSessionID,
//Specifies the call session ID of the call.

in TpCallInfoType callInfoRequested
//Specifies the call information that is requested.

)

raises (TpGCCSException,TpGeneralException);

/* Set an operator specific charge plan for the call. The charge plan must be set before the call is routed to a target address. Depending on the operator the method can also be used to change the charge plan for ongoing calls.

@roseuid 38B05E4603EB */

void setCallChargePlan (

in TpSessionID callSessionID,
//Specifies the call session ID of the call.

in TpCallChargePlan callChargePlan
//Specifies the charge plan to use.

)

raises (TpGCCSException,TpGeneralException);

/* This method allows for advice of charge (AOC) information to be sent to terminals that are capable of receiving this information.

@roseuid 38CFA6D4005C */

void setAdviceOfCharge (

in TpSessionID callSessionID,
//Specifies the call session ID of the call.

in TpAoCInfo aOCInfo,
//Specifies two sets of Advice of Charge parameter.

in TpDuration tariffSwitch
//Specifies the tariff switch interval that signifies when the second set of AoC parameters becomes valid.

)

raises (TpGeneralException,TpGCCSException);

/* This asynchronous method requests the call control service to collect further digits and return them to the application. Depending on the administered data, the network may indicate a new call to the gateway if a caller goes off-hook or dialled only a few digits. The application then gets a new call event which contains no digits or only the few dialled digits in the event data.

The application should use this method if it requires more dialled digits, e.g. to perform screening.

@roseuid 37BF23A200C8 */

void getMoreDialledDigitsReq (

in TpSessionID callSessionID,
//Specifies the call session ID of the call.

in TpInt32 length
//Specifies the maximum number of digits to collect.

)

raises (TpGeneralException, TpGCCSException);

/* The application calls this method to supervise a call. The application can set a granted connection time for this call. If an application calls this function before it calls a routeReq() or a user interaction function the time measurement will start as soon as the call is answered by the B-party or the user interaction system.

@roseuid 38B05E470008 */

void superviseCallReq (

in TpSessionID callSessionID,
//Specifies the call session ID of the call.

in TpDuration time,
//Specifies the granted time in milliseconds for the connection.

in TpCallSuperviseTreatment treatment
//Specifies how the network should react after the granted connection time expired.

)

raises (TpGCCSException,TpGeneralException);

};

/* Defines a Reference to type IpAppCall. <<REMOVE ME>> */

typedef IpAppCall IpAppCallRef;

/* Defines a Reference to type IpAppCallRef. <<REMOVE ME>> */

typedef IpAppCallRef IpAppCallRefRef;

/* Defines a Reference to type IpCall. <<REMOVE ME>> */

typedef IpCall IpCallRef;

/* Defines the Sequence of Data Elements that unambiguously specify the Generic Call object */

struct TpCallIdentifier {

TpSessionID CallSessionID;

IpCallRef CallReference;

};

/* The generic call control manager application interface provides the application call control management functions to the generic call control service. */

interface IpAppCallControlManager : IpInterface {

/* This method indicates to the application that the call object (at the gateway) has aborted or terminated abnormally. No further communication will be possible between the call and application.

@roseuid 38B05E4602FE */

void callAborted (

in TpSessionID callReference
//Specifies the sessionID of call that has aborted or terminated abnormally.

)

raises (TpGCCSException,TpGeneralException);

/* This method notifies the application of the arrival of a call-related event.

@roseuid 38B05E46031C */

void callEventNotify (

in TpCallIdentifier callReference,
//Specifies the reference to the call interface to which the notification relates.

in TpCallEventInfo eventInfo,
//Specifies data associated with this event.

in TpAssignmentID assignmentID,
//Specifies the assignment id which was returned by the enableNotification() method. The application can use assignment id to associate events with event specific criteria and to act accordingly.

out IpAppCallRefRef appCall
//Specifies a reference to the application interface which implements the callback interface for the new call.

)

raises (TpGCCSException,TpGeneralException);

/* This method indicates to the application that all event notifications have been temporary interrupted (for example, due to faults detected).

Note that more permanent failures are reported via the Framework (integrity management).

@roseuid 38B05E460329 */

void callNotificationInterrupted ()

raises (TpGCCSException,TpGeneralException);

/* This method indicates to the application that event notifications will again be possible.

@roseuid 38E21BC90281 */

void callNotificationContinued ();

/* This method indicates that the network has detected overload and may have automatically imposed load control on calls requested to a particular address range or calls made to a particular destination within the call control service.

@roseuid 38B05E46032A */

void callOverloadEncountered (

in TpAssignmentID assignmentID
//Specifies the assignmentID corresponding to the associated setCallLoadControl. This implies the addressrange for within which the overload has been encountered.

)

raises (TpGeneralException,TpGCCSException);

/* This method indicates that the network has detected that the overload has ceased and has automatically removed any load controls on calls requested to a particular address range or calls made to a particular destination within the call control service.

@roseuid 38B05E460331 */

void callOverloadCeased (

in TpAssignmentID assignmentID
//Specifies the assignmentID corresponding to the associated setCallLoadControl. This implies the addressrange for within which the overload has been ceased

)

raises (TpGeneralException,TpGCCSException);

};

/* Defines the address of an IpAppCallControlManager Interface. <<REMOVE ME>> */

typedef IpAppCallControlManager IpAppCallControlManagerRef;

/* <<REMOVE ME>> */

typedef TpCallIdentifier TpCallIdentifierRef;

/* This interface is the 'service manager' interface for the Generic Call Control Service. The generic call control manager interface provides the management functions to the generic call control service. The application programmer can use this interface to provide overload control functionality, create call objects and to enable or disable call-related event notifications. */

interface IpCallControlManager : IpService {

/* This method is used to create a new call object.

@roseuid 38B255D00096 */

void createCall (

in IpAppCallRef appCall,
//Specifies the application interface for callbacks from the call created.

out TpCallIdentifierRef callReference
//Specifies the interface reference and sessionID of the call created.

)

raises (TpGCCSException,TpGeneralException);

/* This method is used to enable call notifications so that events can be sent to the application. If some application already requested notifications with criteria that overlap the specified criteria, the request is refused with P_GCCS_INVALID_CRITERIA.

The criteria are said to overlap if both originating and terminating ranges overlap and the same number plan is used and the same CallNotificationType is used.

If the same application requests two notifications with exactly the same criteria but different callback references, the second callback will be treated as an additional callback. This means that the callback will only be used in case when the first callback specified by the application is unable to handle the callEventNotify (e.g., due to overload or failure).

@roseuid 38B05E470062 */

void enableCallNotification (

in IpAppCallControlManagerRef appCallControlManager,
//If this parameter is set (i.e. not NULL) it specifies a reference to the application interface, which is used for callbacks. If set to NULL, the application interface defaults to the interface specified via the setCallback() method.

in TpCallEventCriteria eventCriteria,
//Specifies the event specific criteria used by the application to define the event required. Only events that meet these criteria are reported. Examples of events are "incoming call attempt reported by network", "answer", "no answer", "busy". Individual addresses or address ranges may be specified for destination and/or origination.

out TpAssignmentID assignmentID
//Specifies the ID assigned by the generic call control manager interface for this newly-enabled event notification.

)

raises (TpGCCSException,TpGeneralException);

/* This method is used by the application to disable call notifications.

@roseuid 38B05E470066 */

void disableCallNotification (

in TpAssignmentID assignmentID
//Specifies the assignment ID given by the generic call control manager interface when the previous enableNotification() was called. If the assignment ID does not correspond to one of the valid assignment IDs, the framework will return the error code P_INVALID_ASSIGNMENTID.

)

raises (TpGCCSException,TpGeneralException);

/* This method imposes or removes load control on calls made to a particular address range within the generic call control service. The address matching mechanism is similar as defined for TpCallEventCriteria.

@roseuid 38B05E47006A */

void setCallLoadControl (

in TpDuration duration,
//Specifies the duration for which the load control should be set.

in TpCallLoadControlMechanism mechanism,
//Specifies the load control mechanism to use (for example, admit one call per interval), and any necessary parameters, such as the call admission rate. The contents of this parameter are ignored if the load control duration is set to zero.

in TpCallTreatment treatment,
//Specifies the treatment of calls that are not admitted. The contents of this parameter are ignored if the load control duration is set to zero.

in TpAddressRange addressRange,
//Specifies the address or address range to which the overload control should be applied or removed.

out TpAssignmentID assignmentID
//Specifies the assignmentID assigned by the gateway to this request. This assignementID can be used to correlate the callOverlloadEncountered and callOverloadCeased methods with the request.

)

raises (TpGeneralException,TpGCCSException);

/* This method is used by the application to change the event criteria introduced with enableCallNotification. Any stored criteria associated with the specified assignementID will be replaced with the specified criteria.

@roseuid 3926A60702E4 */

void changeCallNotification (

in TpAssignmentID assignmentID,
//Specifies the ID assigned by the generic call control manager interface for the event notification.

in TpCallEventCriteria eventCriteria
//Specifies the new set of event specific criteria used by the application to define the event required. Only events that meet these criteria are reported.

)

raises (TpGeneralException,TpGCCSException);

/* This method is used by the application to query the event criteria set with enableCallNotification or changeCallNotification.

@roseuid 3926A8070344 */

void getCriteria (

out TpCallEventCriteriaResultSetRef eventCriteria
//Specifies the event specific criteria used by the application to define the event required. Only events that meet these criteria are reported.

)

raises (TpGeneralException,TpGCCSException);

};

/* Defines a Reference to type IpCallControlManager. <<REMOVE ME>> */

typedef IpCallControlManager IpCallControlManagerRef;

};

};

};

};

#endif
4 Multi-party Call Control data-types

/* Source file: C:/data/Standardisatie/3GPP/Models/ETSI model/UML_ETSI_OSA_65_15_12_2000/mpcc_data.idl

 */

#ifndef __MPCC_DATA_DEFINED

#define __MPCC_DATA_DEFINED

/* CmIdentification

%X% %Q% %Z% %W% */

#include "osa.idl"

#include "gcc_data.idl"

module org {

module open_service_access {

module cc {

/* Defines the type of call leg information requested and reported. The values may be combined by a logical 'OR' function.

The following values are applicable:

P_CALL_LEG_INFO_UNDEFINED

P_CALL_LEG_INFO_TIMES

P_CALL_LEG_INFO_RELEASE_CAUSE

P_CALL_LEG_INFO_ADDRESS

P_CALL_LEG_INFO_APPINFO */

typedef TpInt32 TpCallLegInfoType;

/* Defines the type of notification. Indicates whether it is related to the originating of the terminating user in the call. */

enum TpNotificationCallType {

P_ORIGINATING,

/* Indicates that the notification is related to the originating user in the call. */

P_TERMINATING

/* Indicates that the notification is related to the terminating user in the call. */

};

/* Defines a specific call event type. */

enum TpCallEventType {

P_CALL_EVENT_UNDEFINED,

/* Undefined */

P_CALL_EVENT_CALL_ATTEMPT,

/* A Call attempt takes place (e.g.Offhook event). */

P_CALL_EVENT_ADDRESS_COLLECTED,

/* The destination address has been collected. */

P_CALL_EVENT_ADDRESS_ANALYSED,

/* The destination address has been analysed. */

P_CALL_EVENT_PROGRESS,

/* Call routing progress event: an indication from the network that progress has been made in routing the call to the requested call party . */

P_CALL_EVENT_ALERTING,

/* Call is alerting at call party. */

P_CALL_EVENT_ANSWER,

/* Call answered at address */

P_CALL_EVENT_RELEASE,

/* A call party has been released or the call couldn't be routed. */

P_CALL_EVENT_REDIRECTED,

/* Call redirected to new address: an indication from the network that the call has been redirected to a new address. */

P_CALL_EVENT_SERVICE_CODE

/* Mid-call service code received */

};

/* Defines the Tagged Choice of Data Elements that specify additional call eventt information for certain types of events. */

union TpCallAdditionalEventInfo switch(TpCallEventType) {

case P_CALL_EVENT_ADDRESS_COLLECTED: TpAddress CollectedAddress;

case P_CALL_EVENT_ADDRESS_ANALYSED: TpAddress CalledAddress;

case P_CALL_EVENT_REDIRECTED: TpAddress ForwardAddress;

case P_CALL_EVENT_SERVICE_CODE: TpCallServiceCodeType ServiceCode;

default: short Dummy;
//allows initialisation of the union in the default case

};

/* Defines the Sequence of data elements that specify the scop[e for which a notification report was sent. */

struct TpCallNotificationReportScope {

TpAddress DestinationAddress;

TpAddress OriginatingAddress;

TpNotificationCallType NotificationCallType;

};

/* Call leg connected address */

const TpInt32 P_CALL_LEG_INFO_ADDRESS = 4;

/* Call leg application related information */

const TpInt32 P_CALL_LEG_INFO_APPINFO = 8;

/* Call leg release cause */

const TpInt32 P_CALL_LEG_INFO_RELEASE_CAUSE = 2;

/* Relevant call times */

const TpInt32 P_CALL_LEG_INFO_TIMES = 1;

/* Undefined */

const TpInt32 P_CALL_LEG_INFO_UNDEFINED = 0;

/* Defines the sequence of Data elements that specify the scope of a notification request. Of the addresses only the Plan and the AddrString are used for the purpose of matching the notifications against the criteria. */

struct TpCallNotificationScope {

TpAddressRange DestinationAddress;

TpAddressRange OriginationAddress;

TpNotificationCallType NotificationCallType;

};

struct TpMPCallEventInfo {

TpCallEventType CallEventType;

TpCallAdditionalEventInfo AdditionalCallEventInfo;

TpCallMonitorMode CallMonitorMode;

TpDateAndTime CallEventTime;

};

/* Defines the Sequence of Data Elements that specify the information returned to the application in a call notification report. */

struct TpCallNotificationInfo {

TpCallNotificationReportScope CallNotificationReportScope;

TpCallAppInfoSet CallAppInfo;

TpMPCallEventInfo CallEventInfo;

};

enum TpCallLegAttachMechanism {

P_CALLLEG_ATTACH_IMPLICITLY,

P_CALLLEG_ATTACH_EXPLICITLY

};

struct TpCallLegConnectionProperties {

TpCallLegAttachMechanism AttachMechanism;

};

/* Defines the reason for which a call is released. */

enum TpMPCallReleaseCause {

P_UNDEFINED,

P_USER_NOT_AVAILABLE,

P_BUSY,

P_NO_ANSWER,

P_NOT_REACHABLE,

P_ROUTING_FAILURE,

P_PREMATURE_DISCONNECT,

P_DISCONNECTED,

P_CALL_RESTRICTED,

P_UNAVAILABLE_RESOURCE,

P_GENERAL_FAILURE

};

/* Defines the Sequence of Data Elements that specify the call leg information requested. */

struct TpCallLegInfoReport {

TpCallLegInfoType CallLegInfoType;

TpDateAndTime CallLegStartTime;

TpDateAndTime CallLegConnectedToResourceTime;

TpDateAndTime CallLegConnectedToAddressTime;

TpDateAndTime CallLegEndTime;

TpAddress ConnectedAddress;

TpMPCallReleaseCause CallLegReleaseCause;

TpCallAppInfoSet CallAppInfo;

};

/* Defines a Numbered Set of Data Elements of TpCallReleaseCause. */

typedef sequence<TpMPCallReleaseCause> TpCallReleaseCauseSet;

/* Defines the Tagged Choice of Data Elements that specify specific criteria. */

union TpAdditionalCallEventCriteria switch(TpCallEventType) {

case P_CALL_EVENT_ADDRESS_COLLECTED: TpInt32 MinAddressLength;

case P_CALL_EVENT_RELEASE: TpCallReleaseCauseSet ReleaseCauseSet;

case P_CALL_EVENT_SERVICE_CODE: TpCallServiceCodeType ServiceCode;

default: short Dummy;
//allows initialisation of the union in the default case

};

/* Defines the Sequence of Data Elements that specify the criteria relating to call event requests. */

struct TpCallEventRequest {

TpCallEventType CallEventType;

TpAdditionalCallEventCriteria AdditionalCallEventCriteria;

TpCallMonitorMode CallMonitorMode;

};

/* Defines a Numbered Set of Data Elements of TpCallEventRequest. */

typedef sequence <TpCallEventRequest> TpCallEventRequestSet;

/* Defines the Tagged Choice of Data Elements that specify the criteria for an event notification to be generated.

Of the addresses only the Plan and the AddrString are used for the purpose of matching the notifications against the criteria. */

struct TpCallNotificationRequest {

TpCallNotificationScope CallNotificationScope;

TpCallEventRequestSet CallEventsRequested;

};

/* Defines the Sequence of Data Elements that specify the criteria relating to event requests. */

struct TpNotificationRequested {

TpCallNotificationRequest AppCallNotificationRequest;

TpInt32 AssignmentID;

};

/* Defines a numbered Set of Data Elements of TpNotificationsRequested. */

typedef sequence <TpNotificationRequested> TpNotificationRequestedSet;

/* Defines a Reference to type TpNotificationsRequestSet. */

typedef TpNotificationRequestedSet TpNotificationRequestedSetRef;

};

};

};

#endif
5 Multi-party Call Control interfaces

//Source file: mpcc_interfaces.idl

#ifndef __MPCC_INTERFACES_DEFINED

#define __MPCC_INTERFACES_DEFINED

/* CmIdentification

 %X% %Q% %Z% %W% */

#include "mpcc_data.idl"

module org {

module open_service_access {

module cc {

module mpccs {

interface IpAppMultiPartyCallControlManager;

interface IpMultiPartyCall;

/* The application call leg interface is implemented by the client application developer and is used to handle responses and errors associated with requests on the call leg in order to be able to receive leg specific information and events. */

interface IpAppCallLeg : IpInterface {

/* This asynchronous method reports that an event has occurred that was requested to be reported (for example, a mid-call event, the party has requested to disconnect, etc.).

Depending on the type of event received, outstanding requests for events are discarded. The exact details of these so-called disarming rules are captured in the data definition of the event type.

@roseuid 38B05E4902A9 */

void eventReportRes (

in TpSessionID callLegSessionID,
//Specifies the call leg session ID of the call leg.

in TpCallEventInfo eventInfo
//Specifies data associated with this event.

)

raises (TpGeneralException,TpGCCSException);

/* This asynchronous method indicates that the request to manage call leg reports was unsuccessful, and the reason (for example, the parameters were incorrect, the request was refused, etc.).

@roseuid 38B05E4902AC */

void eventReportErr (

in TpSessionID callLegSessionID,
//Specifies the call leg session ID of the call leg.

in TpCallError errorIndication
//Specifies the error which led to the original request failing.

)

raises (TpGeneralException,TpGCCSException);

/* This asynchronous method reports all the necessary information requested by the application, for example to calculate charging.

@roseuid 38B05E4902AF */

void getInfoRes (

in TpSessionID callLegSessionID,
//Specifies the call leg session ID of the call leg.

in TpCallLegInfoReport callLegInfoReport
//Specifies the call leg information requested.

)

raises (TpGeneralException,TpGCCSException);

/* This asynchronous method reports that the original request was erroneous, or resulted in an error condition.

@roseuid 38B05E4902B4 */

void getInfoErr (

in TpSessionID callLegSessionID,
//Specifies the call leg session ID of the call leg.

in TpCallError errorIndication
//Specifies the error which led to the original request failing.

)

raises (TpGeneralException,TpGCCSException);

/*

@roseuid 3A8A6D4E0140 */

void routeErr (

in TpSessionID callLegSessionID,
//Specifies the call leg session ID of the call leg.

in TpCallError errorIndication
//Specifies the error which led to the original request failing.

)

raises (TpGCCSException,TpGeneralException);

};

/* Defines a Reference to the interface IpAppCallLeg. */

typedef IpAppCallLeg IpAppCallLegRef;

/* Defines a reference to the type IpAppCallLeg. */

typedef IpAppCallLegRef IpAppCallLegRefRef;

/* Defines a reference to the type Ipcall */

typedef IpMultiPartyCall IpMultiPartyCallRef;

struct TpMultiPartyCallIdentifier {

IpMultiPartyCallRef CallReference;

TpSessionID CallSessionID;

};

typedef TpMultiPartyCallIdentifier TpMultiPartyCallIdentifierRef;

/* The call leg interface represents the logical call leg associating a call with an address. The call leg tracks its own states and allows charging summaries to be accessed. The leg represents the signalling relationship between the call and an address. An application that uses the IpCallLeg interface to set up connections has more control, e.g. by defining leg specific event request and can obtain call leg specific report and events. */

interface IpCallLeg : IpService {

/* This asynchronous method requests routing of a connection to the destination party.

The extra address information (i.e., originalDestinationAddress, redirectingAddress, originatingAddress) is optional. If set to unavailable (i.e., the plan is set to P_ADDRESS_PLAN_NOT_PRESENT) the network or gateway provided addresses will be used.

@roseuid 38B05E490352 */

void routeReq (

in TpSessionID callLegSessionID
//Specifies the call leg session ID of the call leg.

)

raises (TpGeneralException,TpGCCSException);

/* This asynchronous method sets, clears or changes the criteria for the events that the call leg object will be set to observe.

@roseuid 38B05E490369 */

void eventReportReq (

in TpSessionID callLegSessionID,
//Specifies the call leg session ID of the call leg.

in TpCallEventRequestSet eventsRequested
//Specifies the event specific criteria used by the application to define the events required. Only events that meet these criteria are reported. Examples of events are "address analysed", "answer", "release".

)

raises (TpGeneralException,TpGCCSException);

/* This method requests the release of the call leg. If successful, the associated address (party) will be released from the call, and the call leg deleted. Note that in some cases releasing the party may lead to release of the complete call in the network. The application will be informed of this with callEnded().

@roseuid 38B05E49036C */

void release (

in TpSessionID callLegSessionID,
//Specifies the call leg session ID of the call leg.

in TpCallReleaseCause cause
//Specifies the cause of the release.

)

raises (TpGeneralException,TpGCCSException);

/* This asynchronous method requests information associated with the call leg to be provided at the appropriate time (for example, to calculate charging). Note: in the call leg information must be accessible before the objects of concern are deleted.

@roseuid 38B05E490372 */

void getInfoReq (

in TpSessionID callLegSessionID,
//Specifies the call leg session ID of the call leg.

in TpCallLegInfoType callLegInfoRequested
//Specifies the call leg information that is requested.

)

raises (TpGeneralException,TpGCCSException);

/* This method requests the call associated with this call leg.

@roseuid 38B05E49037B */

void getCall (

in TpSessionID callLegSessionID,
//Specifies the call leg session ID of the call leg.

out TpMultiPartyCallIdentifierRef callReference
//Specifies the interface and sessionID of the call associated with this call leg.

)

raises (TpGeneralException,TpGCCSException);

/* This method requests that the call leg be attached to its call object. This will allow transmission on all associated bearer connections or media channels to and from other parties in the call. The call leg must be in the connected state for this method to complete successfully.

@roseuid 38B05E4A0002 */

void attachMedia (

in TpSessionID callLegSessionID
//Specifies the sessionID of the call leg to attach to the call.

)

raises (TpGeneralException,TpGCCSException);

/* This method will detach the call leg from its call, i.e., this will prevent transmission on any associated bearer connections or media channels to and from other parties in the call. The call leg must be in the connected state for this method to complete successfully.

@roseuid 38B05E4903E0 */

void detachMedia (

in TpSessionID callLegSessionID
//Specifies the sessionID of the call leg to detach from the call.

)

raises (TpGeneralException,TpGCCSException);

/* Queries the last address the leg has been redirected to.

@roseuid 3926AFAE0369 */

void getLastRedirectedAddress (

in TpSessionID callLegSessionID,
//Specifies the call session ID of the call leg.

out TpAddressRef redirectedAddress
//Specifies the last address where the call leg was redirected to.

);

/* This operation continues processing of the call. Applications can invoke this operation after call processing was interrupted due to detection of an event the application subscribed it's interest in.

@roseuid 3A65B50E0370 */

void continueProcessing ();

};

/* Defines a Reference to the interface IpCallLeg. */

typedef IpCallLeg IpCallLegRef;

/* Defines a Reference to the type IpCallLegRef. */

typedef IpCallLegRef IpCallLegRefRef;

/* Defines the Sequence of Data Elements that unambiguously specify the Call Leg object */

struct TpCallLegIdentifier {

/* This element specifies the callLegSessionId. */

TpSessionID callLegSessionID;

/* This element specifies the interface reference for the call leg object. */

IpCallLegRef callLegReference;

};

/* The Multi-Party call application interface is implemented by the client application developer and is used to handle call request responses and state reports. */

interface IpAppMultiPartyCall : IpInterface {

/* This asynchronous method reports time information of the finished call or call attempt as well as release cause depending on which information has been requested by getCallInfoReq. This information may be used e.g. for charging purposes. The call information will possibly be sent after reporting of all cases where the call or a leg of the call has been disconnected or a routing failure has been encountered.

@roseuid 3A65A2DA00B4 */

void getCallInfoRes (

in TpSessionID callSessionID,
//Specifies the call session ID of the call.

in TpCallInfoReport callInfoReport
//Specifies the call information requested.

)

raises (TpGCCSException,TpGeneralException);

/* This asynchronous method reports that the original request was erroneous, or resulted in an error condition.

@roseuid 3A65A2DA00E6 */

void getCallInfoErr (

in TpSessionID callSessionID,
//Specifies the call session ID of the call.

in TpCallError errorIndication
//Specifies the error which led to the original request failing.

)

raises (TpGCCSException,TpGeneralException);

/* This asynchronous method reports a call supervision event to the application when it has indicated it's interest in these kind of events.

It is also called when the connection is terminated before the supervision event occurs. Furthermore, this method is invoked as a response to the request also when a tariff switch happens in the network during an active call.

@roseuid 3A65A2DA0154 */

void superviseCallRes (

in TpSessionID callSessionID,
//Specifies the call session ID of the call

in TpCallSuperviseReport report,
//Specifies the situation which triggered the sending of the call supervision response.

in TpDuration usedTime
//Specifies the used time for the call supervision (in milliseconds).

)

raises (TpGCCSException,TpGeneralException);

/* This asynchronous method reports a call supervision error to the application.

@roseuid 3A65A2DA0190 */

void superviseCallErr (

in TpSessionID callSessionID,
//Specifies the call session ID of the call.

in TpCallError errorIndication
//Specifies the error which led to the original request failing.

)

raises (TpGCCSException,TpGeneralException);

/* This method indicates to the application that a fault in the network has been detected. The call may or may not have been terminated.

The system deletes the call object. Therefore, the application has no further control of call processing. No report will be forwarded to the application.

@roseuid 3A65A2DA01C2 */

void callFaultDetected (

in TpSessionID callSessionID,
//Specifies the call session ID of the call in which the fault has been detected.

in TpCallFault fault
//Specifies the fault that has been detected.

)

raises (TpGCCSException,TpGeneralException);

/* This asynchronous method returns the collected digits to the application.

@roseuid 3A65A2DA0230 */

void getMoreDialledDigitsRes (

in TpSessionID callSessionID,
//Specifies the call session ID of the call.

in TpString digits
//Specifies the additional dialled digits if the string length is greater than zero.

)

raises (TpGeneralException,TpGCCSException);

/* This asynchronous method reports an error in collecting digits to the application.

@roseuid 3A65A2DA026C */

void getMoreDialledDigitsErr (

in TpSessionID callSessionID,
//Specifies the call session ID of the call.

in TpCallError errorIndication
//Specifies the error which led to the original request failing.

)

raises (TpGeneralException,TpGCCSException);

/* This method indicates to the application that the call has terminated in the network. However, the application may still receive some results (e.g., getCallInfoRes) related to the call. The application is expected to deassign the call object after having received the callEnded.

Note that the event that caused the call to end might also be received separately if the application was monitoring for it.

@roseuid 3A65A2DA029E */

void callEnded (

in TpSessionID callSessionID,
//Specifies the call sessionID.

in TpCallEndedReport report
//Specifies the reason the call is terminated.

)

raises (TpGeneralException,TpGCCSException);

/* This asynchronous method indicates that the request to route the call to the destination party was unsuccessful - the call could not be routed to the destination party (for example, the network was unable to route the call, the parameters were incorrect, the request was refused, etc.). Note that the event cases that can be monitored and correspond to an unsuccessful setup of a connection (e.g. busy, no_answer) will be reported by eventReportRes() and not by this operation.

@roseuid 3A8A630E0168 */

void createAndRouteCallLegErr (

in TpSessionID callSessionID,
//Specifies the call session ID of the call.

in TpCallLegIdentifier callLegReference,
//Specifies the reference to the CallLeg interface that was created.

in TpCallError errorIndication
//Specifies the error which led to the original request failing.

)

raises (TpGCCSException,TpGeneralException);

};

/* Defines a reference to the type TpCallLegIndentifier. */

typedef TpCallLegIdentifier TpCallLegIdentifierRef;

/* Defines a Numbered Set of Data Elements of TpCallLegIdentifier */

typedef sequence <TpCallLegIdentifier> TpCallLegIdentifierSet;

/* Defines a Reference to type TpCallLegIdentifierSet. */

typedef TpCallLegIdentifierSet TpCallLegIdentifierSetRef;

/* The Multi-Party Call provides the possibility to control the call routing, to request information from the call, control the charging of the call, to release the call and to supervise the call. It also gives the possibiltiy to manage call legs explicitly. Via the legs the application can also influence the media in multi-media calls. If an application uses the multi-party call control interface it may call the createAndRouteCallLeg() operation several times without disconnecting already connected destination. Therefore, an application may implicitly create more then one (destination) call leg. However, there can only be at most one call leg that owns the call ("call owner") at any time. In contrast to the conference service it is not possible to move legs to another call object. */

interface IpMultiPartyCall : IpService {

/* This method requests the identification of the call leg objects associated with the call object. Returns the legs in the order of creation.

@roseuid 38B05E4903CB */

void getCallLegs (

in TpSessionID callSessionID,
//Specifies the call session ID of the call.

out TpCallLegIdentifierSetRef callLegList
//Specifies the call legs associated with the call. The set contains both the sessionIDs and the interface references.

)

raises (TpGCCSException, TpGeneralException);

/* This method requests the creation of a new call leg object.

@roseuid 38B05E4A0005 */

void createCallLeg (

in TpSessionID callSessionID,
//Specifies the call session ID of the call.

in IpAppCallLegRef appCallLeg,
//Specifies the application interface for callbacks from the call leg created.

in TpAddress targetAddress,
//Specifies the destination party to which the call should be routed.

in TpAddress originatingAddress,
//Specifies the address of the originating (calling) party.

in TpAddress originalCalledAddress,
//Specifies the original address to which the call was initiated.

in TpAddress redirectingAddress,
//Specifies the last address from which the call was redirected.

in TpCallAppInfoSet appInfo,
//Specifies application-related information pertinent to the call leg (such as alerting method, tele-service type, service identities and interaction indicators).

out TpCallLegIdentifierRef callLeg,
//Specifies the interface and sessionID of the call leg created.

in TpCallLegConnectionProperties connectionProperties
//Specifies the properties of the connection.

)

raises (TpGeneralException,TpGCCSException);

/* This asynchronous operation requests creation and routing of a new callLeg. In case the connection to the destination party is established successfully the CallLeg is attached to the call, i.e. no explicit attachMedia() operation is needed. Requested events will be reported on the IpAppCallLeg interface. This interface the application must provide through the appLegInterface parameter.

The extra address information (i.e., originalDestinationAddress, redirectingAddress, originatingAddress) is optional. If not present (i.e., the plan is set to P_ADDRESS_PLAN_NOT_PRESENT), the information provided in corresponding addresses from the route is used, otherwise the network or gateway provided numbers will be used.

@roseuid 3A65AAB70168 */

void createAndRouteCallLegReq (

in TpSessionID callSessionID,
//Specifies the call session ID of the call.

in TpCallEventRequestSet eventsRequested,
//Specifies the event specific criteria used by the application to define the events required. Only events that meet these criteria are reported. Examples of events are "adress analysed", "answer", "release".

in TpAddress targetAddress,
//Specifies the destination party to which the call should be routed.

in TpAddress originatingAddress,
//Specifies the address of the originating (calling) party.

in TpAddress originalDestinationAddress,
//Specifies the original destination address of the call.

in TpAddress redirectingAddress,
//Specifies the address from which the call was last redirected.

in TpCallAppInfoSet appInfo,
//Specifies application-related information pertinent to the call (such as alerting method, tele-service type, service identities and interaction indicators).

in IpAppCallLegRef appLegInterface,
//Specifies a reference to the application interface that implements the callback interface for the new call leg. Requested events will be reported by the eventReportRes() operation on this interface.

out TpCallLegIdentifierRef callLegReference
//Specifies the reference to the CallLeg interface that was created.

)

raises (TpGCCSException,TpGeneralException);

/* This method requests the release of the call object and associated objects. The call will also be terminated in the network. If the application requested reports to be sent at the end of the call (e.g., by means of getCallInfoReq) these reports will still be sent to the application.

The application should always either release or deassign the call when it is finished with the call, unless a callFaultDetected is received by the application.

@roseuid 3A65AAB70280 */

void release (

in TpSessionID callSessionID,
//Specifies the call session ID of the call.

in TpCallReleaseCause cause
//Specifies the cause of the release.

)

raises (TpGCCSException,TpGeneralException);

/* This method requests that the relationship between the application and the call and associated objects be de-assigned. It leaves the call in progress, however, it purges the specified call object so that the application has no further control of call processing. If a call is de-assigned that has event reports, call information reports or call Leg information reports requested, then these reports will be disabled and any related information discarded.

The application should always either release or deassign the call when it is finished with the call, unless callFaultDetected is received by the application.

@roseuid 3A65AAB702EE */

void deassignCall (

in TpSessionID callSessionID
//Specifies the call session ID of the call.

)

raises (TpGCCSException,TpGeneralException);

/* This asynchronous method requests information associated with the call to be provided at the appropriate time (for example, to calculate charging). This method must be invoked before the call is routed to a target address. Two types of reports can be requested; a final report or intermediate reports.

A final call report is sent when the call is ended. The call object will exist after the call is ended if information is required to be sent to the application at the end of the call. The call information will be sent after any call event reports.

Intermediate reports are received when the destination leg or party terminates or when the call ends. In case the originating party is still available the application can still initiate a follow-on call.

@roseuid 3A65AAB7035C */

void getCallInfoReq (

in TpSessionID callSessionID,
//Specifies the call session ID of the call.

in TpCallInfoType callInfoRequested
//Specifies the call information that is requested.

)

raises (TpGCCSException,TpGeneralException);

/* Set an operator specific charge plan for the call. The charge plan must be set before the call is routed to a target address. Depending on the operator the method can also be used to change the charge plan for ongoing calls.

@roseuid 3A65AAB703CA */

void setCallChargePlan (

in TpSessionID callSessionID,
//Specifies the call session ID of the call.

in TpCallChargePlan callChargePlan
//Specifies the charge plan to use.

)

raises (TpGCCSException,TpGeneralException);

/* This method allows for advice of charge (AOC) information to be sent to terminals that are capable of receiving this information.

@roseuid 3A65AAB80082 */

void setAdviceOfCharge (

in TpSessionID callSessionID,
//Specifies the call session ID of the call.

in TpAoCInfo aOCInfo,
//Specifies two sets of Advice of Charge parameter.

in TpDuration tariffSwitch
//Specifies the tariff switch interval that signifies when the second set of AoC parameters becomes valid.

)

raises (TpGeneralException,TpGCCSException);

/* The application calls this method to supervise a call. The application can set a granted connection time for this call. If an application calls this operation before it routes a call or a user interaction operation the time measurement will start as soon as the call is answered by the B-party or the user interaction system.

@roseuid 3A65AAB80384 */

void superviseCallReq (

in TpSessionID callSessionID,
//Specifies the call session ID of the call.

in TpDuration time,
//Specifies the granted time in milliseconds for the connection.

in TpCallSuperviseTreatment treatment
//Specifies how the network should react after the granted connection time expired.

)

raises (TpGCCSException,TpGeneralException);

/* This asynchronous method requests to collect further digits and return them to the application. Depending on the administered data, the network may indicate a new call to the gateway if a caller goes off-hook or dialled only a few digits. The application then gets a new call event which contains no digits or only the few dialled digits in the event data. The application should then use this method if it requires more dialled digits, e.g. to perform screening.

@roseuid 3A65AAB80316 */

void getMoreDialledDigitsReq (

in TpSessionID callSessionID,
//Specifies the call session ID of the call.

in TpInt32 length
//Specifies the maximum number of digits to collect.

)

raises (TpGeneralException, TpGCCSException);

};

typedef IpAppMultiPartyCall IpAppMultiPartyCallRef;

typedef IpAppMultiPartyCallControlManager IpAppMultiPartyCallControlManagerRef;

/* This interface is the 'service manager' interface for the Multi-party Call Control Service. The multi-party call control manager interface provides the management functions to the multi-party call control service. The application programmer can use this interface to provide overload control functionality, create call objects and to enable or disable call-related event notifications. */

interface IpMultiPartyCallControlManager : IpService {

/* This method is used to create a new call object.

@roseuid 3A65AAF9006E */

void createCall (

in IpAppMultiPartyCallRef appCall,
//Specifies the application interface for callbacks from the call created.

out TpMultiPartyCallIdentifierRef callReference
//Specifies the interface reference and sessionID of the call created.

)

raises (TpGCCSException,TpGeneralException);

/* This method is used to enable call notifications so that events can be sent to the application. If some application already requested notifications with criteria that overlap the specified criteria, the request is refused with P_GCCS_INVALID_CRITERIA.

The criteria are said to overlap if both originating and terminating ranges overlap and the same number plan is used and the same NotificationCallType is used.

If the same application requests two notifications with exactly the same criteria but different callback references, the second callback will be treated as an additional callback. This means that the callback will only be used in case when the first callback specified by the application is unable to handle the reportNotification (e.g., due to overload or failure).

@roseuid 3A65AAF900DC */

void createNotification (

in IpAppMultiPartyCallControlManagerRef appCallControlManager,
//If this parameter is set (i.e. not NULL) it specifies a reference to the application interface, which is used for callbacks. If set to NULL, the application interface defaults to the interface specified via the setCallback() method.

in TpCallNotificationRequest notificationRequest,
//Specifies the event specific criteria used by the application to define the event required. Only events that meet these criteria are reported. Examples of events are "incoming call attempt reported by network", "answer", "no answer", "busy". Individual addresses or address ranges may be specified for destination and/or origination.

out TpAssignmentID assignmentID
//Specifies the ID assigned by the generic call control manager interface for this newly-enabled event notification.

)

raises (TpGCCSException,TpGeneralException);

/* This method is used by the application to disable call notifications.

@roseuid 3A65AAF9010E */

void destroyNotification (

in TpAssignmentID assignmentID
//Specifies the assignment ID given by the generic call control manager interface when the previous enableNotification() was called. If the assignment ID does not correspond to one of the valid assignment IDs, the framework will return the error code P_INVALID_ASSIGNMENTID.

)

raises (TpGCCSException,TpGeneralException);

/* This method is used by the application to change the event criteria introduced with createNotification. Any stored criteria associated with the specified assignementID will be replaced with the specified criteria.

@roseuid 3A65AAF901EA */

void changeNotification (

in TpAssignmentID assignmentID,
//Specifies the ID assigned by the generic call control manager interface for the event notification.

in TpCallNotificationRequest notificationRequest
//Specifies the new set of event specific criteria used by the application to define the event required. Only events that meet these criteria are reported.

)

raises (TpGeneralException,TpGCCSException);

/* This method is used by the application to query the event criteria set with createNotification or changeNotification.

@roseuid 3A65AAF90258 */

void getNotification (

out TpNotificationRequestedSetRef notificationsRequested
//Specifies the nofications that have been requested by the application.

)

raises (TpGeneralException,TpGCCSException);

/* This method imposes or removes load control on calls made to a particular address range within the generic call control service. The address matching mechanism is similar as defined for TpCallEventCriteria.

@roseuid 3A65AAF9017C */

void setCallLoadControl (

in TpDuration duration,
//Specifies the duration for which the load control should be set.

in TpCallLoadControlMechanism mechanism,
//Specifies the load control mechanism to use (for example, admit one call per interval), and any necessary parameters, such as the call admission rate. The contents of this parameter are ignored if the load control duration is set to zero.

in TpCallTreatment treatment,
//Specifies the treatment of calls that are not admitted. The contents of this parameter are ignored if the load control duration is set to zero.

in TpAddressRange addressRange,
//Specifies the address or address range to which the overload control should be applied or removed.

out TpAssignmentID assignmentID
//Specifies the assignmentID assigned by the gateway to this request. This assignementID can be used to correlate the callOverlloadEncountered and callOverloadCeased methods with the request.

)

raises (TpGeneralException,TpGCCSException);

};

typedef IpAppMultiPartyCallRef IpAppMultiPartyCallRefRef;

/* The Multi-Party call control manager application interface provides the application call control management functions to the Multi-Party call control service. */

interface IpAppMultiPartyCallControlManager : IpInterface {

/* This method notifies the application of the arrival of a call-related event.

@roseuid 3A65A1A60032 */

void reportNotification (

in TpMultiPartyCallIdentifier callReference,
//Specifies the reference to the call interface to which the notification relates.

in TpCallLegIdentifier callLegReference,
//Specifies the reference to the callLeg interface to which the notification relates.

in TpCallNotificationInfo notificationInfo,
//Specifies data associated with this event.

in TpAssignmentID assignmentID,
//Specifies the assignment id which was returned by the createNotification() method. The application can use assignment id to associate events with event specific criteria and to act accordingly.

out IpAppMultiPartyCallRefRef appCall
//Specifies a reference to the application interface which implements the callback interface for the new call.

)

raises (TpGCCSException,TpGeneralException);

/* This method indicates to the application that the call object (at the gateway) has aborted or terminated abnormally. No further communication will be possible between the call and application.

@roseuid 3A65A19C014A */

void callAborted (

in TpSessionID callReference
//Specifies the sessionID of call that has aborted or terminated abnormally.

)

raises (TpGCCSException,TpGeneralException);

/* This method indicates to the application that all event notifications have been temporary interrupted (for example, due to faults detected).

Note that more permanent failures are reported via the Framework (integrity management).

@roseuid 3A65A1AA0118 */

void callNotificationInterrupted ()

raises (TpGCCSException,TpGeneralException);

/* This method indicates to the application that event notifications will again be possible.

@roseuid 3A65A1AF0302 */

void callNotificationContinued ();

/* This method indicates that the network has detected overload and may have automatically imposed load control on calls requested to a particular address range or calls made to a particular destination within the call control service.

@roseuid 3A65A1B3033E */

void callOverloadEncountered (

in TpAssignmentID assignmentID
//Specifies the assignmentID corresponding to the associated setCallLoadControl. This implies the addressrange for within which the overload has been encountered.

)

raises (TpGeneralException,TpGCCSException);

/* This method indicates that the network has detected that the overload has ceased and has automatically removed any load controls on calls requested to a particular address range or calls made to a particular destination within the call control service.

@roseuid 3A65A1B90032 */

void callOverloadCeased (

in TpAssignmentID assignmentID
//Specifies the assignmentID corresponding to the associated setCallLoadControl. This implies the addressrange for within which the overload has been ceased

)

raises (TpGeneralException,TpGCCSException);

};

};

};

};

};

#endif
� Contact information: Ard-Jan Moerdijk, Ericsson Eurolab Netherlands, tel: +31 161242777, e-mail: Ard.Jan.Moerdijk@eln.ericsson.se

