3GPP TSG_CN5 (Open Service Architecture – OSA)

Meeting #10, Antwerp, BELGIUM, 5 – 7 March 2001
Tdoc N5-010129

Source:
Ericsson

Title:
Common data IDL
Agenda Item:

Document for:
Approval
Category:
Report
Work Item ID:
OSA
Doc Summary:

Specs involved:

1 Introduction

This contribution outlines the common data IDL, generated from the UML model. The IDL should be captured in a file called osa.idl.

2 osa.idl

//Source file: osa.idl

#ifndef __OSA_DEFINED

#define __OSA_DEFINED

/* CmIdentification

 %X% %Q% %Z% %W% */

module org {

module open_service_access {

/* Defines a Boolean data type */

typedef boolean TpBoolean;

/* Defines a single precision real number */

typedef float TpFloat;

/* Defines a signed 32 bit integer. */

typedef long TpInt32;

/* Invalid digital signature */

/* Defines a Byte string, comprising length and data. The length must be at least a 32 bit integer. */

typedef string TpLongString;

/* Defines a Byte string. */

typedef string TpString;

typedef TpInt32 TpAssignmentID;

/* This data type is a TpInt32 representing a time interval in milliseconds. A value of "-1" defines infinite duration and a value of "-2" represents a default duration. */

typedef TpInt32 TpDuration;

/* Defines a network unique session ID. Parlay uses this ID to identify sessions, e.g. call or call leg sessions, within an object implementing an interface capable of handling multiple sessions. For the different parlay services, the sessionIDs are unique only in the context of a service manager instantiation (e.g., within the context of one generic call control manager). As such if an application creates two instances of the same service manager it shall as use different instantiations of the callback objects which implement the callback interfaces.

The session ID is identical to a TpInt32 type. */

typedef TpInt32 TpSessionID;

typedef sequence <TpSessionID> TpSessionIDSet;

const TpInt32 P_INVALID_SIGNATURE = 18;

/* The client is not currently authenticated with the framework */

const TpInt32 P_ACCESS_DENIED = 20;

/* An application is unauthorised to access information and request services with regards to users that have deactivated that particular application. */

const TpInt32 P_APPLICATION_NOT_ACTIVATED = 49;

/* Invalid agreement text */

const TpInt32 P_INVALID_AGREEMENT_TEXT = 3;

/* The assignment ID is invalid. */

const TpInt32 P_INVALID_ASSIGNMENT_ID = 9;

/* Invalid auth capability */

const TpInt32 P_INVALID_AUTH_CAPABILITY = 2;

/* Invalid date and time format provided */

const TpInt32 P_INVALID_DATE_TIME_FORMAT = 16;

/* Invalid domain ID */

const TpInt32 P_INVALID_DOMAIN_ID = 1;

/* Invalid event type */

const TpInt32 P_INVALID_EVENT_TYPE = 7;

/* Invalid interface name */

const TpInt32 P_INVALID_INTERFACE_NAME = 5;

/* The interface reference supplied by the client is the wrong type. */

const TpInt32 P_INVALID_INTERFACE_TYPE = 24;

/* The method has been called with an invalid parameter */

const TpInt32 P_INVALID_PARAMETER = 10;

/* A method parameter has an invalid value */

const TpInt32 P_INVALID_PARAMETER_VALUE = 11;

/* The framework does not recognise the property supplied by the client */

const TpInt32 P_INVALID_PROPERTY = 21;

/* Invalid service ID */

const TpInt32 P_INVALID_SERVICE_ID = 6;

/* The service token has not been issued, or it has expired. */

const TpInt32 P_INVALID_SERVICE_TOKEN = 19;

/* Invalid signing algorithm */

const TpInt32 P_INVALID_SIGNING_ALGORITHM = 4;

/* The method is not allowed or supported within the context of the current service agreement. */

const TpInt32 P_METHOD_NOT_SUPPORTED = 22;

/* An authentication mechanism, which is acceptable to the framework, is not supported by the client */

const TpInt32 P_NO_ACCEPTABLE_AUTH_CAPABILITY = 23;

/* The requested method has been refused because no callback address is set */

const TpInt32 P_NO_CALLBACK_ADDRESS_SET = 17;

/* A mandatory parameter has not been specified in the method call */

const TpInt32 P_PARAMETER_MISSING = 12;

/* The required resources in the network are not available */

const TpInt32 P_RESOURCES_UNAVAILABLE = 13;

/* No further information present */

const TpInt32 P_RESULT_INFO_UNDEFINED = 0;

/* The client application is not allowed to access this Parlay service. */

const TpInt32 P_SERVICE_ACCESS_DENIED = 26;

/* The framework does not support the type of access interface requested by the client. */

const TpInt32 P_SERVICE_ACCESS_TYPE = 25;

/* The service ID does not correspond to a service that has been enabled */

const TpInt32 P_SERVICE_NOT_ENABLED = 8;

/* The requested method has been cancelled */

const TpInt32 P_TASK_CANCELLED = 15;

/* The requested method has been refused */

const TpInt32 P_TASK_REFUSED = 14;

/* An application is unauthorised to access information and request services with regards to users that are not subscribed to the application. */

const TpInt32 P_USER_NOT_SUBSCRIBED = 48;

/* An application is unauthorised to access information and request services with regards to users that have set their privacy flag regarding that particular service. */

const TpInt32 P_USER_PRIVACY = 50;

/* This data type is identical to a TpInt32. It specifies a number which identifies an individual event notification enabled by the application. */

exception TpGeneralException {

TpInt32 exceptionType;

};

/* Defines the reasons why an address is invalid. */

enum TpAddressError {

P_ADDRESS_INVALID_UNDEFINED,

/* Undefined error */

P_ADDRESS_INVALID_MISSING,

/* Mandatory address not present */

P_ADDRESS_INVALID_MISSING_ELEMENT,

/* Mandatory address element not present */

P_ADDRESS_INVALID_OUT_OF_RANGE,

/* Address is outside of the valid range */

P_ADDRESS_INVALID_INCOMPLETE,

/* Address is incomplete */

P_ADDRESS_INVALID_CANNOT_DECODE

/* Address cannot be decoded. */

};

/* Defines the address plan (or numbering plan) used. It is also used to indicate whether an address is actually defined in a TpAddress data element. */

enum TpAddressPlan {

P_ADDRESS_PLAN_NOT_PRESENT,

/* No Address Present */

P_ADDRESS_PLAN_UNDEFINED,

/* Undefined */

P_ADDRESS_PLAN_IP,

/* IP */

P_ADDRESS_PLAN_MULTICAST,

/* Multicast */

P_ADDRESS_PLAN_UNICAST,

/* Unicast */

P_ADDRESS_PLAN_E164,

/* E.164 */

P_ADDRESS_PLAN_AESA,

/* ASEA */

P_ADDRESS_PLAN_URL,

/* URL */

P_ADDRESS_PLAN_NSAP,

/* NSAP */

P_ADDRESS_PLAN_SMTP,

/* SMTP */

P_ADDRESS_PLAN_MSMAIL,

/* Microsoft Mail */

P_ADDRESS_PLAN_X400

/* X.400 */

};

/* Defines whether an address can be presented to an end user. */

enum TpAddressPresentation {

P_ADDRESS_PRESENTATION_UNDEFINED,

/* Undefined */

P_ADDRESS_PRESENTATION_ALLOWED,

/* Presentation Allowed */

P_ADDRESS_PRESENTATION_RESTRICTED,

/* Presentation Restricted */

P_ADDRESS_PRESENTATION_ADDRESS_NOT_AVAILABLE

/* Address not available for presentation */

};

/* Defines whether an address has been screened by the application or the network. */

enum TpAddressScreening {

P_ADDRESS_SCREENING_UNDEFINED,

/* Undefined */

P_ADDRESS_SCREENING_USER_VERIFIED_PASSED,

/* user provided address verified and passed */

P_ADDRESS_SCREENING_USER_NOT_VERIFIED,

/* user provided address not verified */

P_ADDRESS_SCREENING_USER_VERIFIED_FAILED,

/* user provided address verified and failed */

P_ADDRESS_SCREENING_NETWORK

/* Application/Network provided address

(note that even though the application may provide the address to the gateway, from the end-user point of view it is still regarded as a network provided address) */

};

/* Defines the Sequence of Data Elements that specify an address. */

struct TpAddress {

/* Defines the address plan (or numbering plan) used. It is also used to indicate whether an address is actually defined in a TpAddress data element. */

TpAddressPlan Plan;

/* The address string indicates the actual address. The interpretation depends on the address plan used.

P_ADDRESS_PLAN_NOT_PRESENT - Not applicable

P_ADDRESS_PLAN_UNDEFINED - Not applicable

P_ADDRESS_PLAN_IP - For Ipv4 the dotted quad notation is used. Also for IPv6 the dotted notation is used. The address can optionally be followed by a port number separated by a colon. Exampe: "127.0.0.1:42"

P_ADDRESS_PLAN_MULTICAST - An Ipv4 class D address or Ipv6 equivalent in dotted notation. Example: "224.0.0.0"

P_ADDRESS_PLAN_UNICAST - A non multicast or broadcast IP address in dotted notation. Example: "127.0.0.1"

P_ADDRESS_PLAN_E164 - An international number without the international accesscode, including the country code and excluding the leading zero of the area code. Example: "31161249111"

P_ADDRESS_PLAN_AESA - The ATM End System Address in binary format (40 bytes) Example: 01234567890ABCDEF01234567890ABCDEF01234567

P_ADDRESS_PLAN_URL - A uniform resource locator as defined in IETF RFC 1738. Example: "http://www.parlay.org"

P_ADDRESS_PLAN_NSAP - The binary representation of the Network Service Access Point. Example: 490001AA000400010420

P_ADDRESS_PLAN_SMTP - An e-mail address as specified in IETF RFC822. Example: "webmaster@parlay.org"

P_ADDRESS_PLAN_MSMAIL - Identical to P_ADDRESS_PLAN_SMTP. Example: "Bill.Gates@microsoft.com"

P_ADDRESS_PLAN_X400 - The X400 address structured as a set of attibute value pairs separated by semicolons. Example: "C=nl;ADMD= ;PRMD=uninet;O=parlay;S=Doe;I=S;G=John' */

TpString AddrString;

TpString Name;

/* Defines whether an address can be presented to an end user. */

TpAddressPresentation Presentation;

/* Defines whether an address can be presented to an end user. */

TpAddressScreening Screening;

/* A possible subAddress associated with the address. */

TpString SubAddressString;

};

/* This type is identical to TpAddress with the difference that the AddrString can contain wildcards.

Two wildcards are allowed: * which matches zero or more character and ? which matches exactly one character. The wildcards are only allowed at the end or at the beginning of the AddrString.

Some examples for E164 addresses:

123 : matches specifies number.

123* : all numbers starting with 123 (including 123 itself)

123??*: all numbers starting with 123 and at least 5 digits long

123???: all numbers starting with 123 and exactly 6 digits long

For e-mail style addresses, the wildcards make more sense at the beginning of the AddrString:

*@parlay.org: all email addresses in the parlay organisation

The following addressranges are illegal:

1?3

1*3

?123*

Legal occurences of the '*' and '?' characters in addrString should be escaped by a '\' character. To specify a '\' character '\\' must be used. */

typedef TpAddress TpAddressRange;

typedef TpAddress TpAddressRef;

/* Defines a Numbered Set of Data Elements of TpAddress. */

typedef sequence <TpAddress> TpAddressSet;

/* This data type is identical to a TpString. It specifies price information. This is defined as the string of characters (digits) in the following format:

DDDDDD.DD */

typedef TpString TpPrice;

/* This data type is identical to a TpString. It specifies the data in accordance with International Standard ISO 8601. (I.e., "YYYY-MM-DD" for local time or "YYYY-MM-DDZ" for Universal Time) */

typedef TpString TpDate;

/* It specifies the data in accordance with International Standard ISO 8601. (i.e.," YYYY-MM-DD HH:MM:SS.mmm" for local time or "YYYY-MM-DD HH:MM:SS.mmmZ" for Universal Time) */

typedef TpString TpDateAndTime;

/* It specifies the data in accordance with International Standard ISO 8601 (i.e., "YYYY-MM-DD HH:MM:SS.mmm" for local time or "YYYY-MM-DD HH:MM:SS.mmmZ" for Universal Time) */

typedef TpString TpTime;

/* This data type is identical to a TpString and contains a URL address. The usage of this type is distinct from TpAddress, which can also hold a URL. The latter contains a user address which can be specified in many ways: IP, e-mail, URL etc. On the other hand, the TpURL type does not hold the address of a user and always represents a URL. This type is used in user interaction and defines the URL of the test or stream to be sent to an end-user. It is therefore inappropriate to use a general address here. */

typedef TpString TpURL;

/* This data type is identical to a TpString, and defines the language. In case an indication for the language is not needed an empty string must be used. In other cases valid language strings are defined in ISO 639. */

typedef TpString TpLanguage;

/* Defines the type of AoC data. */

enum TpCallAoCOrderCategory {

P_CHARGE_ADVICE_INFO,

/* Set of GSM Charge Advice Information elements according to 3G TS 22.024 */

P_CHARGE_PER_TIME,

/* Charge per time */

P_CHARGE_NETWORK

/* Operator specific charge plan specification, e.g. charging table name / charging table entry */

};

/* Defines the Sequence of Data Elements that specify theCharging Advice Information elements according to 3G TS 22.024. */

struct TpCAIElements {

TpInt32 UnitsPerInterval;

TpInt32 SecondsPerTimeInterval;

TpInt32 ScalingFactor;

TpInt32 UnitIncrement;

TpInt32 UnitsPerDataInterval;

TpInt32 SegmentsPerDataInterval;

TpInt32 InitialSecsPerTimeInterval;

/* Initial secs per time interval */

};

/* Defines the Sequence of Data Elements that specify the two sets of Advice of Charge parameters. The first set defines the current tariff. The second set may be used in case of a tariff switch in the network. */

struct TpChargeAdviceInfo {

/* Current tariff */

TpCAIElements CurrentCAI;

/* Next tariff after tariff switch */

TpCAIElements NextCAI;

/* Next tariff after tariff switch */

};

/* Defines the Sequence of Data Elements that specify the time based charging information. */

struct TpChargePerTime {

TpInt32 InitialCharge;

TpInt32 CurrentChargePerMinute;

TpInt32 NextChargePerMinute;

/* Next tariff (in currency units * 0.0001) after tariff switch

Only used in setAdviceOfCharge() */

};

/* Defines the Tagged Choice of Data Elements that specify the charge plan for the call */

union TpAoCOrder switch(TpCallAoCOrderCategory) {

case P_CHARGE_ADVICE_INFO: TpChargeAdviceInfo ChargeAdviceInfo;

case P_CHARGE_PER_TIME: TpChargePerTime ChargePerTime;

case P_CHARGE_NETWORK: TpString NetworkCharge;

};

/* Defines the Sequence of Data Elements that specify the Advice Of Charge information to be sent to the terminal. */

struct TpAoCInfo {

/* Charge order */

TpAoCOrder ChargeOrder;

TpString Currency;

/* Currency unit according to ISO-4217:1995 */

};

/* All application, framework and service interfaces inherit from the following interface. This API Base Interface does not provide any additional methods */

interface IpInterface {

};

/* All service interfaces inherit from the following interface. */

interface IpService : IpInterface {

/* This method specifies the reference address of the callback interface that a service uses to invoke methods on the application.

@roseuid 3976A28602F0 */

void setCallback (

in IpInterface appInterface
//Specifies a reference to the application interface, which is used for callbacks

)

raises (TpGeneralException);

/* This method specifies the reference address of the application's callback interface that a service uses for interactions associated with a specific session ID: e.g. a specific call, or call leg.

@roseuid 3976A28602FA */

void setCallbackWithSessionID (

in IpInterface appInterface,
//Specifies a reference to the application interface, which is used for callbacks

in TpSessionID sessionID
//Specifies the session for which the service can invoke the application's callback interface.

)

raises (TpGeneralException);

};

typedef IpInterface IpInterfaceRef;

typedef IpService IpServiceRef;

};

};

#endif
� Contact information: Ard-Jan Moerdijk, Ericsson Eurolab Netherlands, tel: +31 161242777, e-mail: Ard.Jan.Moerdijk@eln.ericsson.se

