Page 1
Draft prETS 300 ???: Month YYYY

Page 3

Temporary document N5-010167
Joint 3GPP TSG_CN5/ ETSI SPAN 12
20 February 2001
Antwerp, Belgium

Source:
Telcordia

Title:
Questions on new Call(Leg) State Transition Diagrams

Date:
5 March 2001

Document for:
API for Open Service Access.
Agenda item:

Introduction

Prior to the meeting two contributions were submitted that discuss a new STD for the Call and CallLeg objects: N5-010114 and N5-010124. These contributions were a result from the ad-hoc alignment meeting in Antwerp. Telcordia submitted a proposal to the earlier Antwerp meeting, that proposal was derived from earlier Parlay and JAIN alignment sessions and JAIN experience. This contribution lists some questions raised by Telcordia regarding the named contributions. Please answer the questions and modify the contributions accordingly, if needed.

General

In general, the STDs could benefit from a legend. This legend might explain why some transition arc labels have double quotes, are prefixed by a ‘^’, or look like method identifiers. Please consider to take N5-010168 as an example.

The STDs will be primarily read by developers that wish to build services against the API. The API is itself causes state transitions. Therefore methods find in the API should be used t o show the state transitions they cause. The API’s methods, however, are not the only cause of state transitions. Other causes for state transitions are events from the underlying network. Furthermore, certain state state transitions are notified to applications that have registered an interest in them (i.e. through call-backs). Please make sure all these causes for state transitions are mentioned, possoblly showing the parameter (e.g. in case initial event notification). Please remove any other, not-relevant, information (e.g. the number of calllegs in a call).

CallLeg State Transition Diagrams

Please consider removing the transition from NETORK_RELEASED to IDLE. When taking this transition, a call object can be reused for a new call. The merits gained from not instantiating a new call object for setting up a new call is debatable. The complication added to the API is substantial. This type of transitions do not allow for proper object oriented programming. As such this API does not promote developing fine grained, often reusable applications.

Please label any transition to the sink with the deassignCall method.

Please combine FAULTY, NETWORK_RELEASED, APPLICATION_RELEASED in INVALID state (the name for this combined state was chosen to align with JAIN JCC). The transitions from these states to the sink are caused by deassignCall or information retrieval conditions. The inbound transitions come from IDLE (error condition) or ACTIVE. The transition from ACTIVE is either due to the network release of all call legs or due to the application calling release.

New STD for Multi-party Call object

Remark one is unclear, please elaborate

Remark two should be specified in the call STD contribution. Assumed is that something along these lines is intended: “If an application calls ‘MPCall.release(…)’, then all attached call legs will be released possibly calling MPCallLeg.release(…), followed by MPCallLeg.deasignCallLeg(…).”

Remark four seems to indicate the definition of another API, with the method “internalSetState(…)”. Defining an API that seems to be internal should be discouraged. Perhaps this method is a pseudo method? In the STD transitions labeled ‘internalSetState(“CallState”)’ cause transitions, please explain these transitions and the use of the parameter. Assuming that a convention was applied to distinguish between state transitions in response to network events, it is assumed that these labels should be enclosed in double quotes.

In response to state transitions, events are send to the application. Please show which events are send in response to which state transitions. It is assumed that the ‘^’ notation can be used.

On the state COLLECT_ADDRESS a transition can be found that loops and is labeled: ‘getMoreDialledDigitsReq(…)’. Please not that as there is no state transition (from COLLECT_ADDRESS to COLLECT_ADDRESS), there is no event send to the application.

Can an application supply the additional digits? (in response to ‘getMoreDialledDigitsReq(…)’) How does an application learn that a call leg needs more addressing information to complete?

Please change the transition arc from IDLE to ANALYSE_ADDRESS into IDLE to COLLECT_ADDRESS.

Please change the definition and state name of COLLECT_ADDRESS into ADDRESS_COLLECTED.

Please change the definition and state name of ANALYSE_ADDRESS into ADDRESS_ANALYSED.

In 4.1.1.6 it is stated that the remote party plays a role in the authorization process, however, at this stage the remote party is not yet known.

In 4.1.1.8 it is stated that in this stage the address of the remote party can be translated. Please remove the mentioning of the application that can register for this event. Also, what API method is provided to change the remote party’s address? Is there a ‘setDestinationAddress(…)’?

Please consider to rename the state PROGRESSING to CALL_DELIVERY. Please consider using the following definition for this state:

Entry criteria: This state is entered on the originating side when the routing address and call type are available. On the terminating side this state is entered when the termination attempt to the address is authorized.

Function: On the originating side this state involves selecting of the route as well as sending an indication of the desire to set up a call to the specified called party. On the terminating side this state is involves checking the busy/idle status of the terminating access and also informing the terminating message of an incoming call.

Exit criteria: This state is exited on the originating side when criteria such as receipt of an alerting indication or call accepted is received from the terminating call portion. This state is exited on the terminating side when the terminating party is being alerted or the call is accepted.

Does “createAndRouteCallLeg” cause a transition in this STD? Please consider using overloading “createCallLeg(…)” instead of the methods “createAndRouteCallLeg(…)”. If mapping issues between Visual Basic and UML prevent overloading, please introduce a mapping document. Needless to say that overloading is healthy OO practice …

How to learn the status of media (attached or not)?

Along the lines of the comments on the call STD, please combine APPLICATION_RELEASED and NETWORK_RELEASED. Furthermore, allow a transition from every state to FAULTY.

	* Contact:
	Dirk De Gelder

Frans Haerens
	(+32-3-240.42.12 / * dirk.de_gelder@alcatel.be
(+32-3-240.90.34 / * frans.haerens@alcatel.be

C:\Documents and Settings\zoicas\Desktop\contrib.stds.doc

