Page 1
Draft prETS 300 ???: Month YYYY

Page 2

	3GPP TSG_CN5 (Open Service Architecture – OSA)

Meeting #9, Helsinki, FINLAND, 6 – 8 February 2001
	Tdoc N5-010059

Agenda Item:

Temporary document N5-ContIDLv1
Joint 3GPP TSG_CN5/ ETSI SPAN 3
06 till 08 February 2001
Helsinki, Finland

Source:
Alcatel, Ericsson

Title:
IDL for Multiparty Call Control Version 1

Date:

06 February 2001

Document for:
API for Open Service Access.
Agenda item:

1 Introduction

This document contains the IDL version 1 of the Multiparty Call Control as agreed at the last meeting in Scottsdale. It has defined all the data parameters in the UML. This is the output of generating CORBA IDL from the UML model for the Multiparty Call Control.

Section 2 contains the application and service interface UML object class diagrams on which the CORBA IDL has been based.

Section 3 contains the CORBA IDL generated from the UML model integrating the contributions agreed at the Scottsdale meeting. Also the data parameters have been included together with notification and event methods and associated parameters.

This contribution has been provided in order to compare the CORBA IDL Multiparty Call Control Version 2.

2.
Service and Application Interfaces for Multiparty Call Control

The figures 1 and 2 below contain the service and application interfaces on which the Multiparty Call Control UML version 1 has been based

Figure 1: Application Interfaces for Multiparty Call Control

[image: image1.wmf]IpMultiPartyCallControlManager

createCall()

createNotification()

destroyNotification()

setCallLoadControl()

changeNotification()

getNotification()

(from mpccs)

<<Interface>>

IpMultiPartyCall

getCallLegs()

createCallLeg()

routeReq()

release()

deassignCall()

getCallInfoReq()

setCallChargePlan()

setAdviceOfCharge()

getMoreDialledDigitsReq()

superviseCallReq()

(from mpccs)

<<Interface>>

1

0..n

IpCallLeg

route()

eventReportReq()

release()

getInfoReq()

getCall()

attachMedia()

detachMedia()

getLastRedirectedAddress()

(from mpccs)

<<Interface>>

1

0..n

IpService

setCallback()

setCallbackWithSessionID()

(from etsi)

<<Interface>>

This is

Version 1

Figure 2 Service Interfaces for Multiparty Call Control

[image: image2.wmf]IpAppMultiPartyCallControlManager

callAborted()

reportNotification()

callNotificationInterrupted()

callNotificationContinued()

callOverloadEncountered()

callOverloadCeased()

(from mpccs)

<<Interface>>

IpAppMultiPartyCall

routeRes()

routeErr()

getCallInfoRes()

getCallInfoErr()

superviseCallRes()

superviseCallErr()

callFaultDetected()

getMoreDialledDigitsRes()

getMoreDialledDigitsErr()

callEnded()

(from mpccs)

<<Interface>>

IpMultiPartyCallControlManager

createCall()

createNotification()

destroyNotification()

setCallLoadControl()

changeNotification()

getNotification()

(from mpccs)

<<Interface>>

IpMultiPartyCall

getCallLegs()

createCallLeg()

routeReq()

release()

deassignCall()

getCallInfoReq()

setCallChargePlan()

setAdviceOfCharge()

getMoreDialledDigitsReq()

superviseCallReq()

(from mpccs)

<<Interface>>

1

0..n

<<uses>>

1

0..n

IpAppCallLeg

eventReportRes()

eventReportErr()

getInfoRes()

getInfoErr()

(from mpccs)

<<Interface>>

1

0..n

<<uses>>

IpInterface

(from etsi)

<<Interface>>

IpCallLeg

route()

eventReportReq()

release()

getInfoReq()

getCall()

attachMedia()

detachMedia()

getLastRedirectedAddress()

(from mpccs)

<<Interface>>

1

0..n

This is

version 1

<<uses>>

3
CORBA IDL Version 1 for Multiparty Call Control

//Source file: D:/api2000rational/helsinki2001/Version1/mpccs.idl

#ifndef __MPCCS_DEFINED

#define __MPCCS_DEFINED

/* CmIdentification

 %X% %Q% %Z% %W% */

#include "osa.idl"

module org {

module etsi {

module cc {

module mpccs {

/* The application call leg interface is implemented by the client application developer and is used to handle responses and errors associated with requests on the call leg in order to be able to receive leg specific information and events. */

interface IpAppCallLeg : IpInterface {

/* This asynchronous method reports that an event has occurred that was requested to be reported (for example, a mid-call event, the party has requested to disconnect, etc.).

@roseuid 38B05E4902A9 */

TpResult eventReportRes (

in TpCallEventInfo eventInfo,
//Specifies data associated with this event.

in TpSessionID callLegSessionId
//Specifies the call leg session ID of the call leg on which the event was detected.

)

raises (TpGeneralException,TpGCCSException);

/* This asynchronous method indicates that the request to manage call leg event reports was unsuccessful, and the reason (for example, the parameters were incorrect, the request was refused, etc.).

@roseuid 38B05E4902AC */

TpResult eventReportErr (

in TpSessionID callLegSessionID,
//Specifies the call leg session ID of the call leg on which the event was detected..

in TpCallError errorIndication
//Specifies the error which led to the original request failing.

)

raises (TpGeneralException,TpGCCSException);

/* This asynchronous method reports all the necessary information requested by the application, for example to calculate charging.

@roseuid 38B05E4902AF */

TpResult getInfoRes (

in TpSessionID callLegSessionID,
//Specifies the call leg session ID of the call leg.

in TpCallLegInfoReport callLegInfoReport
//Specifies the call leg information requested.

)

raises (TpGeneralException,TpGCCSException);

/* This asynchronous method reports that the original request was erroneous, or resulted in an error condition.

@roseuid 38B05E4902B4 */

TpResult getInfoErr (

in TpSessionID callLegSessionID,
//Specifies the call leg session ID of the call leg.

in TpCallError errorIndication
//Specifies the error which led to the original request failing.

)

raises (TpGeneralException,TpGCCSException);

};

/* The Multi-Party call application interface is implemented by the client application developer and is used to handle call request responses and state reports. */

interface IpAppMultiPartyCall : IpInterface {

/* This asynchronous method indicates that the request to route the call to the destination was successful, and indicates the response of the destination party (for example, the call was answered, not answered, refused due to busy, etc.).

@roseuid 3A6EB71C02F1 */

TpResult routeRes (

in TpSessionID callSessionID,
//Specifies the call session ID of the call.

 TpCallEventInfo EventInfo,
//Specifies the result of the request to route the call to the destination party. It also includes the network event, date and time, monitoring mode and event specific information such as release cause.

in TpSessionID callLegSessionID
//Specifies the sessionID of the associated call leg. This corresponds to the sesion ID returned at the routeReq() and can be used to correlate the response with the request.

)

raises (TpGCCSException,TpGeneralException);

/* This asynchronous method indicates that the request to route the call to the destination party was unsuccessful - the call could not be routed to the destination party (for example, the network was unable to route the call, the parameters were incorrect, the request was refused, etc.).

@roseuid 3A6EB71C032D */

TpResult routeErr (

in TpSessionID callSessionID,
//Specifies the call session ID of the call.

in TpCallError errorIndication,
//Specifies the error which led to the original request failing.

in TpSessionID callLegSessionID
//Specifies the sessionID of the associated call leg. This corresponds to the sessionID returned at the routeReq() and can be used to correlate the error with the request.

)

raises (TpGCCSException,TpGeneralException);

/* This asynchronous method reports time information of the finished call or call attempt as well as release cause depending on which information has been requested by getCallInfoReq. This information may be used e.g. for charging purposes. The call information will possibly be sent after routeRes in all cases where the call or a leg of the call has been disconnected or a routing failure has been encountered.

@roseuid 3A6EB71C0373 */

TpResult getCallInfoRes (

in TpSessionID callSessionID,
//Specifies the call session ID of the call.

in TpCallInfoReport callInfoReport
//Specifies the call information requested.

)

raises (TpGCCSException,TpGeneralException);

/* This asynchronous method reports that the original request was erroneous, or resulted in an error condition.

@roseuid 3A6EB71C03B9 */

TpResult getCallInfoErr (

in TpSessionID callSessionID,
//Specifies the call session ID of the call.

in TpCallError errorIndication
//Specifies the error which led to the original request failing.

)

raises (TpGCCSException,TpGeneralException);

/* This asynchronous method reports a call supervision event to the application when it has indicated it's interest in these kind of events.

It is also called when the connection is terminated before the supervision event occurs. Furthermore, this method is invoked as a response to the request also when a tariff switch happens in the network during an active call.

@roseuid 3A6EB71D0017 */

TpResult superviseCallRes (

in TpSessionID callSessionID,
//Specifies the call session ID of the call

in TpCallSuperviseReport report,
//Specifies the situation which triggered the sending of the call supervision response.

in TpDuration usedTime
//Specifies the used time for the call supervision (in milliseconds).

)

raises (TpGCCSException,TpGeneralException);

/* This asynchronous method reports a call supervision error to the application.

@roseuid 3A6EB71D0053 */

TpResult superviseCallErr (

in TpSessionID callSessionID,
//Specifies the call session ID of the call.

in TpCallError errorIndication
//Specifies the error which led to the original request failing.

)

raises (TpGCCSException,TpGeneralException);

/* This method indicates to the application that a fault in the network has been detected. The call may or may not have been terminated.

The system deletes the call object. Therefore, the application has no further control of call processing. No report will be forwarded to the application.

@roseuid 3A6EB71D0099 */

TpResult callFaultDetected (

in TpSessionID callSessionID,
//Specifies the call session ID of the call in which the fault has been detected.

in TpCallFault fault
//Specifies the fault that has been detected.

)

raises (TpGCCSException,TpGeneralException);

/* This asynchronous method returns the collected digits to the application.

@roseuid 3A6EB71D00DF */

TpResult getMoreDialledDigitsRes (

in TpSessionID callSessionID,
//Specifies the call session ID of the call.

in TpString digits
//Specifies the additional dialled digits if the string length is greater than zero.

)

raises (TpGeneralException,TpGCCSException);

/* This asynchronous method reports an error in collecting digits to the application.

@roseuid 3A6EB71D0139 */

TpResult getMoreDialledDigitsErr (

in TpSessionID callSessionID,
//Specifies the call session ID of the call.

in TpCallError errorIndication
//Specifies the error which led to the original request failing.

)

raises (TpGeneralException,TpGCCSException);

/* This method indicates to the application that the call has terminated in the network. However, the application may still receive some results (e.g., getCallInfoRes) related to the call. The application is expected to deassign the call object after having received the callEnded.

Note that the event that caused the call to end might also be received separately if the application was monitoring for it.

@roseuid 3A6EB71D017F */

TpResult callEnded (

in TpSessionID callSessionID,
//Specifies the call sessionID.

in TpCallEndedReport report
//Specifies the reason the call is terminated.

)

raises (TpGeneralException,TpGCCSException);

};

/* The Multi-Party call control manager application interface provides the application call control management functions to the Multi-Party call control service. */

interface IpAppMultiPartyCallControlManager : IpInterface {

/* This method indicates to the application that the call object (at the gateway) has aborted or terminated abnormally. No further communication will be possible between the call and application.

@roseuid 3A6EB6BA03CC */

TpResult callAborted (

in TpSessionID callReference
//Specifies the sessionID of call that has aborted or terminated abnormally.

)

raises (TpGCCSException,TpGeneralException);

/* This method reports to the application of the arrival of a notification.

@roseuid 3A6EB6BB0020 */

TpResult reportNotification (

in TpCallIdentifier callReference,
//Specifies the reference to the call interface to which the notification relates.

in TpCallNotificationInfo notificationInfo,
//Specifies the occured notification.

in TpAssignmentID assignmentID,
//Specifies the assignment id which was returned by the createNotification() method. The application can use assignment id to associate events with event specific criteria and to act accordingly.

out IpAppCallRefRef appInterface
//Specifies a reference to the application interface which implements the callback interface for the new call.

)

raises (TpGCCSException,TpGeneralException);

/* This method indicates to the application that all notifications have been temporary interrupted (for example, due to faults detected).

Note that more permanent failures are reported via the Framework (integrity management).

@roseuid 3A6EB6BB005C */

TpResult callNotificationInterrupted ()

raises (TpGCCSException,TpGeneralException);

/* This method indicates to the application that notifications will again be possible.

@roseuid 3A6EB6BB0098 */

TpResult callNotificationContinued ();

/* This method indicates that the network has detected overload and may have automatically imposed load control on calls requested to a particular address range or calls made to a particular destination within the call control service.

@roseuid 3A6EB6BB00D4 */

TpResult callOverloadEncountered (

in TpAssignmentID assignmentID
//Specifies the assignmentID corresponding to the associated setCallLoadControl. This implies the addressrange for within which the overload has been encountered.

)

raises (TpGeneralException,TpGCCSException);

/* This method indicates that the network has detected that the overload has ceased and has automatically removed any load controls on calls requested to a particular address range or calls made to a particular destination within the call control service.

@roseuid 3A6EB6BB0110 */

TpResult callOverloadCeased (

in TpAssignmentID assignmentID
//Specifies the assignmentID corresponding to the associated setCallLoadControl. This implies the addressrange for within which the overload has been ceased

)

raises (TpGeneralException,TpGCCSException);

};

/* The call leg interface represents the logical call leg associating a call with an address. The call leg tracks its own states and allows charging summaries to be accessed. The leg represents the signalling relationship between the call and an address. An application that uses the IpCallLeg interface to set up connections has more control, e.g. by defining leg specific event request and can obtain call leg specific report and events. */

interface IpCallLeg : IpService {

/* This is the leg equivalent to the method routeReq().

There can be multiple legs that are routed with this method. Each of these legs will become a passive leg.

 If the application developer does not want to deal with the redirectingAddress, originalDestinationAddress and originatingAddress than these parameter may be set to unavailable (by setting the plan to P_ADDRESS_PLAN_NOT_PRESENT) for convenience. In this case information provided when routing to the origination will be used if applicable. Otherwise network or gateway provided addresses will be used.

@roseuid 38B05E490352 */

TpResult route (

in TpSessionID callLegSessionID
//Specifies the call leg session ID of the call leg.

)

raises (TpGeneralException,TpGCCSException);

/* This asynchronous method sets, clears or changes the criteria for the events that the call leg object will be set to observe.

@roseuid 38B05E490369 */

TpResult eventReportReq (

in TpSessionID callLegSessionID,
//Specifies the call leg session ID of the call leg.

in TpCallEventRequestSet eventsRequested
//Contains the event specific criteria used by the applicationto define the events required. Only events that meet this criteria are reported. Examples of events are "address analysed", "answer", "release".

)

raises (TpGeneralException,TpGCCSException);

/* This method requests the release of the call leg. If successful, the associated address (party) will be released from the call, and the call leg deleted. Note that if the controlling leg is released, the entire call is released.

@roseuid 38B05E49036C */

TpResult release (

in TpSessionID callLegSessionID,
//Specifies the call leg session ID of the call leg.

in TpCallReleaseCause cause
//Specifies the cause of the release.

)

raises (TpGeneralException,TpGCCSException);

/* This asynchronous method requests information associated with the call leg to be provided at the appropriate time (for example, to calculate charging). Note: in the call leg information must be accessible before the objects of concern are deleted.

@roseuid 38B05E490372 */

TpResult getInfoReq (

in TpSessionID callLegSessionID,
//Specifies the call leg session ID of the call leg.

in TpCallLegInfoType callLegInfoRequested
//Specifies the call leg information that is requested.

)

raises (TpGeneralException,TpGCCSException);

/* This method requests the call associated with this call leg.

@roseuid 38B05E49037B */

TpResult getCall (

in TpSessionID callLegSessionID,
//Specifies the call leg session ID of the call leg.

out TpCallIdentifierRef callReference
//Specifies the interface and sessionID of the call associated with this call leg.

)

raises (TpGeneralException,TpGCCSException);

/* This method requests that the call leg be attached to its call object. This will allow transmission on all associated bearer connections or media channels to and from other parties in the call. The call leg must be in the connected state for this method to complete successfully.

@roseuid 38B05E4A0002 */

TpResult attachMedia (

in TpSessionID callLegSessionID
//Specifies the sessionID of the call leg to attach to the call.

)

raises (TpGeneralException,TpGCCSException);

/* This method will detach the call leg from its call, i.e., this will prevent transmission on any associated bearer connections or media channels to and from other parties in the call. The call leg must be in the connected state for this method to complete successfully.

@roseuid 38B05E4903E0 */

TpResult detachMedia (

in TpSessionID callLegSessionID
//Specifies the sessionID of the call leg to detach from the call.

)

raises (TpGeneralException,TpGCCSException);

/* Queries the last address the leg has been redirected to.

@roseuid 3926AFAE0369 */

TpResult getLastRedirectedAddress (

in TpSessionID callLegSessionID,
//Specifies the call session ID of the call leg.

out TpAddressRef redirectingAddress
//Specifies the last address where the call leg was redirected to.

);

};

/* The Multi-Party Call provides the possibility to control the call routing, to request information from the call, control the charging of the call, to release the call and to supervise the call. It also gives the possibiltiy to manage call legs explicitly. Via the legs the application can also influence the media in multi-media calls. If an application uses the multi-party call control interface it may call the method routeReq several times without disconnecting already connected destination. Therefore, an application may implicitly create more then one passive (destination) call leg. However, there can only be at most one active (controlling) call leg at any time. In contrast to the conference service it is not possible to move legs to another call object. */

interface IpMultiPartyCall : IpService {

/* This method requests the identification of the call leg objects associated with the call object. Returns the legs in the order of creation.

@roseuid 38B05E4903CB */

TpResult getCallLegs (

in TpSessionID callSessionID,
//Specifies the call session ID of the call.

out TpCallLegIdentifierSetRef callLegList
//Specifies the call legs associated with the call. The set contains both the sessionIDs and the interface references.

)

raises (TpGeneralException,TpGCCSException);

/* This method requests the creation of a new call leg object The call leg will be associated with the call, but not attached. The call leg can be attached to the call (using attachMedia) when the call leg is in the connected state (i.e. it has been answered).

@roseuid 38B05E4A0005 */

TpResult createCallLeg (

in TpSessionID callSessionID,
//Specifies the call session ID of the call.

in IpAppCallLegRef appCallLeg,
//Specifies the application interface for callbacks from the call leg created.

in TpAddress targetAddress,
//Specifies the destination party to which the call should be routed.

in TpAddress originatingAddress,
//Specifies the address of the originating (calling) party.

in TpAddress originalCalledAddress,
//Specifies the original address to which the call was initiated.

in TpAddress redirectingAddress,
//Specifies the last address from which the call was redirected.

in TpCallAppInfoSet appInfo,
//Specifies application-related information pertinent to the call leg (such as alerting method, tele-service type, service identities and interaction indicators).

out TpCallLegIdentifierRef callLeg
//Specifies the interface and sessionID of the call leg created.

)

raises (TpGeneralException,TpGCCSException);

/* This asynchronous method requests routing of the call (and inherently attached parties) to the destination party, via a new call leg (which is implicitly created).

The extra address information (i.e., originalDestinationAddress, redirectingAddress, originatingAddress) is optional. If not present (i.e., the plan is set to P_ADDRESS_PLAN_NOT_PRESENT), the information provided in corresponding addresses from the route is used, otherwise the network or gateway provided numbers will be used.

@roseuid 3A6EB39B019C */

TpResult routeReq (

in TpSessionID callSessionID,
//Specifies the call session ID of the call.

in TpCallEventRequestSet eventsRequested,
//Specifies the specific criteria used by the application to define the event required. Only events that meet this criteria are reported. Examples of events are " address analysed", " answer", "release".

in TpAddress targetAddress,
//Specifies the destination party to which the call should be routed.

in TpAddress originatingAddress,
//Specifies the address of the originating (calling) party.

in TpCallAppInfoSet appInfo,
//Specifies application-related information pertinent to the call (such as alerting method, tele-service type, service identities and interaction indicators).

out TpSessionIDRef callLegSessionID
//Specifies the sessionID assigned by the gateway. This is the sessionID of the implicitly created call leg. The same ID will be returned in the routeRes or Err. This allows the application to correlate the request and the result.

 This parameter is only relevant when multiple routeReq() calls are executed in parallel, e.g., in the multi-party call control service.

)

raises (TpGCCSException,TpGeneralException);

/* This method requests the release of the call object and associated objects. The call will also be terminated in the network. If the application requested reports to be sent at the end of the call (e.g., by means of getCallInfoReq) these reports will still be sent to the application.

The application should always either release or deassign the call when it is finished with the call, unless a callFaultDetected is received by the application.

@roseuid 3A6EB39B01EC */

TpResult release (

in TpSessionID callSessionID,
//Specifies the call session ID of the call.

in TpCallReleaseCause cause
//Specifies the cause of the release.

)

raises (TpGCCSException,TpGeneralException);

/* This method requests that the relationship between the application and the call and associated objects be de-assigned. It leaves the call in progress, however, it purges the specified call object so that the application has no further control of call processing. If a call is de-assigned that has event reports, call information reports or call Leg information reports requested, then these reports will be disabled and any related information discarded.

The application should always either release or deassign the call when it is finished with the call, unless callFaultDetected is received by the application.

@roseuid 3A6EB39B0232 */

TpResult deassignCall (

in TpSessionID callSessionID
//Specifies the call session ID of the call.

)

raises (TpGCCSException,TpGeneralException);

/* This asynchronous method requests information associated with the call to be provided at the appropriate time (for example, to calculate charging). This method must be invoked before the call is routed to a target address. Two types of reports can be requested; a final report or intermediate reports.

A final call report is sent when the call is ended. The call object will exist after the call is ended if information is required to be sent to the application at the end of the call. The call information will be sent after any call event reports.

Intermediate reports are received when the destination leg or party terminates or when the call ends. In case the originating party is still available the application can still initiate a follow-on call using routeReq.

@roseuid 3A6EB39B0283 */

TpResult getCallInfoReq (

in TpSessionID callSessionID,
//Specifies the call session ID of the call.

in TpCallInfoType callInfoRequested
//Specifies the call information that is requested.

)

raises (TpGCCSException,TpGeneralException);

/* Set an operator specific charge plan for the call. The charge plan must be set before the call is routed to a target address. Depending on the operator the method can also be used to change the charge plan for ongoing calls.

@roseuid 3A6EB39B02D3 */

TpResult setCallChargePlan (

in TpSessionID callSessionID,
//Specifies the call session ID of the call.

in TpCallChargePlan callChargePlan
//Specifies the charge plan to use.

)

raises (TpGCCSException,TpGeneralException);

/* This method allows for advice of charge (AOC) information to be sent to terminals that are capable of receiving this information.

@roseuid 3A6EB39B0323 */

TpResult setAdviceOfCharge (

in TpSessionID callSessionID,
//Specifies the call session ID of the call.

in TpAoCInfo aOCInfo,
//Specifies two sets of Advice of Charge parameter.

in TpDuration tariffSwitch
//Specifies the tariff switch interval that signifies when the second set of AoC parameters becomes valid.

)

raises (TpGeneralException,TpGCCSException);

/* This asynchronous method requests the call control service to collect further digits and return them to the application. Depending on the administered data, the network may indicate a new call to the gateway if a caller goes off-hook or dialled only a few digits. The application then gets a new call event which contains no digits or only the few dialled digits in the event data.

The application should use this method if it requires more dialled digits, e.g. to perform screening.

@roseuid 3A6EB39B0373 */

TpResult getMoreDialledDigitsReq (

in TpSessionID callSessionID,
//Specifies the call session ID of the call.

in TpInt32 length
//Specifies the maximum number of digits to collect.

)

raises (TpGeneralException, TpGCCSException);

/* The application calls this method to supervise a call. The application can set a granted connection time for this call. If an application calls this function before it calls a routeReq() or a user interaction function the time measurement will start as soon as the call is answered by the B-party or the user interaction system.

@roseuid 3A6EB39B03C3 */

TpResult superviseCallReq (

in TpSessionID callSessionID,
//Specifies the call session ID of the call.

in TpDuration time,
//Specifies the granted time in milliseconds for the connection.

in TpCallSuperviseTreatment treatment
//Specifies how the network should react after the granted connection time expired.

)

raises (TpGCCSException,TpGeneralException);

};

/* This interface is the 'service manager' interface for the Multi-party Call Control Service. The multi-party call control manager interface provides the management functions to the multi-party call control service. The application programmer can use this interface to provide overload control functionality, create call objects and to enable or disable call-related event notifications. */

interface IpMultiPartyCallControlManager : IpService {

/* This method is used to create a new call object.

@roseuid 38B255D00096 */

TpResult createCall (

in IpAppCallRef appCall,
//Specifies the application interface for callbacks from the call created.

out TpCallIdentifierRef callReference
//Specifies the interface reference and sessionID of the call created.

)

raises (TpGCCSException,TpGeneralException);

/* This method is used to create call notifications so that events can be sent to the application. If some application already requested notifications with criteria that overlap the specified criteria, the request is refused with P_GCCS_INVALID_CRITERIA.

The criteria are said to overlap if both originating and terminating ranges overlap and the same number plan is used and the same CallNotificationType is used.

If the same application requests two notifications with exactly the same criteria but different callback references, the second callback will be treated as an additional callback. This means that the callback will only be used in case when the first callback specified by the application is unable to handle the reportNotification (e.g., due to overload or failure).

@roseuid 38B05E470062 */

TpResult createNotification (

in IpAppCallControlManagerRef appCallControlManager,
//If this parameter is set (i.e. not NULL) it specifies a reference to the application interface, which is used for callbacks. If set to NULL, the application interface defaults to the interface specified via the setCallback() method.

in TpCallNotificationRequest notificationRequest,
//Specifies the criteria used by the application to define the notification required. Only notifications that meet these criteria are reported. Examples of notifications are "address analysed", "answer", "release". Individual addresses or address ranges may be specified for destination and/or origination.

out TpAssignmentIDRef assignmentID
//Specifies the ID assigned by the generic call control manager interface for this newly-enabled event notification.

)

raises (TpGCCSException,TpGeneralException);

/* This method is used by the application to destroy call notification information previously installed via createNotification.

@roseuid 38B05E470066 */

TpResult destroyNotification (

in TpAssignmentID assignmentID
//Specifies the assignment ID given by the call control manager interface when the previous createNotification() was called. If the assignment ID does not correspond to one of the valid assignment IDs, the framework will return the error code P_INVALID_ASSIGNMENTID.

)

raises (TpGCCSException,TpGeneralException);

/* This method imposes or removes load control on calls made to a particular address range within the generic call control service. The address matching mechanism is similar as defined for TpCallEventCriteria.

@roseuid 38B05E47006A */

TpResult setCallLoadControl (

in TpDuration duration,
//Specifies the duration for which the load control should be set.

A duration of 0 indicates that the load control should be removed.

A duration of -1 indicates an infinite duration (i.e., until disabled by the application)

A duration of -2 indicates the network default duration.

in TpCallLoadControlMechanism mechanism,
//Specifies the load control mechanism to use (for example, admit one call per interval), and any necessary parameters, such as the call admission rate. The contents of this parameter are ignored if the load control duration is set to zero.

in TpCallTreatment treatment,
//Specifies the treatment of calls that are not admitted. The contents of this parameter are ignored if the load control duration is set to zero.

in TpAddressRange addressRange,
//Specifies the address or address range to which the overload control should be applied or removed.

out TpAssignmentIDRef assignmentID
//Specifies the assignmentID assigned by the gateway to this request. This assignementID can be used to correlate the callOverlloadEncountered and callOverloadCeased methods with the request.

)

raises (TpGeneralException,TpGCCSException);

/* This method is used by the application to change the criteria introduced with the createNotification method. Any stored criteria associated with the specified assignementID will be replaced with the specified criteria.

@roseuid 3926A60702E4 */

TpResult changeNotification (

in TpAssignmentID assignmentID,
//Specifies the ID assigned by the generic call control manager interface for the event notification.

in TpCallNotificationRequest notificationRequest
//Specifies the new set of specific criteria used by the application to define the notification required. Only notifications that meet these criteria are reported.

)

raises (TpGeneralException,TpGCCSException);

/* This method is used by the application to query the criteria set with createNotification or changeNotification.

@roseuid 3926A8070344 */

TpResult getNotification (

out TpNotificationsRequestedSetRef notificationsRequested
//Specifies the notifications requested by the application.

)

raises (TpGeneralException,TpGCCSException);

};

/* Defines a Reference to the interface IpCallLeg. */

#endif

typedef IpCallLeg IpCallLegRef;

/* Defines a Reference to the type IpCallLegRef. */

typedef IpCallLegRef IpCallLegRefRef;

/* Defines a Reference to the interface IpAppCallLeg. */

typedef IpAppCallLeg IpAppCallLegRef;

/* Defines a reference to the type IpAppCallLeg. */

typedef IpAppCallLegRef IpAppCallLegRefRef;

/* Defines the type of call leg information requested and reported. The values may be combined by a logical 'OR' function.

The following values are applicable:

P_CALL_LEG_INFO_UNDEFINED

P_CALL_LEG_INFO_TIMES

P_CALL_LEG_INFO_RELEASE_CAUSE

P_CALL_LEG_INFO_ADDRESS

P_CALL_LEG_INFO_APPINFO */

typedef TpInt32 TpCallLegInfoType;

/* This data type is identical to a TpInt32, and defines the mechanism that will be used to alert a call party. The values of this data type are operator specific. */

typedef TpInt32 TpCallAlertingMechanism;

/* Defines the type of notification. Indicates whether it is related to the originating of the terminating user in the call. */

enum TpNoficationCallType {

P_ORIGINATING,

/* Indicates that the notification is related to the originating user in the call. */

P_TERMINATING

/* Indicates that the notification is related to the terminating user in the call. */

};

/* Defines a specific call event type. */

enum TpCallEventType {

P_CALL_EVENT_UNDEFINED,

/* Undefined */

P_CALL_EVENT_CALL_ATTEMPT,

/* A Call attempt takes place (ex.Offhook event). */

P_CALL_EVENT_ADDRESS_COLLECTED,

/* The destination address has been collected. */

P_CALL_EVENT_ADDRESS_ANALYSED,

/* The destination address has been analysed. */

P_CALL_EVENT_PROGRESS,

/* Call routing progress event: an indication from the network that progress has been made in routing the call to the requested call party . */

P_CALL_EVENT_ALERTING,

/* Call is alerting at call party. */

P_CALL_EVENT_ANSWER,

/* Call answered at address */

P_CALL_EVENT_RELEASE,

/* A call party has been released or the call couldn't be routed. */

P_CALL_EVENT_REDIRECTED,

/* Call redirected to new address: an indication from the network that the call has been redirected to a new address. */

P_CALL_EVENT_SERVICE_CODE

/* Mid-call service code received */

};

/* Defines the Sequence of Data Elements that specify the service code and type of service code received during a call. The service code type defines how the value string should be interpreted. */

enum TpCallServiceCodeType {

P_CALL_SERVICE_CODE_UNDEFINED,

/* The type of service code is unknown. The corresponding string is operator specific. */

P_CALL_SERVICE_CODE_DIGITS,

/* The user entered a digit sequence during the call. The corresponding string is an ascii representation of the received digits. */

P_CALL_SERVICE_CODE_FACILITY,

/* A facility information element is received. The corresponding string contains the facility information element as defined in ITU Q.932 */

P_CALL_SERVICE_CODE_U2U,

/* A user-to-user message was received. The associated string contains the content of the user-to-user information element. */

P_CALL_SERVICE_CODE_HOOKFLASH,

/* The user performed a hookflash, optionally followed by some digits. The corresponding string is an ascii representation of the entered digits. */

P_CALL_SERVICE_CODE_RECALL

/* The user pressed the register recall button, optionally followed by some digits. The corresponding string is an ascii representation of the entered digits. */

};

/* Defines the Sequence of Data Elements that specify the service code and type of service code received during a call. The service code type defines how the value string should be interpreted. */

struct TpCallServiceCode {

TpCallServiceCodeType CallServiceCodeType;

TpString ServiceCodeValue;

};

/* Defines a Reference to type TpNotificationsRequestSet. */

typedef TpNotificationsRequestSet TpNotificationsRequestedSetRef;

/* Call leg connected address */

const TpInt32 P_CALL_LEG_INFO_ADDRESS = 4;

/* Call leg application related information */

const TpInt32 P_CALL_LEG_INFO_APPINFO = 8;

/* Call leg release cause */

const TpInt32 P_CALL_LEG_INFO_RELEASE_CAUSE = 2;

/* Relevant call times */

const TpInt32 P_CALL_LEG_INFO_TIMES = 1;

/* Undefined */

const TpInt32 P_CALL_LEG_INFO_UNDEFINED = 0;

/* Defines the following type of call information requested and reported:

P_CALL_INFO_UNDEFINED

P_CALL_INFO_TIMES

P_CALL_INFO_RELEASE_CAUSE

P_CALL_INFO_INTERMEDIATE

These values may be combined by a logical 'OR' function. */

typedef TpInt32 TpCallInfoType;

/* Send only intermediate reports. When this is not specified the information report will only be sent when the call has ended. When intermediate reports are requested a report will be generated between follow-on calls, i.e., when a party leaves the call. */

const TpInt32 P_CALL_INFO_INTERMEDIATE = 4;

/* Report the call release cause. */

const TpInt32 P_CALL_INFO_RELEASE_CAUSE = 2;

/* Report the relevant call times */

const TpInt32 P_CALL_INFO_TIMES = 1;

/* Undefined */

const TpInt32 P_CALL_INFO_UNDEFINED = 0;

/* Defines the following responses from the call control service for calls that are supervised:

P_CALL_SUPERVISE_TIMEOUT

P_CALL_SUPERVISE_CALL_ENDED

P_CALL_SUPERVISE_TONE_APPLIED

These values may be combined by a logical 'OR' function. */

typedef TpInt32 TpCallSuperviseReport;

/* The call supervision timer has expired. */

const TpInt32 P_CALL_SUPERVISE_TIMEOUT = 1;

/* The call has ended, either due to timer expiry or call party release. In case the called party disconnects but a follow-on call can still be made also this indication is used. */

const TpInt32 P_CALL_SUPERVISE_CALL_ENDED = 2;

/* A warning tone has been applied as a result of the expiry of the supervision timer. This is only sent in combination with P_CALL_SUPERVISE_TIMEOUT */

const TpInt32 P_CALL_SUPERVISE_TONE_APPLIED = 4;

/* The user interaction has finished. */

const TpInt32 P_CALL_SUPERVISE_UI_FINISHED = 8;

/* Defines the following treatment of the call by the call control service when the call supervision event occurs.

P_CALL_SUPERVISE_RELEASE

P_CALL_SUPERVISE_RESPOND

P_CALL_SUPERVISE_APPLY_TONE

These values may be combined by a logical 'OR' function. */

typedef TpInt32 TpCallSuperviseTreatment;

/* Send a warning tone to the originating party when the call supervision event occurs. If call release is requested, then the call will be released following the tone after an administered time period. */

const TpInt32 P_CALL_SUPERVISE_APPLY_TONE = 4;

/* Release the call when the call supervision event occurs. */

const TpInt32 P_CALL_SUPERVISE_RELEASE = 1;

/* Notify the application when the call supervision event occurs */

const TpInt32 P_CALL_SUPERVISE_RESPOND = 2;

/* Defines the call admission rate of the call load control mechanism used.Tthis data type indicates the interval (in milliseconds) between calls that are admitted. 0 means no calls are admitted. */

typedef TpInt32 TpCallLoadControlIntervalRate;

/* Infinite interval (do not admit any calls) */

const TpInt32 P_CALL_LOAD_CONTROL_ADMIT_NO_CALLS = 0;

/* Defines the Sequence of Data Elements that specify the call leg information requested. */

struct TpCallLegInfoReport {

TpCallLegInfoType callLegInfoType;

TpDateAndTime callLegStartTime;

TpDateAndTime callLegConnectedToResourceTime;

TpDateAndTime callLegConnectedToAddressTime;

TpDateAndTime callLegEnd;

TpAddress connectedAddress;

TpCallReleaseCause callLegReleaseCause;

TpCallAppInfoSet callAppInfo;

};

/* Defines a Numbered Set of Data Elements of TpCallLegIdentifier */

typedef sequence <TpCallLegIdentifier> TpCallLegIdentifierSet;

/* Defines a Reference to type TpCallLegIdentifierSet. */

typedef TpCallLegIdentifierSet TpCallLegIdentifierSetRef;

/* Defines the Sequence of Data Elements that unambiguously specify the Call Leg object */

struct TpCallLegIdentifier {

/* This element specifies the interface reference for the call leg object. */

IpCallLegRef callLegReference;

/* This element specifies the callLegSessionId. */

TpSessionID callLegsessionId;

};

/* Defines a reference to the type TpCallLegIndentifier. */

typedef TpCallLegIdentifier TpCallLegIdentifierRef;

/* Defines the Sequence of Data Elements that specify the cause of the release of a call. Note: the Value and Location are specified as in ITU-T recommendation Q.850. */

struct TpCallReleaseCause {

TpInt32 Value;

TpInt32 Location;

};

/* Defines the type of call application-related specific information. */

enum TpCallAppInfoType {

P_CALL_APP_UNDEFINED,

/* Undefined */

P_CALL_APP_ALERTING_MECHANISM,

/* The alerting mechanism or pattern. */

P_CALL_APP_NETWORK_ACCESS_TYPE,

/* The network access type (e.g. ISDN) */

P_CALL_APP_TELE_SERVICE,

/* Indicates the tele-service (e.g. speech) and related info such as clearing programme */

P_CALL_APP_BEARER_SERVICE,

/* Indicates the bearer service (e.g. 64kb/s unrestricted data). */

P_CALL_APP_PARTY_CATEGORY,

/* The category of the calling party */

P_CALL_APP_PRESENTATION_ADDRESS,

/* The address to be presented to other call parties */

P_CALL_APP_GENERIC_INFO,

/* Carries unspecified application-service Capability information. */

P_CALL_APP_ADDITIONAL_ADDRESS

/* Indicates an additional address */

};

/* This data defines the bearer capabilities associated with the call. (3G TS 24.002) This information is network operator specific and may not always be available because there is no standard protocol to retrieve the information */

enum TpCallNetworkAccessType {

P_CALL_NETWORK_ACCESS_TYPE_UNKNOWN,

/* Network type information unknown at this time */

P_CALL_NETWORK_ACCESS_TYPE_POT,

/* POTS */

P_CALL_NETWORK_ACCESS_TYPE_ISDN,

/* ISDN */

P_CALL_NETWORK_ACCESS_TYPE_DIALUPINTERNET,

/* Dial-up Internet */

P_CALL_NETWORK_ACCESS_TYPE_XDSL,

/* xDSL */

P_CALL_NETWORK_ACCESS_TYPE_WIRELESS

/* Wireless */

};

/* This data type defines the tele-service associated with the call. (Q.763: User Teleservice Information, Q.931: High Layer Compatitibility Information, and 3G TS 22.003) */

enum TpCallTeleService {

P_CALL_TELE_SERVICE_UNKNOWN,

/* Teleservice information unknown at this time */

P_CALL_TELE_SERVICE_TELEPHONY,

/* Telephony */

P_CALL_TELE_SERVICE_FAX_2_3,

/* Facsimile Group 2/3 */

P_CALL_TELE_SERVICE_FAX_4_I,

/* Facsimile Group 4, Class I */

P_CALL_TELE_SERVICE_FAX_4_II_III,

/* Facsimile Group 4, Classes II and III */

P_CALL_TELE_SERVICE_VIDEOTEX_SYN,

/* Syntax based Videotex */

P_CALL_TELE_SERVICE_VIDEOTEX_INT,

/* International Videotex interworking via gateways or interworking units */

P_CALL_TELE_SERVICE_TELEX,

/* Telex service */

P_CALL_TELE_SERVICE_MHS,

/* Message Handling Systems */

P_CALL_TELE_SERVICE_OSI,

/* OSI application */

P_CALL_TELE_SERVICE_FTAM,

/* FTAM application */

P_CALL_TELE_SERVICE_VIDEO,

/* Videotelephony */

P_CALL_TELE_SERVICE_VIDEO_CONF,

/* Videoconferencing */

P_CALL_TELE_SERVICE_AUDIOGRAPH_CONF,

/* Audiographic conferencing */

P_CALL_TELE_SERVICE_MULTIMEDIA,

/* Multimedia services */

P_CALL_TELE_SERVICE_CS_INI_H221,

/* Capability set of initial channel of H.221 */

P_CALL_TELE_SERVICE_CS_SUB_H221,

/* Capability set of subsequent channel of H.221 */

P_CALL_TELE_SERVICE_CS_INI_CALL,

/* Capability set of initial channel associated with an active 3.1 kHz audio or speech call. */

P_CALL_TELE_SERVICE_DATATRAFFIC,

/* Data traffic. */

P_CALL_TELE_SERVICE_EMERGENCY_CALLS,

/* Emergency Calls */

P_CALL_TELE_SERVICE_SMS_MT_PP,

/* Short message MT/PP */

P_CALL_TELE_SERVICE_SMS_MO_PP,

/* Short message MO/PP */

P_CALL_TELE_SERVICE_CELL_BROADCAST,

/* Cell Broadcast Service */

P_CALL_TELE_SERVICE_ALT_SPEECH_FAX_3,

/* Alternate speech and facsimile group 3 */

P_CALL_TELE_SERVICE_AUTOMATIC_FAX_3,

/* Automatic Facsimile group 3 */

P_CALL_TELE_SERVICE_VOICE_GROUP_CALL,

/* Voice Group Call Service */

P_CALL_TELE_SERVICE_VOICE_BROADCAST

/* Voice Broadcast Service */

};

/* This data type defines the type of call application-related specific information (Q.931: Information Transfer Capability, and 3G TS 22.002) */

enum TpCallBearerService {

P_CALL_BEARER_SERVICE_UNKNOWN,

/* Bearer capability information

unknown at this time */

P_CALL_BEARER_SERVICE_SPEECH,

/* Speech */

P_CALL_BEARER_SERVICE_DIGITALUNRESTRICTED,

/* Unrestricted digital information */

P_CALL_BEARER_SERVICE_DIGITALRESTRICTED,

/* Restricted digital information */

P_CALL_BEARER_SERVICE_AUDIO,

/* 3.1 kHz audio */

P_CALL_BEARER_SERVICE_DIGITALUNRESTRICTEDTONES,

/* Unrestricted digital information

with tones/announcements */

P_CALL_BEARER_SERVICE_VIDEO

/* Video */

};

/* This data type defines the category of a calling party. (Q.763: Calling Party Category / Called Party Category) */

enum TpCallPartyCategory {

P_CALL_PARTY_CATEGORY_UNKNOWN,

/* calling party's category unknown at this time */

P_CALL_PARTY_CATEGORY_OPERATOR_F,

/* operator, language French */

P_CALL_PARTY_CATEGORY_OPERATOR_E,

/* operator, language English */

P_CALL_PARTY_CATEGORY_OPERATOR_G,

/* operator, language German */

P_CALL_PARTY_CATEGORY_OPERATOR_R,

/* operator, language Russian */

P_CALL_PARTY_CATEGORY_OPERATOR_S,

/* operator, language Spanish */

P_CALL_PARTY_CATEGORY_ORDINARY_SUB,

/* ordinary calling subscriber */

P_CALL_PARTY_CATEGORY_PRIORITY_SUB,

/* calling subscriber with priority */

P_CALL_PARTY_CATEGORY_DATA_CALL,

/* data call (voice band data) */

P_CALL_PARTY_CATEGORY_TEST_CALL,

/* test call */

P_CALL_PARTY_CATEGORY_PAYPHONE

/* payphone */

};

/* Defines the Tagged Choice of Data Elements that specify call application-related specific call information <<ADD? WHEN SENT TO THE APPLICATION (E.G., IN A CALLEVENTNOTIFY) THE INFORMATION REFERS TO THE ORIGINATING PARTY, WHEN USED DURING ROUTING THE INFORMATION IS SEEN AS A REQUEST BY THE APPLICATION FOR SETTING SPECIFIC PARAMETERS FOR THE TERMINATING PARTY. IT SHOULD BE REGARDED AS A HINT TO THE GATEWAY, THE GATEWAY OR THE NETWORK MAY DECIDE TO IGNORE THIS INFORMATION>> */

union TpCallAppInfo switch(TpCallAppInfoType) {

case 1: TpCallAlertingMechanism CallAppAlertingMechanism;

case 2: TpCallNetworkAccessType CallAppNetworkAccessType;

case 4: TpCallTeleService CallAppTeleService;

case 5: TpCallBearerService CallAppBearerService;

case 6: TpCallPartyCategory CallAppPartyCategory;

case 7: TpAddress CallAppPresentationAddress;

case 8: TpString CallAppGenericInfo;

case 9: TpAddress CallAppAdditionalAddress;

};

/* Defines a numbered Set of Data Elements of TpCallAppInfo. */

typedef sequence <TpCallAppInfo> TpCallAppInfoSet;

/* Defines a Numbered Set of Data Elements of TpCallEventRequest. */

typedef sequence <TpCallReportRequest> TpCallEventRequestSet;

/* Defines the Tagged Choice of Data Elements that specify additional call eventt information for certain types of events. */

union TpAdditionalCallEventInfo switch(TpCallEventType) {

case 2: TpAddress CalledAddresss;

case 3: TpAddress CalledAddress;

case 7: TpCallReleaseCause ReleaseCause;

case 8: TpAddress ForwardAddress;

case 9: TpCallServiceCode ServiceCode;

};

/* Defines the mode that the call will monitor for events, or the mode that the call is in following a detected event. */

enum TpCallMonitorMode {

P_CALL_MONITOR_MODE_INTERRUPT,

/* The call event is intercepted by the call control service and call processing is interrupted. The application is notified of the event and call processing resumes following an appropriate API call or network event (such as a call release) */

P_CALL_MONITOR_MODE_NOTIFY,

/* The call event is detected by the call control service but not intercepted. The application is notified of the event and call processing continues. */

P_CALL_MONITOR_MODE_DO_NOT_MONITOR

/* Do not monitor for the event */

};

/* Defines the Sequence of Data Elements that specify the information returned to the application in a Call event notification. */

struct TpCallEventInfo {

TpCallEventType CallEventType;

TpAdditionalCallEventInfo AdditionalCallEventInfo;

TpCallMonitorMode CallMonitorMode;

TpDateAndTime CallEventTIme;

};

/* Defines the sequence of Data elements that specify the scope of a notification request. Of the addresses only the Plan and the AddrString are used for the purpose of matching the notifications against the criteria. */

struct TpCallNotificationScope {

TpAddressRange DestinationAddress;

TpAddressRange OriginatingAddress;

TpNoficationCallType NotificationCallType;

};

/* Defines the Tagged Choice of Data Elements that specify the criteria for an event notification to be generated.

Of the addresses only the Plan and the AddrString are used for the purpose of matching the notifications against the criteria. */

struct TpCallNotificationRequest {

TpCallNotificationScope CallNotificationScope;

TpCallEventRequestSet CallEventsRequested;

};

/* Defines the Sequence of Data Elements that specify the scope for which a notification report was sent. */

struct TpCallNotificatioReportScope {

};

/* Defines the Sequence of Data Elements that specify the information returned to the application in a call notification report. */

struct TpCallNotificationInfo {

TpCallNotificatioReportScope CallNotificationReportScope;

TpCallAppInfoSet CallAppInfo;

TpCallEventInfo CallEventInfo;

};

/* Defines the Sequence of data elements that specify the scop[e for which a notification report was sent. */

struct TpCallNotificationReportScope {

TpAddress DestinationAddress;

TpAddress OriginatingAddress;

TpNoficationCallType NotificationCallType;

};

/* Defines the Sequence of Data Elements that specify the criteria relating to event requests. */

struct TpNotificationRequested {

TpCallNotificationRequest AppCallNotifiationRequest;

TpInt32 AssignmentID;

};

/* Defines a numbered Set of Data Elements of TpNotificationsRequested. */

typedef TpNotificationRequested TpNotificationsRequestedSet;

/* Defines a specific call error. */

enum TpCallErrorType {

P_CALL_ERROR_UNDEFINED,

/* Undefined; the method failed or was refused, but no specific reason can be given. */

P_CALL_ERROR_INVALID_ADDRESS,

/* The operation failed because an invalid address was given. */

P_CALL_ERROR_INVALID_STATE

/* The call was not in a valid state for the requested operation. */

};

/* Defines the Tagged Choice of Data Elements that specify additional call error and call error specific information. This is also used to specify call leg errors and call information errors. */

union TpCallAdditionalErrorInfo switch(TpCallErrorType) {

case 1: TpAddressError TpAddressError;

};

/* Defines the Sequence of Data Elements that specify the additional information relating to an undefined call error. */

struct TpCallError {

TpDateAndTime ErrorTime;

TpCallErrorType ErrorType;

TpCallAdditionalErrorInfo AdditionalErorInfo;

};

/* Defines the Sequence of Data Elements that specify the call information requested. Information that was not requested is invalid.

A callInfoReport will be generated at the end of user interaction and at the end of the connection with the associated address. This means that either the destination related information is present or the resource related information, but not both. */

struct TpCallInfoReport {

TpDateAndTime CallInitiationStartTime;

TpCallInfoType CallInfoTime;

TpCallReleaseCause Cause;

TpDateAndTime CallConnectedToResourceTime;

TpDateAndTime CallConnectedToDestinationTime;

TpDateAndTime CallEndTime;

};

/* Defines the cause of the call fault detected. */

enum TpCallFault {

P_CALL_FAULT_UNDEFINED,

/* Undefined */

P_CALL_TIMEOUT_ON_RELEASE,

/* This fault occurs when the final report has been sent to the application, but the application did not explicitly release or deassign the call object, within a specified time.

The timer value is operator specific. */

P_CALL_TIMEOUT_ON_INTERRUPT

/* This fault occurs when the application did not instruct the gateway how to handle the call within a specified time, after the gateway reported an event that was requested by the application in interrupt mode.

The timer value is operator specific */

};

/* Defines the Sequence of Data Elements that specify the reason for the call ending. */

struct TpCallEndedReport {

TpSessionID CallLegSessionID;

TpCallReleaseCause Cause;

};

/* Defines the type of charging to be applied. */

enum TpCallChargeOrderCategory {

P_CALL_CHARGE_PER_TIME,

/* Charge per time */

P_CALL_CHARGE_NETWORK

/* Operator specific charge plan specification, e.g. charging table name / charging table entry */

};

/* Defines the Sequence of Data Elements that specify the time based charging information. */

struct TpChargePerTime {

TpInt32 InitialCharge;

TpInt32 CurrentChargePerMinute;

TpInt32 NextChargePerMinute;

/* Next tariff (in currency units * 0.0001) after tariff switch

Only used in setAdviceOfCharge() */

};

/* Defines the Tagged Choice of Data Elements that specify the charge plan for the call. */

union TpCallChargeOrder switch(TpCallChargeOrderCategory) {

case 0: TpChargePerTime ChargePerTime;

case 1: TpString NetworkCharge;

};

/* Defines the Sequence of Data Elements that specify the charge plan for the call This data type is identical to a TpString, and defines the call charge plan to be used for the call. The values of this data type are operator specific. */

struct TpCallChargePlan {

/* Charge order */

TpCallChargeOrder ChargeOrderType;

TpString Currency;

TpString AdditionalInfo;

};

/* Defines the type of AoC data. */

enum TpAoCOrderCategory {

P_CHARGE_ADVICE_INFO,

/* Set of GSM Charge Advice Information elements according to 3G TS 22.024 */

P_CHARGE_PER_TIME,

/* Charge per time */

P_CHARGE_NETWORK

/* Operator specific charge plan specification, e.g. charging table name / charging table entry */

};

/* Defines the Tagged Choice of Data Elements that specify the charge plan for the call */

union TpAoCOrder switch(TpAoCOrderCategory) {

case P_CHARGE_NETWORK: TpString NetworkCharge;

case P_CHARGE_PER_TIME: TpChargePerTime ChargePerTime;

};

/* Defines the Sequence of Data Elements that specify the Advice Of Charge information to be sent to the terminal. */

struct TpAoCInfo {

/* Charge order */

TpAoCOrder ChargeOrder;

TpString Currency;

/* Currency unit according to ISO-4217:1995 */

};

/* Defines the Sequence of Data Elements that specify theCharging Advice Information elements according to 3G TS 22.024. */

struct TpCAIElements {

TpInt32 UnitsPerInterval;

TpInt32 SecondsPerTimeInterval;

TpInt32 ScalingFactor;

TpInt32 UnitIncrement;

TpInt32 UnitsPerDataInterval;

TpInt32 SegmentsPerDataInterval;

TpInt32 InitialSecsPerTimeInterval;

/* Initial secs per time interval */

};

/* Defines the Sequence of Data Elements that specify the two sets of Advice of Charge parameters. The first set defines the current tariff. The second set may be used in case of a tariff switch in the network. */

struct TpChargeAdviceInfo {

/* Current tariff */

TpCAIElements CurrentCAI;

/* Next tariff after tariff switch */

TpCAIElements NextCAI;

/* Next tariff after tariff switch */

};

/* Defines the type of call load control mechanism to use. */

enum TpCallLoadControlMechanismType {

P_CALL_LOAD_CONTROL_PER_INTERVAL

/* Admit one call per interval */

};

/* Defines the Tagged Choice of Data Elements that specify the applied mechanism and associated parameters. */

union TpCallLoadControlMechanism switch(TpCallLoadControlMechanismType) {

case P_CALL_LAOD_CONTROL_PER_INTERVAL: TpCallLoadControlIntervalRate CallLaodControlPerInterval;

};

/* Defines the treatment for calls that will be handled only by the network. */

enum TpCallTreatmentType {

P_CALL_TREATMENT_DEFAULT,

/* Default treatment. Defined by the network operator. */

P_CALL_TREATMENT_RELEASE,

/* Release the call without informing the user. */

P_CALL_TREATMENT_SIAR

/* Send information to the user, and release the call (Send Info & Release) */

};

/* Defines the Tagged Choice of Data Elements that specify the information to be sent to a call party. */

union TpCallAdditionalTreatmentInfo switch(TpCallTreatmentType) {

};

/* Defines the Tagged Choice of Data Elements that specify the treatment for calls that will be handled only by the network (for example, calls which are not admitted by the call load control mechanism). */

struct TpCallTreatment {

TpCallReleaseCause ReleaseCause;

TpCallAdditionalTreatmentInfo AdditionalTreatmentInfo;

};

/* Defines the Sequence of Data Elements that unambiguously specify the Generic Call object */

struct TpCallIdentifier {

IpCallRef CallReference;

TpSessionID CallSessionID;

};

/* Defines a Reference to type TpCallIdentifier */

typedef TpCallIdentifier TpCallIdentifierRef;

/* Defines the Sequence of Data Elements that specify the criteria relating to call event requests. */

struct TpCallEventRequest {

TpCallEventType CallEventType;

TpAdditionalCallEventCriteria AdditionalCallEventCriteria;

TpCallMonitorMode CallMonitorMode;

};

/* Defines the Tagged Choice of Data Elements that specify specific criteria. */

union TpAdditionalCallEventCriteria switch(TpCallReportType) {

case 1: org::etsi::TpInt32 MinAddressLength;

case 7: TpCallReleaseCauseSet ReleaseCauseSet;

case 9: TpCallServiceCode ServiceCode;

};

/* Defines a Numbered Set of Data Elements of TpCallReleaseCause. */

typedef sequence<TpCallReleaseCauseSet> TpCallReleaseCauseSet;

};

};

/* module services */

};

/* module parlay */

};

#endif

�PAGE \# "'Page: '#'�'" �� The Tdoc number for the CN5 plenary meeting will be allocated by the CN5 Secretary: Adrian ZOICAS (ETSI MCC), � HYPERLINK "mailto:Adrian.Zoicas@etsi.fr" ��Adrian.Zoicas@etsi.fr�

	* Contact:
	Ard-Jan Moerdijk

Dirk De Gelder

Frans Haerens
	(+31-161-242777 / * Ard.Jan.Moerdijk@eln.ericsson.se
(+32-3-240.42.12 / * dirk.de_gelder@alcatel.be
(+32-3-240.90.34 / * frans.haerens@alcatel.be

C:\Documents and Settings\zoicas\Desktop\N5-ContrIDLv1.doc

