3GPP TSG_CN5 (Open Service Architecture – OSA)

Meeting #10, Antwerp, BELGIUM, 5 – 7 March 2001
Tdoc N5-01017-

Source:
Eamonn Murray, AePONA, E.Murray@aepona.com
Title:
Continued support for GCCS within 120070.

Agenda Item:
5.7

Document for:
Discussion

Category:

Work Item ID:
OSA

Doc Summary:
Outlining AePONA’s position in support of continued inclusion of GCCS within 120070.

Specs involved:
DTR/SPAN 120070
1 Introduction

In breaking the inheritance for MPCC from GCCS, the following three options for GCCS remain open:

1. Keep GCCS in 120070 with its present data types (data definitions are in separate GCCS data definition section), and have different data types for MPCC. So GCC is kept as stable as possible with respect to 3GPP R99 and Parlay 2.1.

2. Keep GCCS in 120070 with among other things new data types, align with MPCC.

3. Only have MPCC in 120070, with explanation in GCC section that MPCC can be used with restrictions.
2 Retaining GCCS

AePONA wishes to outline its position to retain GCCS as part of 120070. We suggest that option 1 outlined above is the preferred approach at this time, as it continues to provide backward compatibility with R99 and Parlay 2.1 with no additional effort. Any decision to keep GCCS in line with MPCC as outlined in option 2, should be considered as either an alignment process between the two models (very difficult), or alternatively a parallel ‘mirrored’ evolution of the two distinct call models.

AePONA believes that there are very strong merits for retaining a simple ‘call’ based application programmers API, that ensures that application developers require no knowledge of telecommunications media, switching or call legs. In addition by considering 3rd party call establishment as outlined by the following 120070 sequences for GCCS and MPCCS, it is clear that a much reduced set of simpler instructions is required using GCCS to produce simple classes of application.

Retaining the simplicity of GCCS is seen as an important factor in ensuring that the emerging application development and ISV communities not familiar with the telecommunications domain, adopt the OSA/Parlay APIs for call control, rather than alternative API technologies from the internet domain (e.g SiP API).

Considering an application initiated 2 party call suitable for Web enabled ‘click-to-dial’ type applications:

GCCS - Application Initiated Call

The following sequence diagram shows an application creating a call between party A and party B. This sequence could be done after a customer has accessed a Web page and selected a name on the page of a person or organisation to talk to.

[image: image1.wmf] :

IpCallControlManager

 : IpAppCall

 : IpCall

 : (Logical

View::IpA...

5: routeRes()

1: new()

2: createCall()

3: new()

4: routeReq()

7: routeReq()

8: routeRes()

6: 'forward event'

9: 'forward event'

10: deassignCall()

1:
This message is used to create an object implementing the IpAppCall interface.

2:
This message requests the object implementing the IpCallControlManager interface to create an object implementing the IpCall interface.

3:
Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load control values not exceeded) is met, it is created.

4:
This message is used to route the call to the A subscriber (origination). In the message the application request response when the A party answers.

5:
This message indicates that the A party answered the call.

6:
This message forwards the previous message to the application logic.

7:
This message is used to route the call to the B-party. Also in this case a response is requested for call answer or failure.

8:
This message indicates that the B-party answered the call. The call now has two parties and a speech connection is automatically established between them.

9:
This message is used to forward the previous message to the IpAppLogic.

10:
Since the application is no longer interested in controlling the call, the application deassigns the call. The call will continue in the network, but there will be no further communication between the call object and the application.

Note: Using GCCS this 2-party, application initiated call has required 5 application requests and resulted in 3 indications to the application.

MPCCS - Application initiated call setup

The following sequence diagram shows an application creating a call between party A and party B. Here, a call is created first. Then party A's call leg is created before triggers are set on it for answer and then routed to the call. On answer, an announcement is played indicating that the call is being set up to party B. While the announcement is being played, party B's call leg is created and then triggers are set on it for answer. On answer the announcement is cancelled and party B is routed to the call.

[image: image2.wmf]PartyB :

IpCallLeg

 : IpMultiPartyCallControlManager

 :

IpAppMultiPartyCall

 :

IpMultiPartyCall

PartyA :

IpCallLeg

 : (Logical

View::Ip...

4: setCallback()

1: new()

2: createCall()

3: new()

7: eventReportReq()

 :

IpAppUICall

 : IpUICall

11: sendInfoReq()

15: eventReportReq()

18: abortActionReq()

5: createCallLeg(in TpSessionID, in IpAppCallLegRef, in TpAddress, in TpAddress, in TpAddress, in TpAddress, in TpCallAppInfoSet, out TpCallLegIdentifierRef, in TpCallLegConnectionProperties)

6: new()

13: createCallLeg(in TpSessionID, in IpAppCallLegRef, in TpAddress, in TpAddress, in TpAddress, in TpAddress, in TpCallAppInfoSet, out TpCallLegIdentifierRef, in TpCallLegConnectionProperties)

14: new()

AppPartyA :

(IpAppMultiPartyCallLeg)

AppPartyB :

(IpAppMultiPartyCallLeg)

9: eventReportRes ()

17: eventReportRes ()

8: routeReq(in TpSessionID)

16: routeReq(in TpSessionID)

12: sendInfoRes()

 :

IpUIManager

10: createUICall()

19: deassignCall()

1:
This message is used to create an object implementing the IpAppMultiPartyCall interface.

2:
This message requests the object implementing the IpMultiPartyCallControlManager interface to create an object implementing the IpMultiPartyCall interface.

3:
Assuming that the criteria for creating an object implementing the IpMultiPartyCall interface (e.g. load control values not exceeded) is met it is created.

4:
Once the object implementing the IpMultiPartyCall interface is created it is used to pass the reference of the object implementing the IpAppMultiPartyCall interface as the callback reference to the object implementing the IpMultiPartyCall interface. Note that the reference to the callback interface could already have been passed in the createCall.

5:
This message instructs the object implementing the IpMultiPartyCall interface to create a call leg for customer A.

6:
Assuming that the criteria for creating an object implementing the IpCallLeg interface is met, message 6 is used to create it.

7:
This message requests the call leg for customer A to inform the application when the call leg answers the call.

8:
The call is then routed to the originating call leg.

9:
Assuming the call is answered, the object implementing party A's IpCallLeg interface passes the result of the call being answered back to its callback object. This message is then forwarded via another message (not shown) to the object implementing the IpAppLogic interface.

10:
A UICall object is created and associated with the just created call leg.

11:
This message is used to inform party A that the call is being routed to party B.

12:
An indication that the dialogue with party A has commenced is returned via message 13 and eventually forwarded via another message (not shown) to the object implementing the IpAppLogic interface.

13:
This message instructs the object implementing the IpMultiPartyCall interface to create a call leg for customer B.

14:
Assuming that the criteria for creating a second object implementing the IpCallLeg interface is met, it is created.

15:
This message requests the call leg for customer B to inform the application when the call leg answers the call.

16:
The call is then routed to the call leg.

17:
Assuming the call is answered, the object implementing party B's IpCallLeg interface passes the result of the call being answered back to its callback object. This message is then forwarded via another message (not shown) to the object implementing the IpAppLogic interface.

18:
This message then instructs the object implementing the IpUICall interface to stop sending announcements to party A.

19:
The application deassigns the call. This will also deassign the associated user interaction.

Note: Using MPCCS this 2-party, application initiated call has required 13 application requests and resulted in 3 indications to the application.

Although the examples from the existing 120070 are not identical, nevertheless it is clear that there is an added level of complexity to the application developer when using MPCCS to control simple 2 party calls for the same type of application. AePONA believe that this complexity is not warranted and may result in slower adoption of the Parlay / OSA APIs in favour of simpler alernatives.

Breaking the inheritance between MPCCS and GCCS is seen as an essential step forward for the OSA call control work, however AePONA believe that this should not mean that we abandon the principle of providing a simple call control model.

