3GPP TSG_CN5 (Open Service Architecture – OSA)

Meeting #9, Helsinki, FINLAND, 6 – 8 February 2001
Tdoc N5-010073

Source:
Ericsson, Alcatel

Title:
Resolution on Call owner owner discussion.
Agenda Item:

Document for:
Approval
Category:

Work Item ID:

Doc Summary:

Specs involved:

Introduction

During the discussion on document N5-010038 we concluded that cases exist where the SCS does not know the party that can be addressed as call owner (e.g. triggering on mid-call event case). The proposal is then to still remove all indications in the specification of a “controlling-party” and make clear that the semantics of the release() operation on the call interface is to release the complete call and the release() operation on the CallLeg interface is to release associated party in the call. For the latter case when this party was the call owner, the complete call will be released as well and applications will be informed by callEnded().

Impact on the specification

The following shows how the specification could be improved.

4.1.1 Interface Class IpAppMultiPartyCallControlManager
Inherits from: IpInterface
The Multi-Party call control manager application interface provides the application call control management functions to the Multi-Party call control service.
<<Interface>>

IpAppMultiPartyCallControlManager

reportNotification (callReference : in TpCallIdentifier, callLegReference : in TpCallLegIdentifier, notificationInfo : in TpCallNotificationInfo, assignmentID : in TpAssignmentID, appCall : out IpAppCallRefRef) : TpResult

callAborted (callReference : in TpSessionID) : TpResult

callNotificationInterrupted () : TpResult

callNotificationContinued () : TpResult

callOverloadEncountered (assignmentID : in TpAssignmentID) : TpResult

callOverloadCeased (assignmentID : in TpAssignmentID) : TpResult

Method

reportNotification()

This method notifies the application of the arrival of a call-related event.

Parameters

callReference : in TpCallIdentifier

Specifies the reference to the call interface to which the notification relates.
callLegReference : in TpCallLegIdentifier

Specifies the reference to the callLeg interface to which the notification relates.
notificationInfo : in TpCallNotificationInfo

Specifies data associated with this event.
assignmentID : in TpAssignmentID

Specifies the assignment id which was returned by the createNotification() method. The application can use assignment id to associate events with event specific criteria and to act accordingly.
appCall : out IpAppCallRefRef

Specifies a reference to the application interface which implements the callback interface for the new call.
Raises

TpGCCSException,TpGeneralException
....

4.1.2 Interface Class IpMultiPartyCall
Inherits from: IpService
The Multi-Party Call provides the possibility to control the call routing, to request information from the call, control the charging of the call, to release the call and to supervise the call. It also gives the possibiltiy to manage call legs explicitly. Via the legs the application can also influence the media in multi-media calls. If an application uses the multi-party call control interface it may call the createAndRouteCallLeg() operation several times without disconnecting already connected destination. Therefore, an application may implicitly create more then one (destination) call leg. However, there can only be at most one call leg that owns the call ("call owner") at any time. In contrast to the conference service it is not possible to move legs to another call object.
<<Interface>>

IpMultiPartyCall

getCallLegs (callSessionID : in TpSessionID, callLegList : out TpCallLegIdentifierSetRef) : TpResult

createCallLeg (callSessionID : in TpSessionID, appCallLeg : in IpAppCallLegRef, targetAddress : in TpAddress, originatingAddress : in TpAddress, originalCalledAddress : in TpAddress, redirectingAddress : in TpAddress, appInfo : in TpCallAppInfoSet, callLeg : out TpCallLegIdentifierRef) : TpResult

createAndRouteCallLeg (callSessionID : in TpSessionID, eventsRequested : in TpCallEventRequestSet, targetAddress : in TpAddress, originatingAddress : in TpAddress, originalDestinationAddress : in TpAddress, redirectingAddress : in TpAddress, appInfo : in TpCallAppInfoSet, appLegInterface : in IpAppCallLegRef, callLegReference : out TpCallLegIdentifierRef) : TpResult

release (callSessionID : in TpSessionID, cause : in TpCallReleaseCause) : TpResult

deassignCall (callSessionID : in TpSessionID) : TpResult

getCallInfoReq (callSessionID : in TpSessionID, callInfoRequested : in TpCallInfoType) : TpResult

setCallChargePlan (callSessionID : in TpSessionID, callChargePlan : in TpCallChargePlan) : TpResult

setAdviceOfCharge (callSessionID : in TpSessionID, aOCInfo : in TpAoCInfo, tariffSwitch : in TpDuration) : TpResult

superviseCallReq (callSessionID : in TpSessionID, time : in TpDuration, treatment : in TpCallSuperviseTreatment) : TpResult

getMoreDialledDigitsReq (callSessionID : in TpSessionID, length : in TpInt32) : TpResult

Method

getCallLegs()

This method requests the identification of the call leg objects associated with the call object. Returns the legs in the order of creation.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.
callLegList : out TpCallLegIdentifierSetRef

Specifies the call legs associated with the call. The set contains both the sessionIDs and the interface references.
Raises

TpGeneralException,TpGCCSException
Method

createCallLeg()

This method requests the creation of a new call leg object The call leg will be associated with the call, but not attached. The call leg can be attached to the call (using attachMedia) when the call leg is in the connected state (i.e. it has been answered).

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.
appCallLeg : in IpAppCallLegRef

Specifies the application interface for callbacks from the call leg created.
targetAddress : in TpAddress

Specifies the destination party to which the call should be routed.
originatingAddress : in TpAddress

Specifies the address of the originating (calling) party.
originalCalledAddress : in TpAddress

Specifies the original address to which the call was initiated.
redirectingAddress : in TpAddress

Specifies the last address from which the call was redirected.
appInfo : in TpCallAppInfoSet

Specifies application-related information pertinent to the call leg (such as alerting method, tele-service type, service identities and interaction indicators).
callLeg : out TpCallLegIdentifierRef

Specifies the interface and sessionID of the call leg created.
Raises

TpGeneralException,TpGCCSException
Method

createAndRouteCallLeg()

This operation requests creation and routing of a new callLeg. In case the connection to the destination party is established successfully the CallLeg is attached to the call, i.e. no explicit attachMedia() operation is needed. Requested events will be reported on the IpAppCallLeg interface. This interface the application must provide through the appLegInterface parameter.

The extra address information (i.e., originalDestinationAddress, redirectingAddress, originatingAddress) is optional. If not present (i.e., the plan is set to P_ADDRESS_PLAN_NOT_PRESENT), the information provided in corresponding addresses from the route is used, otherwise the network or gateway provided numbers will be used.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.
eventsRequested : in TpCallEventRequestSet

Specifies the event specific criteria used by the application to define the events required. Only events that meet these criteria are reported. Examples of events are "adress analysed", "answer", "release".

targetAddress : in TpAddress

Specifies the destination party to which the call should be routed.
originatingAddress : in TpAddress

Specifies the address of the originating (calling) party.
originalDestinationAddress : in TpAddress

Specifies the original destination address of the call.
redirectingAddress : in TpAddress

Specifies the address from which the call was last redirected.
appInfo : in TpCallAppInfoSet

Specifies application-related information pertinent to the call (such as alerting method, tele-service type, service identities and interaction indicators).

appLegInterface : in IpAppCallLegRef

Specifies a reference to the application interface that implements the callback interface for the new call leg. Requested events will be reported by the eventReportRes() operation on this interface.
callLegReference : out TpCallLegIdentifierRef

Specifies the reference to the CallLeg interface that was created.
Raises

TpGCCSException,TpGeneralException

...

4.1.3 Interface Class IpCallLeg
Inherits from: IpService
The call leg interface represents the logical call leg associating a call with an address. The call leg tracks its own states and allows charging summaries to be accessed. The leg represents the signalling relationship between the call and an address. An application that uses the IpCallLeg interface to set up connections has more control, e.g. by defining leg specific event request and can obtain call leg specific report and events.
<<Interface>>

IpCallLeg

route (callLegSessionID : in TpSessionID) : TpResult

eventReportReq (callLegSessionID : in TpSessionID, eventsRequested : in TpCallEventRequestSet) : TpResult

release (callLegSessionID : in TpSessionID, cause : in TpCallReleaseCause) : TpResult

getInfoReq (callLegSessionID : in TpSessionID, callLegInfoRequested : in TpCallLegInfoType) : TpResult

getCall (callLegSessionID : in TpSessionID, callReference : out TpCallIdentifierRef) : TpResult

attachMedia (callLegSessionID : in TpSessionID) : TpResult

detachMedia (callLegSessionID : in TpSessionID) : TpResult

getLastRedirectedAddress (callLegSessionID : in TpSessionID, redirectingAddress : out TpAddressRef) : TpResult

continueProcessing () : void

Method

route()

This operation is used to setup a connection to a party. In case the connection to the destination party is established successfully the CallLeg is not yet attached to the call, i.e. an explicit attachMedia() operation is still needed. Requested events will be reported by the eventReportRes() operation on the IpAppCallLeg interface.

If the application developer does not want to deal with the redirectingAddress, originalDestinationAddress and originatingAddress than these parameter may be set to unavailable (by setting the plan to P_ADDRESS_PLAN_NOT_PRESENT) for convenience. In this case information provided when routing to the origination will be used if applicable. Otherwise network or gateway provided addresses will be used.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.
Raises

TpGeneralException,TpGCCSException
Method

eventReportReq()

This asynchronous method sets, clears or changes the criteria for the events that the call leg object will be set to observe.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.
eventsRequested : in TpCallEventRequestSet

Specifies the event specific criteria used by the application to define the events required. Only events that meet these criteria are reported. Examples of events are "address analysed", "answer", "release".
Raises

TpGeneralException,TpGCCSException
Method

release()

This method requests the release of the call leg. If successful, the associated address (party) will be released from the call, and the call leg deleted. Note that in some cases releasing the party may lead to release of the complete call in the network. The application will be informed of this with callEnded().

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.
cause : in TpCallReleaseCause

Specifies the cause of the release.
Raises

TpGeneralException,TpGCCSException
Method

getInfoReq()

This asynchronous method requests information associated with the call leg to be provided at the appropriate time (for example, to calculate charging). Note: in the call leg information must be accessible before the objects of concern are deleted.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.
callLegInfoRequested : in TpCallLegInfoType

Specifies the call leg information that is requested.
Raises

TpGeneralException,TpGCCSException
Method

getCall()

This method requests the call associated with this call leg.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.
callReference : out TpCallIdentifierRef

Specifies the interface and sessionID of the call associated with this call leg.
Raises

TpGeneralException,TpGCCSException
Method

attachMedia()

This method requests that the call leg be attached to its call object. This will allow transmission on all associated bearer connections or media channels to and from other parties in the call. The call leg must be in the connected state for this method to complete successfully.

Parameters

callLegSessionID : in TpSessionID

Specifies the sessionID of the call leg to attach to the call.
Raises

TpGeneralException,TpGCCSException
Method

detachMedia()

This method will detach the call leg from its call, i.e., this will prevent transmission on any associated bearer connections or media channels to and from other parties in the call. The call leg must be in the connected state for this method to complete successfully.

Parameters

callLegSessionID : in TpSessionID

Specifies the sessionID of the call leg to detach from the call.
Raises

TpGeneralException,TpGCCSException
Method

getLastRedirectedAddress()

Queries the last address the leg has been redirected to.

Parameters

callLegSessionID : in TpSessionID

Specifies the call session ID of the call leg.
redirectingAddress : out TpAddressRef

Specifies the last address where the call leg was redirected to.
Method

continueProcessing()

This operation continues processing of the call. Applications can invoke this operation after call processing was interrupted due to detection of an event the application subscribed it's interest in.

Parameters

No Parameters were identified for this method

..

4.2 MultiParty Call Control Service State Transition Diagrams

4.2.1 State Transition Diagrams for IpMultiPartyCall

The state transition diagram shows the application view on the MultiParty Call object. The diagram is an extension to the state diagram of the Call object in the sense that more than 2 parties are allowed to participate in a call.

Figure : Application view on the MultiParty Call object

4.2.1.1 Active State

In this state a call between two parties is being setup or present. Refer to the substates for more details.
The application can request the gateway for a certain type of charging of the call by calling setCallChargePlan(). The application can request for charging related information by calling getCallInfoReq(). Furthermore the application can request supervision of the call by calling superviseCallReq(). It is also allowed to send Advice of Charge information by calling setAdviceOfCharge().
4.2.1.2 Network Released State

In this state the call has ended and the Gateway collects the possible call information requested with getCallInfoReq() and / or superviseCallReq(). In case the application has not requested additional call related information a transition to the Idle state is made immediately.
4.2.1.3 No Parties State

In this state the Call object has been created. The application can request the gateway for a certain type of charging of the call by calling setCallChargePlan(). The application can request for charging related information by calling getCallInfoReq(). Furthermore the application can request supervision of the call by calling superviseCallReq().
4.2.1.4 Application Released State

In this state the application has requested to release the Call object and the Gateway collects the possilbe call information requested with getCallInfoReq() and / or superviseCallReq(). In case the application has not requested additional call related information the Call object is destroyed immediately.
4.2.1.5 Finished State

In this state the call has ended and no call related information is to be send to the application. The application can only release the call object. Calling the deassignCall() operation has the same effect. Note that the application has to release the object itself as good OO practice requires that when an object was created on behalf of a certain entity, this entity is also responsible for destroying it when the object is no longer needed.
4.2.1.6 2 .. n Parties in Call State

In this state a successful connection between at least two parties is established.
In this state user interaction is possible, depending on the underlying network.
4.2.1.7 1 Party in Call State

In this state there is one party in the call.
In case the call originated from the network the application can now request for more digits in case the address is not yet complete or the application can request for a connection to a called party be established by calling the operation createAndRouteCallLeg().
In case the called party was reached by issueing a routing request, the application can request a connection to an additional party by calling the operation createAndRouteCallLeg() again.
Otherwise, it depends on the actual number of invoked (and still outstanding or successful) routing requests whether the application can still setup a connection to another called party. Also in this case the called party can disconnect before another party is reached. In this case depending on the actual configuration, either the call is ended or a transition is made back to the Routing to Destinations substate or the No Parties state, depending on whether there are outstanding routing requests.

In this state user interaction is possible.
4.2.1.8 Routing to Destination(s) State

In this state there is at least one outstanding routing request.

Conclusion

The proposal in this contribution outlines how the specification can be improved regarding the discussion on the call owner.

