3GPP TSG_CN WG5#9

Tdoc N5-010166

Antwerp, Belgium

5th – 7th March, 2001

Source:
Sun Microsystems
Title:
Handling Exceptions in 120070
Agenda item:

Document for:
DISCUSSION/APPROVAL
1. Introduction

At the Phoenix meeting it was decided that the entire OMG-IDL parts of document 120070 handle exceptions in a more granular manner. Contributions showing how the OMG-IDL could be written to handle exceptions this way were invited for the Helsinki meeting and also again for the Antwerp meeting. This contribution uses a method in the MultiParty Call Control Service as an example service of how exceptions should be expressed in OMG-IDL. If this contribution is accepted, it is expected that this contribution be used as an example in the redefinition of exceptions in OMG-IDL for all of the framework and services in 120070.

2. Granular exceptions in IDL

By way of example, this section shows how a typical method written in IDL currently expresses exceptions. The method is then analysed to determine what are the actual possible exceptions that the method can throw, and then the IDL is re-written to express the results of this analysis.

The example method used in this example is the routeReq method found in the MultiParty Call Leg interface class as identified in 120070-4 V0.0.2 (2001/02). The way it is currently expressed is:

void routeReq (in TpSessionID callLegSessionID)

raises (TpGeneralException,TpGCCSException);

The TpGeneralException and TpGCCSException theoretically make it possible for the method to generate the following exceptions:

For:

exception TpGeneralException {

};

const TpInt32 P_INVALID_SIGNATURE = 18;

const TpInt32 P_ACCESS_DENIED = 20;

const TpInt32 P_APPLICATION_NOT_ACTIVATED = 49;

const TpInt32 P_INVALID_AGREEMENT_TEXT = 3;

const TpInt32 P_INVALID_ASSIGNMENT_ID = 9;

const TpInt32 P_INVALID_AUTH_CAPABILITY = 2;

const TpInt32 P_INVALID_DATE_TIME_FORMAT = 16;

const TpInt32 P_INVALID_DOMAIN_ID = 1;

const TpInt32 P_INVALID_EVENT_TYPE = 7;

const TpInt32 P_INVALID_INTERFACE_NAME = 5;

const TpInt32 P_INVALID_INTERFACE_TYPE = 24;

const TpInt32 P_INVALID_PARAMETER = 10;

const TpInt32 P_INVALID_PARAMETER_VALUE = 11;

const TpInt32 P_INVALID_PROPERTY = 21;

const TpInt32 P_INVALID_SERVICE_ID = 6;

const TpInt32 P_INVALID_SERVICE_TOKEN = 19;

const TpInt32 P_INVALID_SIGNING_ALGORITHM = 4;

const TpInt32 P_METHOD_NOT_SUPPORTED = 22;

const TpInt32 P_NO_ACCEPTABLE_AUTH_CAPABILITY = 23;

const TpInt32 P_NO_CALLBACK_ADDRESS_SET = 17;

const TpInt32 P_PARAMETER_MISSING = 12;

const TpInt32 P_RESOURCES_UNAVAILABLE = 13;

const TpInt32 P_RESULT_INFO_UNDEFINED = 0;

const TpInt32 P_SERVICE_ACCESS_DENIED = 26;

const TpInt32 P_SERVICE_ACCESS_TYPE = 25;

const TpInt32 P_SERVICE_NOT_ENABLED = 8;

const TpInt32 P_TASK_CANCELLED = 15;

const TpInt32 P_TASK_REFUSED = 14;

const TpInt32 P_USER_NOT_SUBSCRIBED = 48;

const TpInt32 P_USER_PRIVACY = 50;

For:

exception TpGCCSException {

};

const TpInt32 P_GCCS_SERVICE_INFORMATION_MISSING = 256;

const TpInt32 P_GCCS_SERVICE_FAULT_ENCOUNTERED = 257;

const TpInt32 P_GCCS_UNEXPECTED_SEQUENCE = 258;

const TpInt32 P_GCCS_INVALID_ADDDRESS = 259;

const TpInt32 P_GCCS_INVALID_CRITERIA = 260;

const TpInt32 P_GCCS_INVALID_NETWORK_STATE = 261;

Clearly, many of these exceptions should never be thrown, so after analysis only the following exceptions are suggested as candidates that should be thrown:

const TpInt32 P_INVALID_SIGNATURE = 18;

const TpInt32 P_METHOD_NOT_SUPPORTED = 22;

const TpInt32 P_PARAMETER_MISSING = 12;

const TpInt32 P_RESOURCES_UNAVAILABLE = 13;

const TpInt32 P_TASK_CANCELLED = 15;

const TpInt32 P_TASK_REFUSED = 14;

const TpInt32 P_GCCS_INVALID_ADDDRESS = 259;

const TpInt32 P_GCCS_INVALID_NETWORK_STATE = 261;

Writing and throwing these exceptions should be expressed in IDL as follows:

exception TpInvalidSignatureException {

};

exception TpMethodNotSupportedException {

};

exception TpParameterMissingException {

};

exception TpResourcesUnavailableException {

};

exception TpTaskCancelledException {

};

exception TpTaskRefusedException {

};

exception TpInvalidAddressException {

};

exception TpInvalidNetworkStateException {

};

Assuming that all methods can throw standard CORBA-defined exceptions (org.omg.CORBA.SystemException) then the following can be accomodated by org.omg.CORBA.SystemException (see Appendix A):

exception TpInvalidSignatureException {

};

exception TpMethodNotSupportedException {

};

exception TpParameterMissingException {

};

exception TpResourcesUnavailableException {

};

Leaving the method signature as follows:

void routeReq (in TpSessionID callLegSessionID)

raises
(TpTaskCancelledException,

 TpTaskRefusedException,

 TpInvalidAddressException,

 TpInvalidNetworkStateException);

It is also suggestest that the above exceptions inherit from org.omg.CORBA.UserException.

3. Automatic generation of IDL

It is acknowledged that the proposed changes would require a considerable amount of effort each time the UML specifications are updated, as this is one place where the IDL deviates from the UML and hence the IDL would always require manual update. To ease this burden it is suggested that the UML be changed to support exceptions from the onset. This way, when the UML undergoes update, the IDL can be automatically generated.

Appendix A. org.omg.CORBA.SystemException

The following are standard CORBA system exceptions:

 exception UNKNOWN

// the unknown exception

 exception BAD_PARAM

// an invalid parameter was passed

 exception NO_MEMORY
 // dynamic memory allocation failure

 exception IMP_LIMIT

// violated implementation limit

 exception COMM_FAILURE
// communication failure

 exception INV_OBJREF

// invalid object reference

 exception NO_PERMISSION

// no permission for attempted op.

 exception INTERNAL

// ORB internal error

 exception MARSHAL
// error marshaling param/result

 exception INITIALIZE

// ORB initialization failure

 exception NO_IMPLEMENT
// operation implementation unavailable

 exception BAD_TYPECODE
// bad typecode

 exception BAD_OPERATION
// invalid operation

 exception NO_RESOURCES
// insufficient resources for req.

 exception NO_RESPONSE

// response to req. not yet available

 exception PERSIST_STORE

// persistent storage failure

 exception BAD_INV_ORDER
// routine invocations out of order

 exception TRANSIENT

// transient failure – reissue request

 exception FREE_MEM

// cannot free memory

 exception INV_IDENT

// invalid identifier syntax

 exception INV_FLAG

// invalid flag was specified

 exception INTF_REPOS

// error accessing interface repository

 exception BAD_CONTEXT

// error processing context object

 exception OBJ_ADAPTER

// failure detected by object adapter

 exception DATA_CONVERSION
// data conversion error

 exception OBJECT_NOT_EXIST
// non-existent object, delete reference

 exception TRANSACTION_REQUIRED
// transaction required

 exception TRANSACTION_ROLLEDBACK
// transaction rolled back

 exception INVALID_TRANSACTION
// invalid transaction

 exception INV_POLICY

// invalid policy

 exception CODESET_INCOMPATIBLE
// incompatible code set

--- End of Contribution ---

Page 2

