Parlay / 3GPP TSG_CN WG 5 / ETSI SPAN 12
Tdoc N5-0100xx

Helsinki, Finland, 6 –8 February 2001

Source:
Alcatel
Chelo.Abarca@ms.alcatel.fr
Title:
Enhancements to Framework sequence diagrams
Agenda item:
5.3

Document for:
DISCUSSION
1 Introduction

This contribution proposes some enhancements to the Framework sequence diagrams in 120070 part 3. The following issues are addressed:

· The current Service Registration sequence diagram has a broader scope than just service registration, which may lead to confusion.

· There is no sequence diagram for Service Discovery at the moment.

· The current sequence diagram for Initial Access has a broader scope than just initial access, which may lead to confusion.

· There is no sequence diagram for Service Selection at the moment (except as part of the Initial Access sequence diagram).

The contents of the enhancements proposed in this contributions are based on the “Example of Registration and Discovery”, which was contribution N5-000333 in CN5#8, where it was decided to use its contents to help clarify the functionality of the Framework.

It may be noted that the sequence diagrams related to the registration and discovery of SCFs are much more detailed (down to the parameter level) than the others, both in this contribution and in 120070. This is due in practise to the input from N5-000333, but also to the need to clarify what is possibly the most complicated Framework process in terms of IDs. Whether it is necessary (or possible) to reach the same level of detail in the rest of the sequence diagrams in 120070 is for further study.

2 Proposed sequence diagram for Service Registration

The following figure shows the process of registering a new Service Capability Feature in the Framework:

[image: image1.wmf]SCS

 :

IpFwServiceRegistration

1: registerService()

2: announceServiceAvailability()

Service Registration is a two step process:

Registration: first step – register service

The purpose of this first step in the process of registration is to agree, within the network, on a name to call, internally, a newly installed SCF version. It is necessary because the OSA Framework and SCF in the same network may come from different vendors. The goal is to make an association between the new SCF version, as characterized by a list of properties, and an identifier called serviceID.

This service ID will be the name used in that network (that is, between that network’s Framework and its SCSs), whenever it is necessary to refer to this newly installed version of SCF (for example for announcing its availability, or for withdrawing it later).

The following input parameters are given from the SCS to the Framework in this first registration step:

· in serviceTypeName
This is a string with the name of the SCF, among a list of standard names (e.g. “P_MPCC“).

· in servicePropertyList

This is a list of types TpServiceProperty; each TpServiceProperty is a triplet (ServicePropertyName, ServicePropertyValueList, ServicePropertyMode).

· ServicePropertyName is a string that defines a valid SFC property name (valid SCF property names are listed in the SCF data definition).

· ServicePropertyValueList is a numbered set of types TpServicePropertyValue; TpServicePropertyValue is a string that describes a valid value of a SCF property (valid SCF property values are listed in the SCF data definition).

· ServicePropertyMode is the value of the property modes (e.g. “mandatory“, meaning that all properties of this SCF must be given values at service registration time).

The following output parameter results from service registration:

· out serviceID

This is a string, automatically generated by the Framework of this network, based on the following:

· a string that contains a unique number, generated by the Framework;

· a string that identifies the SCF name (e.g. “P_MPCC“);

· a concatenation of strings that identify the SCF specialization, if any.

This is the name by which the newly installed version of SCF, described by the list of properties above, is going to be identified internally in this network.

Registration: second step – announce service availability

At this point the network’s Framework is aware of the existence of a new SCF, and could let applications know – but they would have no way to use it. Installing the SCS logic and assigning a name to it does not make this SCF available. In CORBA an “entry point“, called service factory, is used. The role of the service factory is to control the life cycle of a CORBA interface, or set of interfaces, and provide clients with the references that are necessary to invoke the methods offered by these interfaces. Some times service factories instantiate new interfaces for different clients, sometime they give the same interface reference to more than one client. But the starting point for a client to use an SCF is to obtain an interface reference to a factory of the desired SCF.

A Network Operator, upon completion of the first registration phase, and once it has an identifier to the new SCF version, will instantiate a factory for it that will allow client to use it. Then it will inform the Framework of the value of the interface associated to the new SCF. After the receipt of this information, the Framework makes the new SCF (identified by the pair [serviceID, serviceFactoryRef]) discoverable.

The following input parameters are given from the SCS to the Framework in this second registration step:

· in serviceID
This is the identifier that has been agreed in the network for the new SCF; any interaction related to the SCF needs to include the serviceID, to know which SCF it is.

· in serviceFactoryRef
This is the interface reference at which the service factory of the new SCF is available. Note that the Framework will have to invoke the method getServiceManager() in this interface, any time between now and when it accepts the first application requests for discovery, so that it can get the service manager interface necessary for applications as an entry point to any SCF.

3 Proposed sequence diagram for Service Discovery

The following figure shows how Applications discover a new Service Capability Feature in the network:

[image: image2.wmf] : IpServiceDiscovery

Application

2: listServiceTypes()

3: describeServiceType()

4: discoverService()

 : IpAccess

1: obtainInterface()

Even applications that have already used the OSA API of a certain network know that the operator may upgrade it any time; this is why they use the Service Discovery interfaces.

Before the discovery process can start, the Application needs a reference to the Framework’s Service Discovery interface; this is done via an invocation the method obtainInterface on the Framework’s Access interface.

Discovery is a three-step process:

Discovery: first step – list service types

In this first step the application asks the Framework what service types that are available from this network. Service types are standardized or non-standardised SCF names, and thus this first step allows the Application to know what SCFs are supported by the network.

The following output is the result of this first discovery step:

· out listTypes

This is a list of service type names, i.e., a list of strings, each of them the name of a SCF or a SCF specialization (e.g. “P_MPCC“).

Discovery: second step – describe service type

In this second step the application requests what are the properties that describe a certain service type that it

is interested in, among those listed in the first step.

The following input is necessary:

· in name

This is a service type name: a string that contains the name of the SCF whose description the Application is interested in (e.g. “P_MPCC“) .

And the output is:

· out serviceTypeDescription

The description of the specified SCF type. The description provides information about:

· the property names associated with the SCF,

· the corresponding property value types,

· the corresponding property mode (mandatory or read only) associated with each SCF property,

· the names of the super types of this type, and

· whether the type is currently enabled or disabled.
Discovery: third step – discover service

In this third step the application requests for a service that matches its needs by tuning the service properties (i. e., assigning values for certain properties).

The Framework then checks whether there is a match, in which case it sends the Application the serviceID that is the identifier this network operator has assigned to the SCF version described in terms of those service properties. This is the moment where the serviceID identifier is shared with the application that is interested on the corresponding service.

This is done for either one service or more (the application specifies the maximum number of responses it wishes to accept).

Input parameters are:

· in serviceTypeName

This is a string that contains the name of the SCF whose description the Application is interested in (e.g. “P_MPCC“).
· in desiredPropertyList

This is again a list like the one used for service registration, but where the value of the service properties have been fine tuned by the Application to (they will be logically interpreted as "minimum", "maximum", etc. by the Framework).

The following parameter is necessary as input:

· in max

This parameter states the maximum number of SCFs that are to be returned in the "ServiceList" result.
And the output is:

· out serviceList

This is a list of duplets: (serviceID, servicePropertyList). It provides a list of SCFs matching the requirements from the Application, and about each: the identifier that has been assigned to it in this network (serviceID), and once again the service property list.

4 Proposed sequence diagram for Initial Access

The following figure shows an application accessing the OSA Framework for the first time:
[image: image3.wmf]Appication

 : IpInitial

 :

IpAuthentication

1: initiateAuthentication()

2: selectAuthMethod()

3: authenticate()

4: requestAccess()

Before being authorized to use the OSA SCFs, the Application must first of all authenticate itself with the Framework. For this purpose the application needs a reference to the Initial Contact interfaces for the Framework; this may be obtained through a URL, a Naming or Trading Service or an equivalent service, a stringified object reference, etc. At this stage, the Application has no guarantee that this is a Framework interface reference, but it to initiate the authentication process with the Framework.

The Initial Contact interface supports the initiateAuthentication method to allow the authentication process to take place. This method must be the first invoked by the Application: invocations of other methods will fail until authentication has been successfully completed.

Once the Application has authenticated with the Framework, it can gain access to other framework interfaces and SCFs. This is done by invoking the requestAccess method, by which the application requests a certain type of access SCF.
Initiate Authentication

The Application invokes initiateAuthentication on the Framework's "public" (initial contact) interface to initiate the authentication process. It provides in turn a reference to its own authentication interface. The Framework returns a reference to its authentication interface.

Select Authentication Method

The Application invokes selectAuthMethod on the Framework's Authentication interface, identifying the authentication methods it supports. The Framework prescribes the method to be used.

Authenticate

The Application and Framework authenticate each other using the prescribed method. The sequence diagram illustrates one of a series of one or more invocations of the authenticate method on the Framework's Authentication interface. In each invocation, the Application supplies a challenge and the Framework returns the correct response. Alternatively or additionally the Framework may issue its own challenges to the Application using the authenticate method on the Application's Authentication interface

Request Access

Upon successful (mutual) authentication, the Application invokes requestAccess on the Framework's "public" (initial contact) interface, providing in turn a reference to its own access interface. The Framework returns a reference to its access interface.
5 Proposed sequence diagram for Service Selection

The following figure shows the process of selecting an SCF.

[image: image4.wmf] : IpAccess

 : IpAppAccess

Application

Framework

1: selectService()

2: accessCheck()

3: signServiceAgreement()

4: signServiceAgreement()

After discovery the Application gets a list of one or more SCF versions that match its required description. It now needs to decide which service it is going to use; it also needs to actually get a way to use it.

This is achieved by the following two steps:

Service Selection: first step – selectService

In this first step the Application identifies the SCF version it has finally decided to use. This is done by means of the serviceID, which is the agreed identifier for SCF versions. The Framework acknowledges this selection by returning to the Application a new identifier for the service chosen: a service token, that is a private identifier for this service between this Application and this network, and is used for the process of signing the service agreement.

Input is:

· in serviceID

This identifies the SCF required.

And output:

· out serviceToken

This is a free format text token returned by the framework, which can be signed as part of a service agreement. It contains operator specific information relating to the service level agreement.

Service Selection: second step – signServiceAgreement

In this second step an agreement is signed that allows the Application to use the chosen SCF version. And once this contractual details have been agreed, then the Application can be given the means to actually use it. The means are a reference to the manager interface of the SCF version (remember that a manager is an entry point to any SCF). By calling the getServiceManager operation on the service factory the Framework retrieves this interface and returns it to the Application. The service properties suitable for this application are also fed to the SCF (via the service factory interface) in order for the SCS to instantiate an SCF version that is suitable for this application.

Input:

· in serviceToken

This is the identifier that the network and Application have agreed to privately use for a certain version of SCF.

· in agreementText

This is the agreement text that is to be signed by the Framework using the private key of the Framework.

· in signingAlgorithm

This is the algorithm used to compute the digital signature.

Output:

· out signatureAndServiceMgr

This is a reference to a structure containing the digital signature of the Framework for the service agreement, and a reference to the manager interface of the SCF.

6 Summary of proposed changes

This contribution proposes to:

· Replace the sequence diagrams for Registration, Discovery and Initial Access, currently in 120070, by the ones in the contribution (both diagrams and text).

· Add a new clause in 120070 for a sequence diagram for Service Selection, containing the diagram and text in this contribution.

