3GPP TSG_CN5 (Open Service Architecture – OSA)

Meeting #9, Helsinki, FINLAND, 6 – 8 February 2001
Tdoc N5-010039

Source:
Ericsson, Alcatel

Title:
Introduction of setter / getter operations.
Agenda Item:

Document for:
Approval
Category:

Work Item ID:

Doc Summary:

Specs involved:


Introduction

Properties of objects are modelled as attributes. For all attributes one usually defines so-called setter and getter methods that are used to set the value of attributes and obtain the current value of attributes.

Currently in the Call control API already some setters / getters are defined like setCallChargePlan(), getNotification(), getCallLegs, getLastRedirectedAddress().

However, we propose to define the actual attributes of the objects and also introduce consistent setter and getter methods.

Call Control object properties

The following object properties can be distinguished:

· Call Control manager:

· Notification Requests : all requests for notifications that the manager is handling.

· Load Control Properties : all requests for load control that the manager is handling.

· Call Notification status : status of call notification (Active or Notification terminated)

· Call :

· Active Call legs : all active callLegs that the call is handling. 

· Requested Call Info : information requested with getCallInfoReq().

· Charge Plan : charge plan for the call.

· Advice of Charge properties : requested advice of charge information.

· Call Supervision properties : requested call supervision properties.

· Call Leg:

· Target Address : address associated with the call leg.

· Requested Events : dynamic events requested to be monitored.

· Related Call object : call object the call leg belongs to.

· Requested Call Leg Info : information requested with getInfoReq()

· Last redirected address : address from which the call was last redirected.

· Connection properties : Specifies the connection properties of the Call Leg, e.g CallLeg will be attached to the call: automatically or explicitly by using attachMedia().

· Call ownership : Indicates whether this CallLegs is the call owner, meaning that when the associated party releases the complete call is released. There can be only one call owner per call.

Impact on the specification

All properties can be explicitly modelled in the specification and additionally related setter and getter operations can be defined. Below the impact on the specification is outlined.

4.1 MultiParty Call Control Service Interface Classes

The Multi-party Call Control service enhances the functionality of the Generic Call Control Service with leg management. It also allows for multi-party calls to be established, i.e., up to a service specific number of legs can be connected simultaneously to the same call.
The Multi-party Call Control Service is represented by the IpMultiPartyCallControlManager, IpMultiPartyCall, IpCallLeg  interfaces that interface to services provided by the network. Some methods are asynchronous, in that they do not lock a thread into waiting whilst a transaction performs. In this way, the client machine can handle many more calls, than one that uses synchronous message calls. To handle responses and reports, the developer must implement IpAppMultiPartyCallManager, IpAppMutliPartyCall and IpAppCallLeg to provide the callback mechanism.






4.1.1 Interface Class IpMultiPartyCallControlManager 
Inherits from: IpService 
This interface is the 'service manager' interface for the Multi-party Call Control Service.  The multi-party call control manager interface provides the management functions to the multi-party call control service. The application programmer can use this interface to provide overload control functionality, create call objects and to enable or disable call-related event notifications. 
<<Interface>>

IpMultiPartyCallControlManager

notificationsRequested : TpNotificationsRequestedSet

loadControlRequested : TpCallLoadControlRequestedSet
callNotificationStatus : TpCallNotificationStatus

createCall (appCall : in IpAppCallRef, callReference : out TpCallIdentifierRef) : TpResult

createNotification (appCallControlManager : in IpAppCallControlManagerRef, notificationRequest : in TpCallNotificationRequest, assignmentID : out TpAssignmentIDRef) : TpResult

destroyNotification (assignmentID : in TpAssignmentID) : TpResult

changeNotification (assignmentID : in TpAssignmentID, notificationRequest : in TpCallNotificationRequest) : TpResult

getNotification (notificationsRequested : out TpNotificationsRequestedSetRef) : TpResult

getNotificationStatus (callNotificationStatus : out TpCallNotificationStatusRef ) : TpResult

setCallLoadControl (duration : in TpDuration, mechanism : in TpCallLoadControlMechanism, treatment : in TpCallTreatment, addressRange : in TpAddressRange, assignmentID : out TpAssignmentIDRef) : TpResult
getLoadControlRequested (loadControlRequested : out TpCallLoadControlRequestedSetRef ) : TpResult


Attribute

notificationsRequested

This attribute contains all requested notifications. 
Attribute

loadControlRequested

This attribute contains all requested load control properties. 

Attribute

callNotificationStatus

This attribute contains the notification status (Active or Notification Interrupted). 

Method

createCall()

This method is used to create a new  call object. 

Parameters 

appCall : in IpAppCallRef

Specifies the application interface for callbacks from the call created.
callReference : out TpCallIdentifierRef

Specifies the interface reference and sessionID of the call created.
Raises

TpGCCSException,TpGeneralException
Method

createNotification()

This method is used to enable call notifications so that events can be sent to the application. If some application already requested notifications with criteria that overlap the specified criteria, the request is refused with P_GCCS_INVALID_CRITERIA.

The criteria are said to overlap if both originating and terminating ranges overlap and the same number plan is used and the same NotificationCallType is used.

If the same application requests two notifications with exactly the same criteria but different callback references, the second callback will be treated as an additional callback. This means that the callback will only be used in case when the first callback specified by the application is unable to handle the reportNotification (e.g., due to overload or failure). 

Parameters 

appCallControlManager : in IpAppCallControlManagerRef

If this parameter is set (i.e. not NULL) it specifies a reference to the application interface, which is used for callbacks. If set to NULL, the application interface defaults to the interface specified via the setCallback() method.
notificationRequest : in TpCallNotificationRequest

Specifies the event specific criteria used by the application to define the event required. Only events that meet these criteria are reported. Examples of events are "incoming call attempt reported by network", "answer", "no answer", "busy". Individual addresses or address ranges may be specified for destination and/or origination. 
assignmentID : out TpAssignmentIDRef

Specifies the ID assigned by the generic call control manager interface for this newly-enabled event notification.
Raises

TpGCCSException,TpGeneralException
Method

destroyNotification()

This method is used by the application to disable call notifications.  

Parameters 

assignmentID : in TpAssignmentID

Specifies the assignment ID given by the generic call control manager interface when the previous enableNotification() was called. If the assignment ID does not correspond to one of the valid assignment IDs, the framework will return the error code P_INVALID_ASSIGNMENTID.
Raises

TpGCCSException,TpGeneralException
Method

changeNotification()

This method is used by the application to change the event criteria introduced with createNotification. Any stored criteria associated with the specified assignementID will be replaced with the specified criteria. 

Parameters 

assignmentID : in TpAssignmentID

Specifies the ID assigned by the generic call control manager interface for the event notification.
notificationRequest : in TpCallNotificationRequest

Specifies the new set of event specific criteria used by the application to define the event required. Only events that meet these criteria are reported.
Raises

TpGeneralException,TpGCCSException
Method

getNotification()

This method is used by the application to query the event criteria set with createNotification or changeNotification. 

Parameters 

notificationsRequested : out TpNotificationsRequestedSetRef

Specifies the nofications that have been requested by the application.
Raises

TpGeneralException,TpGCCSException
Method

getNotificationStatus()

This method is used by the application to query the status of the Call Control Manager. 

Parameters 

callNotificationStatus : out TpCallNotificationStatusRef
Specifies the status of the Call Control Manager: “Active” or “Notifications interrupted”
Raises

TpGeneralException,TpGCCSException
Method

setCallLoadControl()

This method imposes or removes load control on calls made to a particular address range within the generic call control service. The address matching mechanism is similar as defined for TpCallEventCriteria. 

Parameters 

duration : in TpDuration

Specifies the duration for which the load control should be set.
A duration of 0 indicates that the load control should be removed.
A duration of -1 indicates an infinite duration (i.e., until disabled by the application)
A duration of -2 indicates the network default duration.
mechanism : in TpCallLoadControlMechanism

Specifies the load control mechanism to use (for example, admit one call per interval), and any necessary parameters, such as the call admission rate. The contents of this parameter are ignored if the load control duration is set to zero.
treatment : in TpCallTreatment

Specifies the treatment of calls that are not admitted. The contents of this parameter are ignored if the load control duration is set to zero.
addressRange : in TpAddressRange

Specifies the address or address range to which the overload control should be applied or removed.
assignmentID : out TpAssignmentIDRef

Specifies the assignmentID assigned by the gateway to this request. This assignementID can be used to correlate the callOverlloadEncountered and callOverloadCeased methods with the request.
Raises

TpGeneralException,TpGCCSException
Method

getLoadControlRequested()

This method is used by the application to query the load control properties. 

Parameters 

loadControlRequested : out TpLoadControlRequestedSetRef 
Specifies the load control properties
Raises

TpGeneralException,TpGCCSException
4.1.2 Interface Class IpAppMultiPartyCallControlManager 
Inherits from: IpInterface 
The Multi-Party call control manager application interface provides the application call control management functions to the Multi-Party call control service. 
<<Interface>>

IpAppMultiPartyCallControlManager



reportNotification (callReference : in TpCallIdentifier, callLegReference : in TpCallLegIdentifier, notificationInfo : in TpCallNotificationInfo, assignmentID : in TpAssignmentID, appCall : out IpAppCallRefRef) : TpResult

callAborted (callReference : in TpSessionID) : TpResult

callNotificationInterrupted () : TpResult

callNotificationContinued () : TpResult

callOverloadEncountered (assignmentID : in TpAssignmentID) : TpResult

callOverloadCeased (assignmentID : in TpAssignmentID) : TpResult



Method

reportNotification()

This method notifies the application of the arrival of a call-related event. 

Parameters 

callReference : in TpCallIdentifier

Specifies the reference to the call interface to which the notification relates.
callLegReference : in TpCallLegIdentifier

Specifies the reference to the callLeg interface to which the notification relates.
notificationInfo : in TpCallNotificationInfo

Specifies data associated with this event.
assignmentID : in TpAssignmentID

Specifies the assignment id which was returned by the createNotification() method. The application can use assignment id to associate events with event specific criteria and to act accordingly.
appCall : out IpAppCallRefRef

Specifies a reference to the application interface which implements the callback interface for the new call.
Raises

TpGCCSException,TpGeneralException
Method

callAborted()

This method indicates to the application that the call object (at the gateway) has aborted or terminated abnormally. No further communication will be possible between the call and application. 

Parameters 

callReference : in TpSessionID

Specifies the sessionID of call  that has aborted or terminated abnormally.
Raises

TpGCCSException,TpGeneralException
Method

callNotificationInterrupted()

This method indicates to the application that all event notifications have been temporary interrupted (for example, due to faults detected).

Note that more permanent failures are reported via the Framework (integrity management). 

Parameters 

No Parameters were identified for this method

Raises

TpGCCSException,TpGeneralException
Method

callNotificationContinued()

This method indicates to the application that event notifications will again be possible. 

Parameters 

No Parameters were identified for this method

Method

callOverloadEncountered()

This method indicates that the network has detected overload and may have automatically imposed load control on calls requested to a particular address range or calls made to a particular destination within the call control service. 

Parameters 

assignmentID : in TpAssignmentID

Specifies the assignmentID corresponding to the associated setCallLoadControl. This implies the addressrange for within which the overload has been encountered.
Raises

TpGeneralException,TpGCCSException
Method

callOverloadCeased()

This method indicates that the network has detected that the overload has ceased and has automatically removed any load controls on calls requested to a particular address range or calls made to a particular destination within the call control service. 

Parameters 

assignmentID : in TpAssignmentID

Specifies the assignmentID corresponding to the associated setCallLoadControl. This implies the addressrange for within which the overload has been ceased
Raises

TpGeneralException,TpGCCSException
4.1.3 Interface Class IpMultiPartyCall 
Inherits from: IpService 
The Multi-Party Call provides the possibility to control the call routing, to request information from the call, control the charging of the call, to release the call and to supervise the call.  It also gives the possibiltiy to manage call legs explicitly.  Via the legs the application can also influence the media in multi-media calls.  If an application uses the multi-party call control interface it may call the createAndRouteCallLeg() operation several times without disconnecting already connected destination.  Therefore, an application may implicitly create more then one (destination) call leg. However, there can only be at most one call leg that owns the call ("call owner") at any time.  In contrast to the conference service it is not possible to move legs to another call object. 
<<Interface>>

IpMultiPartyCall

activeCallLegs : TpCallLegIdentifierSet

callInfoRequested : TpCallInfoType

chargePlan : TpCallChargePlan
adviceOfChargeProperties : TpAOCProperties
callSuperviseProperties : TpCallSuperviseProperties


getCallLegs (callSessionID : in TpSessionID, callLegList : out TpCallLegIdentifierSetRef) : TpResult

createCallLeg (callSessionID : in TpSessionID, appCallLeg : in IpAppCallLegRef, targetAddress : in TpAddress, originatingAddress : in TpAddress, originalCalledAddress : in TpAddress, redirectingAddress : in TpAddress, appInfo : in TpCallAppInfoSet, callLeg : out TpCallLegIdentifierRef) : TpResult

createAndRouteCallLeg (callSessionID : in TpSessionID, eventsRequested : in TpCallEventRequestSet, targetAddress : in TpAddress, originatingAddress : in TpAddress, originalDestinationAddress : in TpAddress, redirectingAddress : in TpAddress, appInfo : in TpCallAppInfoSet, appLegInterface : in IpAppCallLegRef, callLegReference : out TpCallLegIdentifierRef) : TpResult

release (callSessionID : in TpSessionID, cause : in TpCallReleaseCause) : TpResult

deassignCall (callSessionID : in TpSessionID) : TpResult

getCallInfoReq (callSessionID : in TpSessionID, callInfoRequested : in TpCallInfoType) : TpResult

getCallInfoRequested (callSessionID : in TpSessionID, callInfoRequested : out TpCallInfoTypeRef) : TpResult
setCallChargePlan (callSessionID : in TpSessionID, callChargePlan : in TpCallChargePlan) : TpResult
getCallChargePlan (callSessionID : in TpSessionID, callChargePlan : out TpCallChargePlan) : TpResult
setAdviceOfCharge (callSessionID : in TpSessionID, aOCInfo : in TpAoCInfo, tariffSwitch : in TpDuration) : TpResult
getAdviceOfChargeProperties ( callSessionID : in TpSessionID, aOCProperties : out TpAOCPropertiesRef) : TpResult
superviseCallReq (callSessionID : in TpSessionID, time : in TpDuration, treatment : in TpCallSuperviseTreatment) : TpResult
getSuperviseCallProperties ( callSessionID : in TpSessionID, callSuperviseProperties : TpCallSupervisePropertiesRef) : TpResult
getMoreDialledDigitsReq (callSessionID : in TpSessionID, length : in TpInt32) : TpResult



Attribute

activeCallLegs

This attribute contains all CallLegs associated with this call. 
Attribute

callInfoRequested

This attribute contains the info requested with getCallInfoReq(). 

Attribute

chargePlan

This attribute contains the current charge plan. 

Attribute

adviceOfChargeProperties

This attribute contains all requested AOC information

Attribute

callSupervisionProperties

This attribute contains all requested call supervisioin properties 

. 

Method

getCallLegs()

This method requests the identification of the call leg objects associated with the call object. Returns the legs in the order of creation. 

Parameters 

callSessionID : in TpSessionID

Specifies the call session ID of the call.
callLegList : out TpCallLegIdentifierSetRef

Specifies the call legs associated with the call. The set contains both the sessionIDs and the interface references.
Raises

TpGeneralException,TpGCCSException
Method

createCallLeg()

This method requests the creation of a new call leg object The call leg will be associated with the call, but not attached. The call leg can be attached to the call (using attachMedia) when the call leg is in the connected state (i.e. it has been answered). 

Parameters 

callSessionID : in TpSessionID

Specifies the call session ID of the call.
appCallLeg : in IpAppCallLegRef

Specifies the application interface for callbacks from the call leg created.
targetAddress : in TpAddress

Specifies the destination party to which the call should be routed.
originatingAddress : in TpAddress

Specifies the address of the originating (calling) party.
originalCalledAddress : in TpAddress

Specifies the original address to which the call was initiated.
redirectingAddress : in TpAddress

Specifies the last address from which the call was redirected.
appInfo : in TpCallAppInfoSet

Specifies application-related information pertinent to the call leg (such as alerting method, tele-service type, service identities and interaction indicators).
callLeg : out TpCallLegIdentifierRef

Specifies the interface and sessionID of the call leg created.
Raises

TpGeneralException,TpGCCSException
Method

createAndRouteCallLeg()

This operation requests creation and routing of a new callLeg. In case the connection to the destination party is established successfully the CallLeg is attached to the call, i.e. no explicit attachMedia() operation is needed. Requested events will be reported on the IpAppCallLeg interface. This interface the application must provide through the appLegInterface parameter. 

The extra address information (i.e., originalDestinationAddress, redirectingAddress, originatingAddress) is optional. If not present (i.e., the plan is set to P_ADDRESS_PLAN_NOT_PRESENT), the information provided in corresponding addresses from the route is used, otherwise the network or gateway provided numbers will be used. 

Parameters 

callSessionID : in TpSessionID

Specifies the call session ID of the call.
eventsRequested : in TpCallEventRequestSet

Specifies the event specific criteria used by the application to define the events required. Only events that meet these criteria are reported. Examples of events are "adress analysed", "answer", "release".

targetAddress : in TpAddress

Specifies the destination party to which the call should be routed.
originatingAddress : in TpAddress

Specifies the address of the originating (calling) party.
originalDestinationAddress : in TpAddress

Specifies the original destination address of the call.
redirectingAddress : in TpAddress

Specifies the address from which the call was last redirected.
appInfo : in TpCallAppInfoSet

Specifies application-related information pertinent to the call (such as alerting method, tele-service type, service identities and interaction indicators).




appLegInterface : in IpAppCallLegRef

Specifies a reference to the application interface that implements the callback interface for the new call leg. Requested events will be reported by the eventReportRes() operation on this interface.
callLegReference : out TpCallLegIdentifierRef

Specifies the reference to the CallLeg interface that was created.
Raises

TpGCCSException,TpGeneralException
Method

release()

This method requests the release of the call object and associated objects. The call will also be terminated in the network. If the application requested reports to be sent at the end of the call (e.g., by means of getCallInfoReq) these reports will still be sent to the application.

The application should always either release or deassign the call when it is finished with the call, unless a callFaultDetected is received by the application. 

Parameters 

callSessionID : in TpSessionID

Specifies the call session ID of the call.
cause : in TpCallReleaseCause

Specifies the cause of the release.
Raises

TpGCCSException,TpGeneralException
Method

deassignCall()

This method requests that the relationship between the application and the call and associated objects be de-assigned. It leaves the call in progress, however, it purges the specified call object so that the application has no further control of call processing. If a call is de-assigned that has event reports, call information reports or call Leg information reports requested, then these reports will be disabled and any related information discarded.

The application should always either release or deassign the call when it is finished with the call, unless callFaultDetected is received by the application. 

Parameters 

callSessionID : in TpSessionID

Specifies the call session ID of the call.
Raises

TpGCCSException,TpGeneralException
Method

getCallInfoReq()

This asynchronous method requests information associated with the call to be provided at the appropriate time (for example, to calculate charging). This method must be invoked before the call is routed to a target address. Two types of reports can be requested; a final report or intermediate reports.

A final call report is sent when the call is ended. The call object will exist after the call is ended if information is required to be sent to the application at the end of the call. The call information will be sent after any call event reports.

Intermediate reports are received when the destination leg or party terminates or when the call ends. In case the originating party is still available the application can still initiate a follow-on call. 

Parameters 

callSessionID : in TpSessionID

Specifies the call session ID of the call.
callInfoRequested : in TpCallInfoType

Specifies the call information that is requested.
Raises

TpGCCSException,TpGeneralException
Method

getCallInfoRequested()

This operation allows the application to query the requested information that was earlier requested by getCallInfoReq()
Parameters 

callSessionID : in TpSessionID

Specifies the call session ID of the call.
callInfoRequested : out TpCallInfoTypeRef
Specifies the requested call information that was requested earlier.
Raises

TpGCCSException,TpGeneralException
Method

setCallChargePlan()

Set an operator specific charge plan for the call. The charge plan must be set before the call is routed to a target address. Depending on the operator the method can also be used to change the charge plan for ongoing calls. 

Parameters 

callSessionID : in TpSessionID

Specifies the call session ID of the call.
callChargePlan : in TpCallChargePlan

Specifies the charge plan to use.
Raises

TpGCCSException,TpGeneralException
Method

getCallChargePlan()

This operation allows applications to retrieve the charge plan that was set earlier by setCallChargePlan(). 

Parameters 

callSessionID : in TpSessionID

Specifies the call session ID of the call.
callChargePlan : out TpCallChargePlanRef

Specifies the charge plan to use.
Raises

TpGCCSException,TpGeneralException
Method

setAdviceOfCharge()

This method allows for advice of charge (AOC) information to be sent to terminals that are capable of receiving this information. 

Parameters 

callSessionID : in TpSessionID

Specifies the call session ID of the call. 
aOCInfo : in TpAoCInfo

Specifies two sets of Advice of Charge parameter.
tariffSwitch : in TpDuration

Specifies the tariff switch interval that signifies when the second set of AoC parameters becomes valid.
Raises

TpGeneralException,TpGCCSException
Method

getAdviceOfChargeProperties()

This method allows to obtain the AOC information the application earlier requested to be sent to terminals. 

Parameters 

callSessionID : in TpSessionID

Specifies the call session ID of the call. 
aOCProperties : out TpAOCPropertiesRef
Specifies the Advice Of Charge properties.
Raises

TpGeneralException,TpGCCSException
Method

superviseCallReq()

The application calls this method to supervise a call. The application can set a granted connection time for this call. If an application calls this operation before it routes a call or a user interaction operation the time measurement will start as soon as the call is answered by the B-party or the user interaction system. 

Parameters 

callSessionID : in TpSessionID

Specifies the call session ID of the call.
time : in TpDuration

Specifies the granted time in milliseconds for the connection.
treatment : in TpCallSuperviseTreatment

Specifies how the network should react after the granted connection time expired.
Raises

TpGCCSException,TpGeneralException
Method

getSuperviseCallProperties()

This method allows to obtain the information on how to supervise the call that was set earlier by superviseCallReq(). 

Parameters 

callSessionID : in TpSessionID

Specifies the call session ID of the call. 
callSuperviseProperties : TpCallSupervisePropertiesRef
Specifies the information on how to supervise the call.
Raises

TpGeneralException,TpGCCSException
Method

getMoreDialledDigitsReq()

This asynchronous method requests to collect further digits and return them to the application. Depending on the administered data, the network may indicate a new call to the gateway if a caller goes off-hook or dialled only a few digits. The application then gets a new call event which contains no digits or only the few dialled digits in the event data. The application should then use this method if it requires more dialled digits, e.g. to perform screening. 

Parameters 

callSessionID : in TpSessionID

Specifies the call session ID of the call.
length : in TpInt32

Specifies the maximum number of digits to collect. 
Raises

TpGeneralException, TpGCCSException
4.1.4 Interface Class IpAppMultiPartyCall 
Inherits from: IpInterface 
The Multi-Party call application interface is implemented by the client application developer and is used to handle call request responses and state reports. 
<<Interface>>

IpAppMultiPartyCall



getCallInfoRes (callSessionID : in TpSessionID, callInfoReport : in TpCallInfoReport) : TpResult

getCallInfoErr (callSessionID : in TpSessionID, errorIndication : in TpCallError) : TpResult

superviseCallRes (callSessionID : in TpSessionID, report : in TpCallSuperviseReport, usedTime : in TpDuration) : TpResult

superviseCallErr (callSessionID : in TpSessionID, errorIndication : in TpCallError) : TpResult

callFaultDetected (callSessionID : in TpSessionID, fault : in TpCallFault) : TpResult

getMoreDialledDigitsRes (callSessionID : in TpSessionID, digits : in TpString) : TpResult

getMoreDialledDigitsErr (callSessionID : in TpSessionID, errorIndication : in TpCallError) : TpResult

callEnded (callSessionID : in TpSessionID, report : in TpCallEndedReport) : TpResult



Method

getCallInfoRes()

This asynchronous method reports time information of the finished call or call attempt as well as release cause depending on which information has been requested by getCallInfoReq. This information may be used e.g. for charging purposes. The call information will possibly be sent after reporting of all cases where the call or a leg of the call has been disconnected or a routing failure has been encountered.


 

Parameters 

callSessionID : in TpSessionID

Specifies the call session ID of the call.
callInfoReport : in TpCallInfoReport

Specifies the call information requested.
Raises

TpGCCSException,TpGeneralException
Method

getCallInfoErr()

This asynchronous method reports that the original request was erroneous, or resulted in an error condition. 

Parameters 

callSessionID : in TpSessionID

Specifies the call session ID of the call.
errorIndication : in TpCallError

Specifies the error which led to the original request failing.
Raises

TpGCCSException,TpGeneralException
Method

superviseCallRes()

This asynchronous method reports a call supervision event to the application when it has indicated it's interest in these kind of events.

It is also called when the connection is terminated before the supervision event occurs. Furthermore, this method is invoked as a response to the request also when a tariff switch happens in the network during an active call. 

Parameters 

callSessionID : in TpSessionID

Specifies the call session ID of the call
report : in TpCallSuperviseReport

Specifies the situation which triggered the sending of the call supervision response.
usedTime : in TpDuration

Specifies the used time for the call supervision (in milliseconds).
Raises

TpGCCSException,TpGeneralException
Method

superviseCallErr()

This asynchronous method reports a call supervision error to the application. 

Parameters 

callSessionID : in TpSessionID

Specifies the call session ID of the call.
errorIndication : in TpCallError

Specifies the error which led to the original request failing.
Raises

TpGCCSException,TpGeneralException
Method

callFaultDetected()

This method indicates to the application that a fault in the network has been detected. The call may or may not have been terminated.

The system deletes the call object. Therefore, the application has no further control of call processing. No report will be forwarded to the application. 

Parameters 

callSessionID : in TpSessionID

Specifies the call session ID of the call in which the fault has been detected.
fault : in TpCallFault

Specifies the fault that has been detected.
Raises

TpGCCSException,TpGeneralException
Method

getMoreDialledDigitsRes()

This asynchronous method returns the collected digits to the application. 

Parameters 

callSessionID : in TpSessionID

Specifies the call session ID of the call.
digits : in TpString

Specifies the additional dialled digits if the string length is greater than zero.
Raises

TpGeneralException,TpGCCSException
Method

getMoreDialledDigitsErr()

This asynchronous method reports an error in collecting digits to the application. 

Parameters 

callSessionID : in TpSessionID

Specifies the call session ID of the call.
errorIndication : in TpCallError

Specifies the error which led to the original request failing.
Raises

TpGeneralException,TpGCCSException
Method

callEnded()

This method indicates to the application that the call has terminated in the network. However, the application may still receive some results (e.g., getCallInfoRes) related to the call. The application is expected to deassign the call object after having received the callEnded.

Note that the event that caused the call to end might also be received separately if the application was monitoring for it. 

Parameters 

callSessionID : in TpSessionID

Specifies the call sessionID.
report : in TpCallEndedReport

Specifies the reason the call is terminated.
Raises

TpGeneralException,TpGCCSException
4.1.5 Interface Class IpCallLeg 
Inherits from: IpService 
The call leg interface represents the logical call leg associating a call with an address. The call leg tracks its own states and allows charging summaries to be accessed. The leg represents the signalling relationship between the call and an address.  An application that uses the IpCallLeg interface to set up connections has more control, e.g. by defining leg specific event request and can obtain call leg specific report and events. 
<<Interface>>

IpCallLeg

targetAddress : TpAddress

callOwnership : TpCallOwnership

eventsRequested : TpCallEventRequestSet

callReference : TpCallIdentifier

infoRequested : TpCallLegInfoType
lastRedirectedAddress : TpAddress

connectionProperties : TpCallLegConnectionProperties


getTargetAddress ( callLegSessionID : in TpSessionID, targetAddress : out TpAddressRef) : TpResult
getCallOwnership ( callLegSessionID : in TpSessionID, callOwnerShip : out TpCallOwnerShipRef ) : TpResult
setCallOwnership ( callLegSessionID : in TpSessionID ) : TpResult
route (callLegSessionID : in TpSessionID) : TpResult

eventReportReq (callLegSessionID : in TpSessionID, eventsRequested : in TpCallEventRequestSet) : TpResult
getEventsRequested (callLegSessionID : in TpSessionID, eventsRequested : out TpCallEventRequestSetRef) : TpResult
release (callLegSessionID : in TpSessionID, cause : in TpCallReleaseCause) : TpResult

getInfoReq (callLegSessionID : in TpSessionID, callLegInfoRequested : in TpCallLegInfoType) : TpResult

getInfoRequested (callLegSessionID : in TpSessionID, callLegInfoRequested : out TpCallLegInfoType) : TpResult

getCall (callLegSessionID : in TpSessionID, callReference : out TpCallIdentifierRef) : TpResult
setConnectionProperties (callLegSessionID : in TpSessionID, connectionProperties : in TpCallLegConnectionProperties ) : TpResult
getConnectionProperties (callLegSessionID : in TpSessionID, connectionProperties : in TpCallLegConnectionPropertiesRef ) : TpResult

attachMedia (callLegSessionID : in TpSessionID) : TpResult

detachMedia (callLegSessionID : in TpSessionID) : TpResult

getLastRedirectedAddress (callLegSessionID : in TpSessionID, redirectingAddress : out TpAddressRef) : TpResult

continueProcessing () : void



Attribute

targetAddress
This attribute contains the target address. 

Attribute

callOwnership

This attribute indicates whether this CallLegs is the call owner, meaning that when the associated party releases the complete call is released. There can be only one call owner per call.

Attribute

eventsRequested

This attribute contains all requested events. 

Attribute

callReference

This attribute contains a reference to the call object the CallLeg belongs to. 

Attribute

infoRequested

This attribute contains all requested info with getInfoReq(). 

Attribute

lastRedirectedAddress

This attribute contains the address from which the call was last redirected.
Attribute

notificationsRequested

This attribute contains all requested notifications. 

Attribute

connectionProperties
This attribute indicates the connection properties of the CallLeg, e.g. will the CallLeg be attached to the call: implicitly or explicitly.

 . 

Method

getTargetAddress()

This operation allows applications to query for the target address associated with this CallLeg..
 

Parameters 

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.
targetAddress : out TpAddressRef
Specifies the target address associated with this CallLeg.
Raises

TpGeneralException,TpGCCSException
Method

getCallOwnership()

This operation allows applications to query whether this CallLeg is the call owner..
 

Parameters 

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

callOwnerShip : out TpCallOwnershipRef
Specifies whether this CallLeg is the Call owner.
Raises

TpGeneralException,TpGCCSException
Method

setCallOwnership()

This operation allows applications to make this CallLeg the call owner. There can be only one call owner per call. When the call owner releases the complete call is released.

Parameters 

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

Raises

TpGeneralException,TpGCCSException
Method

route()

This operation is used to setup a connection to a party. In case the connection to the destination party is established successfully the CallLeg is not yet attached to the call, i.e. an explicit attachMedia() operation is still needed. Requested events will be reported by the eventReportRes() operation on the IpAppCallLeg interface.

If the application developer does not want to deal with the redirectingAddress, originalDestinationAddress and originatingAddress than these parameter may be set to unavailable (by setting the plan to P_ADDRESS_PLAN_NOT_PRESENT) for convenience. In this case information provided when routing to the origination will be used if applicable. Otherwise network or gateway provided addresses will be used.
 

Parameters 

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.
Raises

TpGeneralException,TpGCCSException
Method

eventReportReq()

This asynchronous method sets, clears or changes the criteria for the events that the call leg object will be set to observe. 

Parameters 

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.
eventsRequested : in TpCallEventRequestSet

Specifies the event specific criteria used by the application to define the events required. Only events that meet these criteria are reported. Examples of events are "address analysed", "answer", "release".
Raises

TpGeneralException,TpGCCSException
Method

getEventsRequested()

This method obtains the current criteria for the events that the call leg object will be set to observe. 

Parameters 

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.
eventsRequested : in TpCallEventRequestSetRef
Specifies the event specific criteria used by the application to define the events required. Only events that meet these criteria are reported. Examples of events are "address analysed", "answer", "release".
Raises

TpGeneralException,TpGCCSException
Method

release()

This method requests the release of the call leg. If successful, the associated address (party) will be released from the call, and the call leg deleted. Note that if the controlling leg is released, the entire call is released. 

Parameters 

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.
cause : in TpCallReleaseCause

Specifies the cause of the release.
Raises

TpGeneralException,TpGCCSException
Method

getInfoReq()

This asynchronous method requests information associated with the call leg to be provided at the appropriate time (for example, to calculate charging). Note: in the call leg information must be accessible before the objects of concern are deleted. 

Parameters 

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.
callLegInfoRequested : in TpCallLegInfoType

Specifies the call leg information that is requested.
Raises

TpGeneralException,TpGCCSException
Method

getInfoRequested()

This method retrieves the which information the application has requested associated with the call leg to be provided at the appropriate time (for example, to calculate charging). 

Parameters 

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.
callLegInfoRequested : out TpCallLegInfoTypeRef
Specifies the call leg information that was requested.
Raises

TpGeneralException,TpGCCSException
Method

getCall()

This method requests the call associated with this call leg. 

Parameters 

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.
callReference : out TpCallIdentifierRef

Specifies the interface and sessionID of the call associated with this call leg.
Raises

TpGeneralException,TpGCCSException
Method

setConnectionProperties()

This method sets the connection propeties of the CallLeg. 

Parameters 

callLegSessionID : in TpSessionID

Specifies the sessionID of the call leg to attach to the call.
connectionProperties : in TpCallLegConnectionProperties 
Specifies the connection properties of the CallLeg..
Raises

TpGeneralException,TpGCCSException
Method

getConnectionProperties()

This method obtains how the CallLeg should be attached to the Call: automatically or explicitly by invoking attachMedia(). 

Parameters 

callLegSessionID : in TpSessionID

Specifies the sessionID of the call leg to attach to the call.

connectionProperties : in TpCallLegConnectionPropertiesRef 

Specifies the connection properties of the CallLeg..
Raises

TpGeneralException,TpGCCSException
Method

attachMedia()

This method requests that the call leg be attached to its call object. This will allow transmission on all associated bearer connections or media channels to and from other parties in the call. The call leg must be in the connected state for this method to complete successfully. 

Parameters 

callLegSessionID : in TpSessionID

Specifies the sessionID of the call leg to attach to the call.
Raises

TpGeneralException,TpGCCSException
Method

detachMedia()

This method will detach the call leg from its call, i.e., this will prevent transmission on any associated bearer connections or media channels to and from other parties in the call. The call leg must be in the connected state for this method to complete successfully. 

Parameters 

callLegSessionID : in TpSessionID

Specifies the sessionID of the call leg to detach from the call.
Raises

TpGeneralException,TpGCCSException
Method

getLastRedirectedAddress()

Queries the last address the leg has been redirected to. 

Parameters 

callLegSessionID : in TpSessionID

Specifies the call session ID of the call leg.
redirectingAddress : out TpAddressRef

Specifies the last address where the call leg was redirected to.
Method

continueProcessing()

This operation continues processing of the call. Applications can invoke this operation after call processing was interrupted due to detection of an event the application subscribed it's interest in. 

Parameters 

No Parameters were identified for this method

4.1.6 Interface Class IpAppCallLeg 
Inherits from: IpInterface 
The application call leg interface is implemented by the client application developer and is used to handle responses and errors associated with requests on the call leg in order to be able to receive leg specific information and events. 
<<Interface>>

IpAppCallLeg



eventReportRes (callLegSessionID : in TpSessionID, eventInfo : in TpCallEventInfo) : TpResult

eventReportErr (callLegSessionID : in TpSessionID, errorIndication : in TpCallError) : TpResult

getInfoRes (callLegSessionID : in TpSessionID, callLegInfoReport : in TpCallLegInfoReport) : TpResult

getInfoErr (callLegSessionID : in TpSessionID, errorIndication : in TpCallError) : TpResult



Method

eventReportRes()

This asynchronous method reports that an event has occurred that was requested to be reported (for example, a mid-call event, the party has requested to disconnect, etc.). 

Parameters 

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.
eventInfo : in TpCallEventInfo

Specifies data associated with this event.
Raises

TpGeneralException,TpGCCSException
Method

eventReportErr()

This asynchronous method indicates that the request to manage call leg reports  was unsuccessful, and the reason (for example, the parameters were incorrect, the request was refused, etc.). 

Parameters 

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.
errorIndication : in TpCallError

Specifies the error which led to the original request failing.
Raises

TpGeneralException,TpGCCSException
Method

getInfoRes()

This asynchronous method reports all the necessary information requested by the application, for example to calculate charging. 

Parameters 

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.
callLegInfoReport : in TpCallLegInfoReport

Specifies the call leg information requested.
Raises

TpGeneralException,TpGCCSException
Method

getInfoErr()

This asynchronous method reports that the original request was erroneous, or resulted in an error condition. 

Parameters 

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.
errorIndication : in TpCallError

Specifies the error which led to the original request failing.
Raises

TpGeneralException,TpGCCSException
..


4.2 Multi-Party Call Control Data Definitions

..

TpCallLoadControlRequested

Defines the Sequence of Data Elements that specify an outstanding request for load control.
Sequence Element Name
Sequence Element Type

Duration
TpDuration

Mechanism
TpCallLoadControlMechanism

Treatment
TpCallTreatment

AddressRange
TpAddressRange

AssignmentID
TpAssignmentID

TpCallLoadControlRequestedSet

Defines a Numbered Set of Data Elements of TpCallLoadControlRequested.

TpCallNotificationStatus

Defines the states of the notification mechanism.

Name
Value
Description

P_CALL_NOTIFICATION_STATUS_ACTIVE
0
Notifications will be forwarded to the application

P_CALL_NOTIFICATION_STATUS_TERMINATED
1
Notifications will not be forwarded to the application because an error happened.

TpAOCProperties

Defines the Sequence of Data Elements that specify the Advice Of Charge information earlier requested by the application.

Sequence Element Name
Sequence Element Type
Description

AOCInfo
TpAOCInfo
Specifies the two sets of Advise of Charge parameter

TarrifSwitch
TpDuration
Specifies the tarrif switch interval.

TpSuperviseCallProperties

Defines the Sequence of Data Elements that specify the call supervision information earlier requested by the application.

Sequence Element Name
Sequence Element Type
Description

Time
TpDuration
Specifies the granted time in milliseconds for the connection

Treatment
TpCallSupervisionTreatment
Specifies how the network should react after the granted connection time expires.

TpCallOwnership

Defines the call ownership status.

Name
Value
Description

P_CALL_LEG_NOT_CALL_OWNER
0
The CallLeg is not the call owner

P_CALL_LEG_CALL_OWNER
1
The CallLeg is the call owner. In case this leg releases the complete call releases.

Conclusion

The proposal in this contribution defines the actual attributes of the (Multi-party) Call Control objects and also introduce consistent setter and getter methods. We note that the proposed additions to the specification seem quite extensive. However, it involves basically no new functionality, except for the call owner ship operations. In case it is decided to defer the introduction of the attributes and setters / getters to a later stage than Rel.4 we would at least request to introduce the operations for setting and getting the connection properties and the call owner ship.

