1

Temporary document N5-010195
Joint 3GPP TSG_CN5/ ETSI SPAN 13/Parlay
05 till 07 March 2001
Antwerp, Belgium

Source:
Incomit

Title:
Request access problem

Date:

1 March 2001

Document for:
Discussion
Agenda item:

1 Introduction

Note that the use of “OSA” in the following text can be replaced by “Parlay”.

Authentication and access currently relies upon client identification using some underlying distribution technology mechanism (UDTM), e.g. CORBA security. The reason for this is that the requestAccess method has no parameter identifying the client requesting service access. The client must therefore be identified using some kind of UDTM in order to determine if the client previously has been authenticated and should be granted access.

This contribution contains a suggestion to move the requestAccess() method from the IpInitial to the “new” IpAuthentication interface. It also states that the existing IpAuthentication should be renamed to IpOSAAuthentication inheriting from the “new” IpAutentication interface. The IpAuthentication is intended for authentication using an underlying implementation mechanism and contains only the requestAccess method. The IpOSAAuthentication is intended for the implementation independent authentication technique previously supported by the “old” IpAuthentication interface and referred to as OSA Authentication. (Network Operators can also choose to support additional operator specific authentication techniques by defining their own authentication interfaces inheriting from the “new” IpAuthentication interface.

The main advantage of this solution is that it is possible to make an implementation that will not be dependent on any underlying mechanism, increasing the interoperability between different vendors.

The contribution suggests that the following three different authentication methods should be supported:

· OSA Authentication (IpOSAAuthentication interface) - Pure application level authentication.

· Implementation specific authentication, e.g CORBA Security (IpAuthentication interface)

· Operator specific authentication (Ip”OperatorSpecific”Authentication interface, Note: This is not part of the specification.)

The reason for the inheritance between the IpAuthentication interface and the IpOSAAuthentication interface is to separate methods needed when using an UDTM from methods needed when OSA Authentication is used. This way a client who wants to use an UDTM accesses the "new" Authentication interface and does not have to bother about methods that is not needed. After all, only the requestAccess method is needed when an UDTM is used.

In Parlay 2.1 specifications this is not a problem since a client using an UDTM never has to access any Authentication interface and therefore never has to see the methods in the "old" Authentication interface.

Other proposed solutions are to add the domainID as a parameter to the requestAccess method, or to let the Framework generate a token that is returned to the client via the initiateAuthentication method. The application then sends the token as a parameter to the requestAccess method in order to identify itself. The drawbacks with both these solutions is that both the domainID and the token can be spoofed.

Note: In the industry today most of the service implementation will be made using high level APIs. One good example is the JAIN SPA initiative, which is an implementation in JAVA of the OSA/Parlay API. In these scenarios there is no underlying authentication mechanism, meaning that it requires an extensible mapping layer between the APIs.

Extract from specification

The following has not yet been updated:

· State diagrams.

· Framework-To-Service parts. The same changes should be applied here.

· Rational Rose “look and feel”

*

*

*

4.1 Trust and Security Management Sequence Diagrams

4.1.1 Initial Access

This sequence diagram shows a client application accessing the OSA framework for the first time. In order to use the OSA SCFs, the client application must first authenticate itself with the framework and then discover an appropriate service.

The application gains a reference to the Initial Contact interfaces for the Framework. This may be gained through a URL, a Naming or Trading Service or an equivalent service, a stringified object reference, etc. At this stage, the application has no guarantee that this is a Framework interface reference. The application uses this reference to initiate the authentication process with the Framework. Initial Contact only supports the initiateAuthentication method to allow the authentication process to take place.
Once the application has authenticated with the Framework, it can gain access to other framework interfaces and service capability features. This is done by invoking the requestAccess method, by which the application requests a certain type of access service capability feature.

[image: image1.png]
1:
The client invokes initiateAuthentication on the framework's "public" (initial contact) interface to initiate the authentication process. The client provides a reference to its authentication interface. The framework returns a reference to its authentication interface.

2:
The client invokes selectAuthMethod on the framework's OSA Authentication interface. The client identifies the authentication methods it supports. The framework prescribes the method to be used.

3:
The client and framework authenticate each other using the prescribed method. The sequence diagram illustrates a series of one or more invocations of the authenticate method on the framework's OSA Authentication interface. In each invocation, the client supplies a challenge and the framework returns the correct response. Alternatively or additionally the framework may issue its own challenges to the client using the authenticate method on the client's OSA Authentication interface

4:
Upon successful (mutual) authentication, the client invokes requestAccess on the framework's OSA Authentication interface. The client provides a reference to its access interface. The framework returns a reference to its access interface.

5:
The client invokes obtainInterface on the framework's Access interface to obtain a reference to its service discovery interface.

6:
The client invokes listServiceTypes on the framework's Service Discovery interface to obtain a list of what "types" of services are supported by the framework.

7:
The client invokes describeServiceType on the framework's Service Discovery interface to obtain a list of service "properties" that are applicable to a specific service type, and other related information.

8:
The client invokes discoverService on the framework's Service Discovery interface. The client identifies a specific service type and a set of service properties. The framework returns a set of service identifiers, and their associated service properties, that the framework supports and which match the client's criteria.

9:
The client invokes selectService on the framework's Access interface. The client identifies the service it wishes to use and specifies values for the associated service properties. The framework returns a service token confirming the selection request.

10:
The client can optionally invoke accessCheck on the Access interface. The client identifies the service type and service properties by supplying the serviceToken, generated from selectService. The client also describes the service features it wishes to access. The framework will respond with either accessGranted and the trust level, or accessDenied. Failure to use this process may result in the client trying to access something(s) to which access has not been granted.

11:
Where non-repudiation of the agreement to use the selected service is required, the framework invokes signServiceAgreement on the client's Access interface: i.e. supplying service agreement text for the client to digitally sign and return.

12:
The client invokes signServiceAgreement on the framework's Access interface: i.e. supplying service agreement text for the client to digitally sign and return. Additionally the framework obtains and returns a reference to an instance of the service manager interface for the selected service.

4.1.2 OSA Authentication

This sequence diagram illustrates the two-way mechanism by which the client and the framework mutually authenticate one another. This is an alternative to the one-way mechanism illustrated in the preceding sequence diagram.

The OSA API supports multiple authentication techniques. The procedure used to select an appropriate technique for a given situation is described below. The authentication mechanisms may be supported by cryptographic processes to provide confidentiality, and by digital signatures to ensure integrity. The inclusion of cryptographic processes and digital signatures in the authentication procedure depends on the type of authentication technique selected. In some cases strong authentication may need to be enforced by the Framework to prevent misuse of resources. In addition it may be necessary to define the minimum encryption key length that can be used to ensure a high degree of confidentiality.

The application must authenticate with the Framework before it is able to use any of the other interfaces supported by the Framework. Invocations on other interfaces will fail until authentication has been successfully completed.

1)
The application calls initiateAuthentication on the OSA Framework Initial interface. This allows the application to specify the type of authentication process. This authentication process may be specific to the provider, or the implementation technology used. The initiateAuthentication method can be used to specify the specific process, (e.g. CORBA security). OSA defines generic a authentication interface (OSA Authentication), which can be used to perform the authentication process. The initiateAuthentication method allows the application to pass a reference to its own authentication interface to the Framework, and receive a reference to the Authentication interface prefered by the client, in return. In this case the OSA Authentication interface.
2)
The application invokes the selectAuthMethod on the Framework's OSAAuthentication interface. This includes the authentication capabilities of the application. The framework then chooses an authentication method based on the authentication capabilities of the application and the Framework. If the application is capable of handling more than one authentication method, then the Framework chooses one option, defined in the prescribedMethod parameter. In some instances, the authentication capability of the application may not fulfil the demands of the Framework, in which case, the authentication will fail.

3)
The application and Framework interact to authenticate each other. Depending on the method prescribed, this procedure may consist of a number of messages e.g. a challenge/ response protocol. This authentication protocol is performed using the authenticate method on the OSA Authentication interface. Depending on the authentication method selected, the protocol may require invocations on the OSAAuthentication interface supported by the Framework; or on the application counterpart; or on both.

[image: image3.png]
4.1.3 Authentication

This sequence diagram illustrates the two-way mechanism by which the client and the framework mutually authenticate one another using an underlying distribution tecnology mechanism.
[image: image4.png]
1)
The application calls initiateAuthentication on the OSA Framework Initial interface. This allows the application to specify the type of authentication process. In this case, the application selects to use the underlying distribution technology mechanism for identification and authentication.
2)
The application invokes the requestAccess method on the Framework's Authentication interface. The Framework now uses the underlying distribution technology mechanism for identification and authentication of the application.
3)
If the authentication was successful, the application can now invoke obtainInterface on the framework's Access interface to obtain a reference to its service discovery interface.

*

*

*

[image: image6.png]
Figure: Trust and Security Management Package Overview

*

*

*

5 Framework-to-Application Interface Classes

5.1 Trust and Security Management Interface Classes
The Trust and Security Management Interfaces provide:

-
the first point of contact for an application to access a Home Environment;

-
the authentication methods for the application and Home Environment to perform an authentication protocol;

-
the application with the ability to select a service capability feature to make use of;

-
the application with a portal to access other Framework interfaces.

The process by which the application accesses the Home Environment has been separated into 3 stages, each supported by a different Framework interface:

1)
Initial Contact with the Framework;

2)
Authentication to the Framework;

3)
Access to Framework and Service Capability Features.

5.1.1 Interface Class IpAppOSAAuthentication

Inherits from: IpInterface.
	<<Interface>>

IpAppOSAAuthentication

	

	authenticate (prescribedMethod : in TpAuthCapability, challenge : in TpString, response : out TpStringRef) : TpResult

abortAuthentication () : TpResult

Method

authenticate()

This method is used by the framework to authenticate the client application using the mechanism indicated in prescribedMethod. The client application must respond with the correct responses to the challenges presented by the framework. The number of exchanges and the order of the exchanges is dependent on the prescribedMethod. (These may be interleaved with authenticate() calls by the client application on the IpOSAAuthentication interface. This is defined by the prescribedMethod.)

Parameters

prescribedMethod : in TpAuthCapability

see selectAuthMethod() on the IpOSAAuthentication interface. This parameter contains the agreed method for authentication. If this is not the same value as returned by selectAuthMethod(), then an error code (P_INVALID_AUTH_CAPABILITY) is returned.
challenge : in TpString

The challenge presented by the framework to be responded to by the client application. The challenge mechanism used will be in accordance with the IETF PPP Authentication Protocols - Challenge Handshake Authentication Protocol [RFC 1994, August1996]. The challenge will be encrypted with the mechanism prescribed by selectAuthMethod().
response : out TpStringRef

This is the response of the client application to the challenge of the framework in the current sequence. The response will be based on the challenge data, decrypted with the mechanism prescribed by selectAuthMethod().
Raises

TpGeneralException,TpFWException
Method

abortAuthentication()

The framework uses this method to abort the authentication process. This method is invoked if the framework wishes to abort the authentication process, (e.g. if the client application responds incorrectly to a challenge.) If this method has been invoked, calls to the requestAccess operation on IpOSAAuthentication will return an error code (P_ACCESS_DENIED), until the client has been properly authenticated.

Parameters

No Parameters were identified for this method

Raises

TpGeneralException,TpFWException
5.1.2 Interface Class IpAppAccess

Inherits from: IpInterface.
The Access client application interface is used by the Framework to perform the steps that are necessary in order to allow it to service access.

	<<Interface>>

IpAppAccess

	

	signServiceAgreement (serviceToken : in TpServiceToken, agreementText : in TpString, signingAlgorithm : in TpSigningAlgorithm, digitalSignature : out TpStringRef) : TpResult

terminateServiceAgreement (serviceToken : in TpServiceToken, terminationText : in TpString, digitalSignature : in TpString) : TpResult

terminateAccess (terminationText : in TpString, signingAlgorithm : in TpSigningAlgorithm, digitalSignature : in TpString) : TpResult

Method

signServiceAgreement()

This method is used by the framework to request that the client application sign an agreement on the service. It is called in response to the client application calling the selectService() method on the IpAccess interface of the framework. The framework provides the service agreement text for the client application to sign. If the client application agrees, it signs the service agreement, returning its digital signature to the framework.

Parameters

serviceToken : in TpServiceToken

This is the token returned by the framework in a call to the selectService() method. This token is used to identify the service instance to which this service agreement corresponds. (If the client application selects many services, it can determine which selected service corresponds to the service agreement by matching the service token.) If the serviceToken is invalid, or not known by the client application,then an error code (P_INVALID_SERVICE_TOKEN) is returned.
agreementText : in TpString

This is the agreement text that is to be signed by the client application using the private key of the client application. If the agreementText is invalid, then an error code (P_INVALID_AGREEMENT_TEXT) is returned.
signingAlgorithm : in TpSigningAlgorithm

This is the algorithm used to compute the digital signature. If the signingAlgorithm is invalid, or unknown to the client application, an error code (P_INVALID_SIGNING_ALGORITHM) is returned.
digitalSignature : out TpStringRef

The digitalSignature is the signed version of a hash of the service token and agreement text given by the framework.
Raises

TpGeneralException,TpFWException
Method

terminateServiceAgreement()

This method is used by the framework to terminate an agreement for the service.

Parameters

serviceToken : in TpServiceToken

This is the token passed back from the framework in a previous selectService() method call. This token is used to identify the service agreement to be terminated. If the serviceToken is invalid, or unknown to the client application, an error code (P_INVALID_SERVICE_TOKEN) is returned.
terminationText : in TpString

This is the termination text that describes the reason for the termination of the service agreement.
digitalSignature : in TpString

This is a signed version of a hash of the service token and the termination text. The signing algorithm used is the same as the signing algorithm given when the service agreement was signed using signServiceAgreement(). The framework uses this to confirm its identity to the client. The client can check that the terminationText has been signed by the framework. If a match is made, the service agreement is terminated, otherwise an error code (P_INVALID_SIGNATURE) is returned.
Raises

TpGeneralException,TpFWException
Method

terminateAccess()

The terminateAccess operation is used to end the client application's access session with the framework. The framework is terminating the client application's access session. (For example, this may be done if the framework believes the client application is masquerading as someone else. Using this operation will force the client application to re-authenticate if it wishes to continue using the framework's services.)

After terminateAccess() is invoked, the client application will not longer be authenticated with the framework. The client application will not be able to use the references to any of the framework interfaces gained during the access session. Any calls to these interfaces will fail.

Parameters

terminationText : in TpString

This is the termination text describes the reason for the termination of the access session.
signingAlgorithm : in TpSigningAlgorithm

This is the algorithm used to compute the digital signature. If the signingAlgorithm is invalid, or unknown to the client application, an error code (P_INVALID_SIGNING_ALGORITHM) is returned.
digitalSignature : in TpString

This is a signed version of a hash of the termination text. The framework uses this to confirm its identity to the client. The client can check that the terminationText has been signed by the framework. If a match is made, the access session is terminated, otherwise an error code (P_INVALID_SIGNATURE) is returned.
Raises

TpGeneralException,TpFWException
	

	

	

5.1.3 Interface Class IpInitial

Inherits from: IpInterface.
The Initial Framework interface is used by the client application to initiate the mutual authentication with the Framework.

	<<Interface>>

IpInitial

	

	initiateAuthentication (appDomain : in TpAuthDomain, authType : in TpAuthType, fwDomain : out TpAuthDomainRef) : TpResult

Method

initiateAuthentication()

This method is invoked by the client application to start the process of mutual authentication with the framework, and request the use of a specific authentication method.

Parameters

appDomain : in TpAuthDomain

This identifies the application domain to the framework, and provides a reference to the domain's authentication interface.

structure TpAuthDomain {

domainID:

TpDomainID;

authInterface:

IpInterfaceRef;

};

The domainID parameter is an identifier either for a client application (i.e. TpClientAppID) or for an enterprise operator (i.e. TpEntOpID). It is used to identify the enterprise domain to the framework, (see authenticate() on IpOSAAuthentication). If the framework does not recognise the domainID, the framework returns an error code (P_INVALID_DOMAIN_ID).

The authInterface parameter is a reference to call the authentication interface of the client application. The type of this interface is defined by the authType parameter. If the interface reference is not of the correct type, the framework returns an error code (P_INVALID_INTERFACE_TYPE).
authType : in TpAuthType

This identifies the type of authentication mechanism requested by the client. It provides operators and clients with the opportunity to use an alternative to the OSA Authentication interface,e.g. an implementation specific authentication mechanism like CORBA Security, using the Authentication interface, or Operator specific Authentication interfaces. OSA Authentication is the default authentication mechanism (P_OSA_AUTHENTICATION). If P_OSA_AUTHENTICATION is selected, then the appDomain and fwDomain authInterface parameters are references to interfaces of type Ip(App)OSAAuthentication. If P_AUTHENTICATION is selected, the authInterface parameters are refereces to interfaces of type Ip(App)Authentication which is used when an underlying distibution technology authentication mechanism is used.
fwDomain : out TpAuthDomainRef

This provides the application domain with a framework identifier, and a reference to call the authentication interface of the framework.

structure TpAuthDomain {

domainID:

TpDomainID;

authInterface:

IpInterfaceRef;

};

The domainID parameter is an identifier for the framework (i.e. TpFwID). It is used to identify the framework to the enterprise domain.

The authInterface parameter is a reference to the authentication interface of the framework. The type of this interface is defined by the authType parameter. The application domain uses this interface to authenticate with the framework.
Raises

TpGeneralException,TpFWException

5.1.4 Interface Class IpAuthentication

Inherits from: IpInterface.
The Authentication Framework interface is used by client application to request access to other interfaces supported by the Framework. The mutual authentication process should in this case be done with some underlying distribution technology authentication mechanism, e.g. CORBA Security.
	<<Interface>>

IpAuthentication

	

	requestAccess (accessType : in TpAccessType, appAccessInterface : in IpInterfaceRef, fwAccessInterface : out IpInterfaceRefRef) : TpResult

Method

requestAccess()

Once application and framework are authenticated, the client application invokes the requestAccess operation on the IpInitial interface. This allows the client application to request the type of access they require. If they request P_OSA_ACCESS, then a reference to the IpAccess interface is returned. (Operators can define their own access interfaces to satisfy client requirements for different types of access.)

If this method is called before the client application and framework have successfully completed the authentication process, then the request fails, and an error code (P_ACCESS_DENIED) is returned.

Parameters

accessType : in TpAccessType

This identifies the type of access interface requested by the client application. If the framework does not provide the type of access identified by accessType, then an error code (P_INVALID_ACCESS_TYPE) is returned.
appAccessInterface : in IpInterfaceRef

This provides the reference for the framework to call the access interface of the client application. If the interface reference is not of the correct type, the framework returns an error code (P_INVALID_INTERFACE_TYPE).
fwAccessInterface : out IpInterfaceRefRef

This provides the reference for the client to call the access interface of the framework.
Raises

TpGeneralException,TpFWException
5.1.5 Interface Class IpOSAAuthentication

Inherits from: IpAuthentication.
The OSA Authentication Framework interface is used by client application to perform its part of the mutual authentication process with the Framework necessary to be allowed to use any of the other interfaces supported by the Framework.
	<<Interface>>

IpOSAAuthentication

	

	selectAuthMethod (authCaps : in TpAuthCapabilityList, prescribedMethod : out TpAuthCapabilityRef) : TpResult

authenticate (prescribedMethod : in TpAuthCapability, challenge : in TpString, response : out TpStringRef) : TpResult

abortAuthentication () : TpResult

Method

selectAuthMethod()

The client application uses this method to initiate the authentication process. The framework returns its preferred mechanism. This should be within capability of the client application. If a mechanism that is acceptable to the framework within the capability of the client application cannot be found, the framework returns an error code (P_NO_ACCEPTABLE_AUTH_CAPABILITY).

Parameters

authCaps : in TpAuthCapabilityList

This is the means by which the authentication mechanisms supported by the client are conveyed to the framework.
prescribedMethod : out TpAuthCapabilityRef

This is returned by the framework to indicate the mechanism preferred by the framework for the authentication process. If the value of the prescribedMethod returned by the framework is not understood by the client application, it is considered a catastrophic error and the client application must abort.
Raises

TpGeneralException,TpFWException
Method

authenticate()

This method is used by the client to authenticate the framework using the mechanism indicated in prescribedMethod. The framework must respond with the correct responses to the challenges presented by the client. The clientAppID received in the initiateAuthentication() can be used by the framework to reference the correct public key for the client application (the key management system is currently outside of the scope of the OSA APIs). The number of exchanges and the order of the exchanges is dependent on the prescribedMethod.

Parameters

prescribedMethod : in TpAuthCapability

see selectAuthMethod(). This parameter contains the method that the framework has specified as acceptable for authentication. If this is not the same value as returned by selectAuthMethod(), then the framework returns an error code (P_INVALID_AUTH_CAPABILITY).
challenge : in TpString

The challenge presented by the client application to be responded to by the framework. The challenge mechanism used will be in accordance with the IETF PPP Authentication Protocols - Challenge Handshake Authentication Protocol [RFC 1994, August1996]. The challenge will be encrypted with the mechanism prescribed by selectAuthMethod().
response : out TpStringRef

This is the response of the framework to the challenge of the client application in the current sequence. The response will be based on the challenge data, decrypted with the mechanism prescribed by selectAuthMethod().
Raises

TpGeneralException,TpFWException
Method

abortAuthentication()

The client application uses this method to abort the authentication process. This method is invoked if the client no longer wishes to continue the authentication process, (e.g. if the framework responds incorrectly to a challenge.) If this method has been invoked, calls to the requestAccess operation on IpInitial will return an error code (P_ACCESS_DENIED), until the client has been properly authenticated.

Parameters

No Parameters were identified for this method

Raises

TpGeneralException,TpFWException
*

*

*

5.1.6

	

	

	

*

*

*

TpAuthType

Identical to a TpString, it identifies the type of authentication mechanism requested by the client. It provides Network operators and client's with the opportunity to use an alternative to the OSA Authentication interface. This can for example be an implementation specific authentication mechanism, e.g. CORBA Security, or a proprietary Authentication interface supported by the Network Operator. OSA Authentication is the default authentication method. Other Network operator specific capabilities may also be used, but should be preceded by the string “SP_”. The following values are defined for OSA release 99:

	String Value
	Description

	NULL
	An empty (NULL) string indicates the default authentication method: OSA Authentication.

	P_OSA_AUTHENTICATION
	Authenticate using the OSA Authentication Interfaces: IpAuthentication and IpAppAuthentication

	P_AUTHENTICATION

Authenticate using the OSA Authentication Interfaces: IpAuthentication and IpAppAuthentication

	Authenticate using the implementation specific authentication mechanism, e.g. CORBA Security.

*

*

*

	* Contact:
	Thomas Svensson

Anders Lundqvist
	(+46-54-176705 / * thomas.svensson@incomit.com
(+46-54-176703 / * anders.lundqvist@incomit.com

C:\DOCUME~1\zoicas\LOCALS~1\Temp\N5-010017_120070_3_v000.doc

