[image: image43.png]

DTS/SPAN-120070-3 V0.0.0 (2001-01)
Open Service Access;

Application Programming Interface;

Part 3: Framework;

Reference

DTS/SPAN-120070-3

Keywords

API, OSA, IDL, FW, Framework

ETSI

650 Route des Lucioles

F-06921 Sophia Antipolis Cedex - FRANCE
Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C

Association à but non lucratif enregistrée à la

Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org
The present document may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at http://www.etsi.org/tb/status/
If you find errors in the present document, send your comment to:
editor@etsi.fr
Copyright Notification

Reproduction is only permitted for the purpose of standardization work undertaken within ETSI.
The copyright and the foregoing restrictions extend to reproduction in all media.
© European Telecommunications Standards Institute 2000.

All rights reserved.

Contents

7Intellectual Property Rights

Foreword
7
Introduction
7
1
Scope
8
2
References
8
3
Definitions, symbols and abbreviations
9
3.1
Definitions
9
3.2
Symbols
9
3.3
Abbreviations
9
4
Overview of the Framework
10
5
The Base Interface Specification
11
5.1
Interface Specification Format
11
5.1.1
Interface Class
11
5.1.2
Method descriptions
11
5.1.3
Parameter descriptions
11
5.1.4
State Model
11
5.2
Base Interface
12
5.2.1
Interface Class IpInterface
12
6
Framework-to-Application Sequence Diagrams
12
6.1
Event Notification Sequence Diagrams
12
6.1.1
Enable Event Notification
12
6.2
Integrity Management Sequence Diagrams
13
6.2.1
Load Management: Suspend/resume notification from application
13
6.2.2
Load Management: Framework queries load status
13
6.2.3
Load Management: Application reports current load condition
14
6.2.4
Load Management: Application queries load status
14
6.2.5
Load Management: Application callback registration and load control
15
6.2.6
Heartbeat Management: Start/perform/end heartbeat supervision of application
16
6.2.7
Fault Management: Framework detects a Service failure
17
6.2.8
Fault Management: Application requests a Framework activity test
18
6.3
Service Discovery Sequence Diagrams
19
6.4
Trust and Security Management Sequence Diagrams
19
6.4.1
Initial Access
19
6.4.2
Authentication
21
6.5
Service Subscription Sequence Diagrams
22
7
Framework-to-Application Class Diagrams
22
8
Framework-to-Application Interface Classes
25
8.1
Trust and Security Management Interface Classes
25
8.1.1
Interface Class IpAppAuthentication
26
8.1.2
Interface Class IpAppAccess
27
8.1.4
Interface Class IpInitial
29
8.1.5
Interface Class IpAuthentication
31
8.1.6
Interface Class IpAccess
33
8.2
Service Subscription Interface Classes
37
8.2.1
Interface Class IpClientAppManagement
37
8.2.2
Interface Class IpClientAppInfoQuery
41
8.2.3
Interface Class IpAppAuthentication
43
8.2.5
Interface Class IpServiceProfileManagement
44
8.2.6
Interface Class IpServiceProfileInfoQuery
46
8.2.7
Interface Class IpServiceContractManagement
47
8.2.8
Interface Class IpServiceContractInfoQuery
49
8.2.9
Interface Class IpEntOpAccountManagement
49
8.2.10
Interface Class IpEntOpAccountInfoQuery
51
8.3
Service Discovery Interface Classes
51
8.3.1
Interface Class IpServiceDiscovery
52
8.4
Integrity Management Interface Classes
54
8.4.1
Interface Class IpAppFaultManager
54
8.4.3
Interface Class IpFaultManager
56
8.4.5
Interface Class IpAppHeartBeatMgmt
56
8.4.6
Interface Class IpAppHeartBeat
56
8.4.8
Interface Class IpHeartBeatMgmt
56
8.4.9
Interface Class IpHeartBeat
56
8.4.11
Interface Class IpAppLoadManager
56
8.4.13
Interface Class IpLoadManager
56
8.4.15
Interface Class IpOAM
56
8.4.17
Interface Class IpAppOAM
56
8.5
Event Notification Interface Classes
56
8.5.1
Interface Class IpAppEventNotification
56
8.5.3
Interface Class IpEventNotification
56
9
Framework-to-Application State Transition Diagrams
56
9.1
Trust and Security Management State Transition Diagrams
56
9.1.1
State Transition Diagrams for IpInitial
56
9.1.1.1
Active State
56
9.1.2
State Transition Diagrams for IpAuthentication
56
9.1.2.1
Idle State
56
9.1.2.2
InitAuthentication State
56
9.1.2.3
WaitForApplicationResult State
56
9.1.2.4
Application Authenticated State
56
9.1.3
State Transition Diagrams for IpAccess
56
9.1.3.1
Active State
56
9.2
Service Subscription State Transition Diagrams
56
9.3
Service Discovery State Transition Diagrams
56
9.3.1
State Transition Diagrams for IpServiceDiscovery
56
9.3.1.1
Active State
56
9.4
Integrity Management State Transition Diagrams
56
9.4.1
State Transition Diagrams for IpHeartBeatMgmt
56
9.4.1.1
Application not supervised State
56
9.4.1.2
Application supervised State
56
9.4.2
State Transition Diagrams for IpHeartBeat
56
9.4.2.1
FW supervised by Application State
56
9.4.3
State Transition Diagrams for IpLoadManager
56
9.4.3.1
Idle State
56
9.4.3.2
Notifying State
56
9.4.3.3
Suspending Notification State
56
9.4.3.4
Registered State
56
9.4.4
State Transition Diagrams for IpLoadManagerInternal
56
9.4.4.1
Normal load State
56
9.4.4.2
Application Overload State
56
9.4.4.3
Internal overload State
56
9.4.4.4
Internal and Application Overload State
56
9.4.5
State Transition Diagrams for IpOAM
56
9.4.5.1
Active State
56
9.4.6
State Transition Diagrams for IpFaultManager
56
9.4.6.1
Framework Active State
56
9.4.6.2
Framework Faulty State
56
9.4.6.3
Framework Activity Test State
56
9.4.6.4
Service Activity Test State
56
9.4.6.6
Framework Active State
56
9.4.6.7
Framework Faulty State
56
9.4.6.8
Framework Activity Test State
56
9.4.6.9
Service Activity Test State
56
9.5
Event Notification State Transition Diagrams
56
9.5.1
State Transition Diagrams for IpEventNotification
56
9.5.1.1
Idle State
56
9.5.1.2
Notification Enabled State
56
10
Framework-to-Service Sequence Diagrams
56
10.1
Trust and Security Management Sequence Diagrams
56
10.2
Service Discovery Sequence Diagrams
56
10.3
Service Registration Sequence Diagrams
56
10.3.1
SCF Registration
56
10.4
Service Factory Sequence Diagrams
56
10.4.1
Sign Service Agreement
56
10.5
Integrity Management Sequence Diagrams
56
10.5.1
Load Management: Client and Service Load Balancing
56
10.5.2
Fault Management: Service requests Framework activity test
56
10.5.3
Fault Management: Service requests Application activity test
56
10.5.4
Fault Management: Application requests Service activity test
56
10.5.5
Fault Management: Application detects service is unavailable
56
10.6
Event Notification Sequence Diagrams
56
11
Framework-to-Service Class Diagrams
56
12
Framework-to-Service Interface Classes
56
12.1
Trust and Security Management Interface Classes
56
12.1.1
Interface Class IpFwInitial
56
12.1.2
Interface Class IpFwAuthentication
56
12.1.3
Interface Class IpFwAccess
56
12.1.5
Interface Class IpSvcAuthentication
56
12.1.6
Interface Class IpSvcAccess
56
12.2
Service Registration Interface Classes
56
12.2.1
Interface Class IpFwServiceRegistration
56
12.3
Service Factory Interface Classes
56
12.3.1
Interface Class IpSvcFactory
56
12.4
Service Discovery Interface Classes
56
12.4.1
Interface Class IpFwServiceDiscovery
56
12.5
Integrity Management Interface Classes
56
12.5.1
Interface Class IpFwFaultManager
56
12.5.3
Interface Class IpSvcFaultManager
56
12.5.5
Interface Class IpFwHeartBeatMgmt
56
12.5.6
Interface Class IpFwHeartBeat
56
12.5.8
Interface Class IpSvcHeartBeatMgmt
56
12.5.9
Interface Class IpSvcHeartBeat
56
12.5.11
Interface Class IpFwLoadManager
56
12.5.13
Interface Class IpSvcLoadManager
56
12.5.15
Interface Class IpFwOAM
56
12.5.17
Interface Class IpSvcOAM
56
12.6
Event Notification Interface Classes
56
12.6.1
Interface Class IpFwEventNotification
56
12.6.3
Interface Class IpSvcEventNotification
56
13
Framework-to-Service State Transition Diagrams
56
13.1
Trust and Security Management State Transition Diagrams
56
13.2
Service Registration State Transition Diagrams
56
13.2.1
State Transition Diagrams for IpFwServiceRegistration
56
13.2.1.1
Registering SCF State
56
13.2.1.2
SCF registered State
56
13.3
Service Factory State Transition Diagrams
56
13.4
Service Discovery State Transition Diagrams
56
13.5
Integrity Management State Transition Diagrams
56
13.6
Event Notification State Transition Diagrams
56
14
Data Definitions
56
14.1
Common Framework Data Definitions
56
14.2
Trust and Security Management Data Definitions
56
14.3
Integrity Management Data Definitions
56
Annex A (normative): OMG IDL Description of Framework
56
Annex B (informative): Contents of 3GPP OSA Framework
56
A.1
OSA Framework
56
A.1.1
Sequence Diagrams
56
A.1.2
Packages and Interfaces
56
A.1.2.1
Trust and Security Management Interfaces
56
A.1.2.2
Discovery Interface
56
A.1.2.3
Integrity Management Interfaces
56
A.2
OSA Internal Framework
56
A.2.1
Sequence Diagrams
56
A.2.2
Interfaces
56
Annex <zz> (informative): Bibliography
56
History
56

Intellectual Property Rights

Foreword

Introduction

1
Scope

The scope of this document is to consider the interface specification of an API for accessing Third Party Service Applications. UML techniques have been utilized for this purpose. This document specifies the interface for ‘Access to Third Party Service provision’. All aspects of the API are defined here, these being:

· Sequence Diagrams

· Class Diagrams

· Interface specification plus detailed method descriptions

· State Transition diagrams

· Data definitions

The process by which this task is accomplished is through the use of Object modeling techniques described by the Unified Modeling Language (UML). UML is a combined tools and methodology process which results in a comprehensive set of specifications representing, in this case, an interface between client and server applications. Further information can be found in the latest version of the ITU-T Recommendation Q.65.

The reader should note that this specification has been defined in co-operation with 3GPP CN5 and two industry consortiums, PARLAY and JAIN.

2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

· References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

· For a specific reference, subsequent revisions do not apply.

· For a non-specific reference, subsequent revisions do apply.

For the purposes of this Technical Report, the following references apply:

[1]
ETSI EN 301 234 (V2.1.1 onwards): "Example 1".

[2]
ETSI EG 201 568 (V1.3.5): "Example 2".

[3]
ETSI ETS 300 499 (1996): "Example 3".

[4]
ETSI ETS 300 999: "Example 4".

OR

ETSI EN 301 234 (V2.1.1 onwards): "Example 1".

ETSI EG 201 568 (V1.3.5): "Example 2".

ETSI ETS 300 499 (1996): "Example 3".

ETSI ETS 300 999: "Example 4".

OR

[EN301234]
ETSI EN 301 234 (V2.1.1 onwards): "Example 1".

[EG201568]
ETSI EG 201 568 (V1.3.5): "Example 2".

[ETS300499]
ETSI ETS 300 499 (1996): "Example 3".

[ETS300999]
ETSI ETS 300 999: "Example 4".

3
Definitions, symbols and abbreviations

3.1
Definitions

For the purposes of the present document, the following terms and definitions apply:

<defined term>: <definition>

example: text serving as an example

3.2
Symbols

For the purposes of the present document, the following symbols apply:

<symbol>
<Explanation>

<2nd symbol>
<2nd Explanation>

3.3
Abbreviations

For the purposes of the present document, the following abbreviations apply:

<ACRONYM1>
<Explanation>

<ACRONYM2>
<Explanation>

<ACRONYM3>
<Explanation>

4 Overview of the Framework

This subclause explains which basic mechanisms are executed in the OSA Framework prior to offering and activating applications.

The Framework API contains interfaces between the Application Server and the Framework, and between Network Service Capability Server (SCS) and the Framework (these interfaces are represented by the yellow circles in the diagram below). The description of the Framework in this document separates the interfaces into these two distinct sets: Framework to Application interfaces and Framework to Service interfaces.

[image: image43.png]
Some of the mechanisms are applied only once (e.g. establishment of service agreement), others are applied each time a user subscription is made to an application (e.g. enabling the call attempt event for a new user).

Basic mechanisms between Application and Framework:

-
Authentication: Once an off-line service agreement exists, the application can access the authentication interface. The authentication model of OSA is a peer-to-peer model. The application must authenticate the framework and vice versa. The application must be authenticated before it is allowed to use any other OSA interface.

-
Authorisation: Authorisation is distinguished from authentication in that authorisation is the action of determining what a previously authenticated application is allowed to do. Authentication must precede authorisation. Once authenticated, an application is authorised to access certain service capability features.

-
Discovery of framework and network service capability features: After successful authentication, applications can obtain available framework interfaces and use the discovery interface to obtain information on authorised network service capability features. The Discovery interface can be used at any time after successful authentication.

-
Establishment of service agreement: Before any application can interact with a network service capability feature, a service agreement must be established. A service agreement may consist of an off-line (e.g. by physically exchanging documents) and an on-line part. The application has to sign the on-line part of the service agreement before it is allowed to access any network service capability feature.

-
Access to network service capability features: The framework must provide access control functions to authorise the access to service capability features or service data for any API method from an application, with the specified security level, context, domain, etc.

Basic mechanism between Framework and Service Capability Server:

· Registering of network service capability features. SCFs offered by a Service Capability Server can be registered at the Framework. In this way the Framework can inform the Applications upon request about available service capability features (Discovery). For example, this mechanism is applied when installing or upgrading a Service Capability Server.

The following sections describe each aspect of the Framework in the following order:

· The sequence diagrams give the reader a practical idea of how each of the Framework is implemented.

· The class diagrams section show how each of the interfaces applicable to the Framework relate to one another.

· The interface specification section describes in detail each of the interfaces shown within the class diagram part.

· The State Transition Diagrams (STD) show the progression of internal processes, either in the application or in the gateway.

· The data definitions section show a detailed expansion of each of the data types associated with the methods within the classes. Note that some data types are used in other methods and classes and are therefore defined within the common data types part of this specification.

5 The Base Interface Specification

5.1 Interface Specification Format

This section defines the interfaces, methods and parameters that form a part of the API specification. The Unified Modelling Language (UML) is used to specify the interface classes. The general format of an interface specification is described below.

5.1.1 Interface Class

This shows a UML interface class description of the methods supported by that interface, and the relevant parameters and types. The Service and Framework interfaces for enterprise-based client applications are denoted by classes with name Ip<name>. The callback interfaces to the applications are denoted by classes with name IpApp<name>. For the interfaces between a Service and the Framework, the Service interfaces are typically denoted by classes with name IpSvc<name>, while the Framework interfaces are denoted by classes with name IpFw<name>

5.1.2 Method descriptions

Each method (API method “call”) is described. All methods in the API return a value of type TpResult, indicating, amongst other things, if the method invocation was sucessfully executed or not.
Both synchronous and asynchronous methods are used in the API. Asynchronous methods are identified by a 'Req' suffix for a method request, and, if applicable, are served by asynchronous methods identified by either a 'Res' or 'Err' suffix for method results and errors, respectively. To handle responses and reports, the application or service developer must implement the relevant IpApp<name> or IpSvc<name> interfaces to provide the callback mechanism.

5.1.3 Parameter descriptions

Each method parameter and its possible values are described. Parameters described as 'in' represent those that must have a value when the method is called. Those described as 'out' are those that contain the return result of the method when the method returns.

5.1.4 State Model

If relevant, a state model is shown to illustrate the states of the objects that implement the described interface.

5.2 Base Interface

5.2.1 Interface Class IpInterface

All application, framework and service interfaces inherit from the following interface. This API Base Interface does not provide any additional methods.

	<<Interface>>

IpInterface

	

6 Framework-to-Application Sequence Diagrams

6.1 Event Notification Sequence Diagrams

6.1.1 Enable Event Notification

[image: image1.wmf]AppLogic

 : IpAppEventNotification

 : IpAccess

 : IpEventNotification

1: obtainInterface ()

2: new()

3: new()

4: enableNotification()

1:
This message is used to receive a reference to the object implementing the IpEventNotification interface.

2:
If there is currently no object implementing the IpEventNotification interface, then one is created using this message.

3:
This message is used to create an object implementing the IpAppEventNotification interface.

4:
This message is used to enable the notification mechanism so that subsequent framework events can be sent to the application.

6.2 Integrity Management Sequence Diagrams

6.2.1 Load Management: Suspend/resume notification from application

This sequence diagram shows the scenario of suspending or resuming notifications from the application based on the evaluation of the load balancing policy as a result of the detection of a change in load level of the framework.

[image: image2.wmf] : IpAppLoadManager

 : IpLoadManager

1: load change detection and policy evaluation

This is

implementation

detail

2: suspendNotification()

4: resumeNotification()

Load balancing service

makes a decision based

on pre-defined policy

3: load change detection and policy evaluation

6.2.2 Load Management: Framework queries load status

This sequence diagram shows how the framework requests load statistics for an application.

[image: image3.wmf] : IpLoadManager

 : IpAppLoadManager

1: queryAppLoadReq()

2: get load information

3: queryAppLoadRes()

This is the

implementation

detail

6.2.3 Load Management: Application reports current load condition

This sequence diagram shows how an application reports its load condition to the framework load manager.

[image: image4.wmf] : IpAppLoadManager

 : IpLoadManager

2: evaluate policy

This is the implementation

detail

1: reportLoad()

6.2.4 Load Management: Application queries load status

This sequence diagram shows how an application requests load statistics for the framework.

[image: image5.wmf] : IpAppLoadManager

 : IpLoadManager

1: queryLoadReq()

3: queryLoadRes()

2: get load information

This is the

implementation

detail

6.2.5 Load Management: Application callback registration and load control

This sequence diagram shows how an application registers itself and the framework invokes load management function based on policy.

[image: image6.wmf] : IpAppLoadManager

 : IpLoadManager

1: registerLoadController()

Framework detects its

load condition change

and initiates load control

action

3: enableLoadControl()

2: load change detection & policy evaluation

This is the

implementation detail

5: disableLoadControl()

6: unregisterLoadController()

4: load change detection & policy evaluation

This is the

implementation detail

6.2.6 Heartbeat Management: Start/perform/end heartbeat supervision of application

[image: image7.wmf]Application

 :

IpAppHeartBeat

 :

IpHeartBeatMgmt

1: enableHeartBeat()

2: send()

3: send()

4: disableHeartBeat()

At a certain point of

time the application

decides to stop

heartbeat supervision

6.2.7 Fault Management: Framework detects a Service failure

The framework has detected that the service has failed (probably by the use of the heartbeat mechanism). The framework updates its own records and informs any client applications that are using the service to stop.

[image: image8.wmf]Client Application : IpAppFaultManager

Framework : IpFaultManager

The framework should detect if

a service fails, for example via

an unreturned heartbeat. The

framework informs all

applications that are using the

service.

The application must

cease the use of this

service instance.

1: svcUnavailableInd()

1:
The framework informs each client application that is using the service instance that the service is unavailable. The client application is then expected to abandon use of this service instance and access a different service instance via the usual means (e.g. discovery, selectService etc.). The client application should not need to re-authenticate in order to discover and use an alternative service instance. The framework will also need to make the relevant updates to its internal records to make sure the service instance is removed from service and no client applications are still recorded as using it.

6.2.8 Fault Management: Application requests a Framework activity test

[image: image9.wmf]Client Application : IpAppFaultManager

Framework : IpFaultManager

Client application asks

framework to carry out an

activity test. The framework is

denoted as the target by a NULL

svcId parameter value.

Framework carries out test and

returns result to client application.

2: activityTestRes()

1: activityTestReq()

1:
The client application asks the framework to do an activity test. The client identifies that it would like the activity test done for the framework, rather then a service, by supplying a NULL value for the svcId parameter.

2:
The framework does the requested activity test and sends the result to the client application.

6.3 Service Discovery Sequence Diagrams

No Sequence Diagrams exist for Service Discovery

6.4 Trust and Security Management Sequence Diagrams

6.4.1 Initial Access

This sequence diagram shows a client application accessing the OSA framework for the first time. In order to use the OSA SCFs, the client application must first authenticate itself with the framework and then discover an appropriate service.

The application gains a reference to the Initial Contact interfaces for the Framework. This may be gained through a URL, a Naming or Trading Service or an equivalent service, a stringified object reference, etc. At this stage, the application has no guarantee that this is a Framework interface reference. The application uses this reference to initiate the authentication process with the Framework. Initial Contact supports the initiateAuthentication method to allow the authentication process to take place. This method must be the first invoked by the application: invocations of other methods will fail until authentication has been successfully completed.

Once the application has authenticated with the Framework, it can gain access to other framework interfaces and service capability features. This is done by invoking the requestAccess method, by which the application requests a certain type of access service capability feature.

[image: image10.wmf] : IpAppAccess

Application

 : IpInitial

 : IpAuthentication

 : IpAccess

 : IpServiceDiscovery

Framework

Service

Manager

1: initiateAuthentication()

2: selectAuthMethod()

3: authenticate()

4: requestAccess()

5: obtainInterface()

6: listServiceTypes()

7: describeServiceType()

8: discoverService()

9: selectService()

10: accessCheck()

11: signServiceAgreement()

12: signServiceAgreement()

returns reference to

service manager interface

1:
The client invokes initiateAuthentication on the framework's "public" (initial contact) interface to initiate the authentication process. The client provides a reference to its authentication interface. The framework returns a reference to its authentication interface.

2:
The client invokes selectAuthMethod on the framework's Authentication interface. The client identifies the authentication methods it supports. The framework prescribes the method to be used.

3:
The client and framework authenticate each other using the prescribed method. The sequence diagram illustrates a series of one or more invocations of the authenticate method on the framework's Authentication interface. In each invocation, the client supplies a challenge and the framework returns the correct response. Alternatively or additionally the framework may issue its own challenges to the client using the authenticate method on the client's Authentication interface

4:
Upon successful (mutual) authentication, the client invokes requestAccess on the framework's "public" (initial contact) interface. The client provides a reference to its access interface. The framework returns a reference to its access interface.

5:
The client invokes obtainInterface on the framework's Access interface to obtain a reference to its service discovery interface.

6:
The client invokes listServiceTypes on the framework's Service Discovery interface to obtain a list of what "types" of services are supported by the framework.

7:
The client invokes describeServiceType on the framework's Service Discovery interface to obtain a list of service "properties" that are applicable to a specific service type, and other related information.

8:
The client invokes discoverService on the framework's Service Discovery interface. The client identifies a specific service type and a set of service properties. The framework returns a set of service identifiers, and their associated service properties, that the framework supports and which match the client's criteria.

9:
The client invokes selectService on the framework's Access interface. The client identifies the service it wishes to use and specifies values for the associated service properties. The framework returns a service token confirming the selection request.

10:
The client can optionally invoke accessCheck on the Access interface. The client identifies the service type and service properties by supplying the serviceToken, generated from selectService. The client also describes the service features it wishes to access. The framework will respond with either accessGranted and the trust level, or accessDenied. Failure to use this process may result in the client trying to access something(s) to which access has not been granted.

11:
Where non-repudiation of the agreement to use the selected service is required, the framework invokes signServiceAgreement on the client's Access interface: i.e. supplying service agreement text for the client to digitally sign and return.

12:
The client invokes signServiceAgreement on the framework's Access interface: i.e. supplying service agreement text for the client to digitally sign and return. Additionally the framework obtains and returns a reference to an instance of the service manager interface for the selected service.

6.4.2 Authentication

This sequence diagram illustrates the two-way mechanism by which the client and the framework mutually authenticate one another. This is an alternative to the one-way mechanism illustrated in the preceding sequence diagram.

The OSA API supports multiple authentication techniques. The procedure used to select an appropriate technique for a given situation is described below. The authentication mechanisms may be supported by cryptographic processes to provide confidentiality, and by digital signatures to ensure integrity. The inclusion of cryptographic processes and digital signatures in the authentication procedure depends on the type of authentication technique selected. In some cases strong authentication may need to be enforced by the Framework to prevent misuse of resources. In addition it may be necessary to define the minimum encryption key length that can be used to ensure a high degree of confidentiality.

The application must authenticate with the Framework before it is able to use any of the other interfaces supported by the Framework. Invocations on other interfaces will fail until authentication has been successfully completed.

1)
The application calls initiateAuthentication on the OSA Framework Initial interface. This allows the application to specify the type of authentication process. This authentication process may be specific to the provider, or the implementation technology used. The initiateAuthentication method can be used to specify the specific process, (e.g. CORBA security). OSA defines generic a authentication interface (Authentication), which can be used to perform the authentication process. The initiateAuthentication method allows the application to pass a reference to its own authentication interface to the Framework, and receive a reference to the Authentication interface supported by the Framework, in return.

2)
The application invokes the selectAuthMethod on the Framework's Authentication interface. This includes the authentication capabilities of the application. The framework then chooses an authentication method based on the authentication capabilities of the application and the Framework. If the application is capable of handling more than one authentication method, then the Framework chooses one option, defined in the prescribedMethod parameter. In some instances, the authentication capability of the application may not fulfil the demands of the Framework, in which case, the authentication will fail.

3)
The application and Framework interact to authenticate each other. Depending on the method prescribed, this procedure may consist of a number of messages e.g. a challenge/ response protocol. This authentication protocol is performed using the authenticate method on the Authentication interface. Depending on the authentication method selected, the protocol may require invocations on the Authentication interface supported by the Framework; or on the application counterpart; or on both.

[image: image11.wmf] : IpAppAccess

 : IpAppAuthentication

Application

 : IpInitial

Framework

 : IpAuthentication

 : IpAccess

1: initiateAuthentication()

2: selectAuthMethod()

3: authenticate()

4: authenticate()

5: authenticate()

6: authenticate()

7: requestAccess()

IpAppAuthentication reference is

passed to framework and

IpAuthentication reference is

returned.

This is an example of the

sequence of

authentication

operations. Different

authentication protocols

may have different

requirements on the

order of operations.

IpAppAccess reference is

passed to Framework, and

IpAccess reference is

returned.

6.5 Service Subscription Sequence Diagrams

No Sequence Diagrams exist for Service Subscription

7 Framework-to-Application Class Diagrams

[image: image12.wmf]IpAppEventNotification

eventNotify()

notificationTerminat...

(from App Interfaces)

<<Interface>>

IpEventNotification

enableNotification()

disableNotification()

(from Framework Interfaces)

<<Interface>>

<<uses>>

Figure: Event Notification Class Diagram

[image: image13.wmf]IpAppFaultManager

activityTestRes()

appActivityTestReq()

fwFaultReportInd()

fwFaultRecoveryInd()

svcUnavailableInd()

genFaultStatsRecordRes()

fwUnavailableInd()

<<Interface>>

IpFaultManager

activityTestReq()

appActivityTestRes()

svcUnavailableInd()

genFaultStatsRecordReq()

<<Interface>>

<<uses>>

IpHeartBeatMgmt

enableHeartBeat()

disableHeartBeat()

changeTimePeriod()

<<Interface>>

IpHeartBeat

send()

<<Interface>>

1

0..n

1

0..n

IpAppHeartBeat

send()

<<Interface>>

<<uses>>

IpAppHeartBeatMgmt

enableAppHeartBeat()

disableAppHeartBeat()

changeTimePeriod()

<<Interface>>

<<uses>>

0..n

1

0..n

1

IpAppLoadManager

queryAppLoadReq()

queryLoadRes()

queryLoadErr()

disableLoadControl()

enableLoadControl()

resumeNotification()

suspendNotification()

<<Interface>>

IpLoadManager

reportLoad()

queryLoadReq()

queryAppLoadRes()

queryAppLoadErr()

registerLoadController()

unregisterLoadController()

resumeNotification()

suspendNotification()

<<Interface>>

<<uses>>

IpOAM

systemDateTimeQuery()

<<Interface>>

IpAppOAM

systemDateTimeQuery()

<<Interface>>

<<uses>>

Figure: Integrity Management Package Overview

[image: image14.wmf]IpServiceDiscovery

listServiceTypes()

describeServiceType()

discoverService()

listSubscribedServices()

(from Framework interfaces)

<<Interface>>

Figure: Service Discovery Package Overview

[image: image15.wmf]IpInitial

initiateAuthentication()

requestAccess()

(from Framework interfaces)

<<Interface>>

IpAccess

obtainInterface()

obtainInterfaceWithCallbac...

accessCheck()

selectService()

signServiceAgreement()

terminateServiceAgreemen...

endAccess()

(from Framework interfaces)

<<Interface>>

IpAuthentication

selectAuthMethod()

authenticate()

abortAuthentication()

(from Framework interfaces)

<<Interface>>

IpAppAccess

signServiceAgreement()

terminateServiceAgreemen...

terminateAccess()

(from App interfaces)

<<Interface>>

IpAppAuthentication

authenticate()

abortAuthentication()

(from App interfaces)

<<Interface>>

<<uses>>

<<uses>>

Figure: Trust and Security Management Package Overview

[image: image16.wmf]IpAppAuthentication

authenticate()

abortAuthentication()

(from App interfaces)

<<Interface>>

IpClientAppInfoQuery

getClientApp()

listClientApps()

getSAG()

listSAGs()

listSAGMembers()

(from App interfaces)

<<Interface>>

IpClientAppManagement

createClientApp()

modifyClientApp()

deleteClientApp()

createSAG()

modifySAG()

deleteSAG()

addSAGMembers()

removeSAGMembers()

(from App interfaces)

<<Interface>>

IpEntOpAccountInfoQuery

getEntOpAccount()

(from Framework interfaces)

<<Interface>>

IpEntOpAccountManagement

createEntOpAccount()

modifyEntOpAccount()

deleteEntOpAccount()

(from Framework interfaces)

<<Interface>>

IpServiceContractInfoQuery

getServiceContract()

(from Framework interfaces)

<<Interface>>

IpServiceContractManagement

createServiceContract()

modifyServiceContract()

deleteServiceContract()

(from Framework interfaces)

<<Interface>>

IpServiceProfileInfoQuery

listServiceProfiles()

getServiceProfile()

listAssignedMembers()

(from Framework interfaces)

<<Interface>>

IpServiceProfileManagement

createServiceProfile()

modifyServiceProfile()

deleteServiceProfile()

assign()

deassign()

(from Framework interfaces)

<<Interface>>

Figure: Service Subscription Package Overview
8 Framework-to-Application Interface Classes

8.1 Trust and Security Management Interface Classes
The Trust and Security Management Interfaces provide:

-
the first point of contact for an application to access a Home Environment;

-
the authentication methods for the application and Home Environment to perform an authentication protocol;

-
the application with the ability to select a service capability feature to make use of;

-
the application with a portal to access other Framework interfaces.

The process by which the application accesses the Home Environment has been separated into 3 stages, each supported by a different Framework interface:

1)
Initial Contact with the Framework;

2)
Authentication to the Framework;

3)
Access to Framework and Service Capability Features.

8.1.1 Interface Class IpAppAuthentication

Inherits from: IpInterface.
	<<Interface>>

IpAppAuthentication

	

	authenticate (prescribedMethod : in TpAuthCapability, challenge : in TpString, response : out TpStringRef) : TpResult

abortAuthentication () : TpResult

Method

authenticate()

This method is used by the framework to authenticate the client application using the mechanism indicated in prescribedMethod. The client application must respond with the correct responses to the challenges presented by the framework. The number of exchanges and the order of the exchanges is dependent on the prescribedMethod. (These may be interleaved with authenticate() calls by the client application on the IpAuthentication interface. This is defined by the prescribedMethod.)

Parameters

prescribedMethod : in TpAuthCapability

see selectAuthMethod() on the IpAuthentication interface. This parameter contains the agreed method for authentication. If this is not the same value as returned by selectAuthMethod(), then an error code (P_INVALID_AUTH_CAPABILITY) is returned.
challenge : in TpString

The challenge presented by the framework to be responded to by the client application. The challenge mechanism used will be in accordance with the IETF PPP Authentication Protocols - Challenge Handshake Authentication Protocol [RFC 1994, August1996]. The challenge will be encrypted with the mechanism prescribed by selectAuthMethod().
response : out TpStringRef

This is the response of the client application to the challenge of the framework in the current sequence. The response will be based on the challenge data, decrypted with the mechanism prescribed by selectAuthMethod().
Raises

TpGeneralException,TpFWException
Method

abortAuthentication()

The framework uses this method to abort the authentication process. This method is invoked if the framework wishes to abort the authentication process, (e.g. if the client application responds incorrectly to a challenge.) If this method has been invoked, calls to the requestAccess operation on IpInitial will return an error code (P_ACCESS_DENIED), until the client has been properly authenticated.

Parameters

No Parameters were identified for this method

Raises

TpGeneralException,TpFWException
8.1.2 Interface Class IpAppAccess

Inherits from: IpInterface.
The Access client application interface is used by the Framework to perform the steps that are necessary in order to allow it to service access.

	<<Interface>>

IpAppAccess

	

	signServiceAgreement (serviceToken : in TpServiceToken, agreementText : in TpString, signingAlgorithm : in TpSigningAlgorithm, digitalSignature : out TpStringRef) : TpResult

terminateServiceAgreement (serviceToken : in TpServiceToken, terminationText : in TpString, digitalSignature : in TpString) : TpResult

terminateAccess (terminationText : in TpString, signingAlgorithm : in TpSigningAlgorithm, digitalSignature : in TpString) : TpResult

Method

signServiceAgreement()

This method is used by the framework to request that the client application sign an agreement on the service. It is called in response to the client application calling the selectService() method on the IpAccess interface of the framework. The framework provides the service agreement text for the client application to sign. If the client application agrees, it signs the service agreement, returning its digital signature to the framework.

Parameters

serviceToken : in TpServiceToken

This is the token returned by the framework in a call to the selectService() method. This token is used to identify the service instance to which this service agreement corresponds. (If the client application selects many services, it can determine which selected service corresponds to the service agreement by matching the service token.) If the serviceToken is invalid, or not known by the client application,then an error code (P_INVALID_SERVICE_TOKEN) is returned.
agreementText : in TpString

This is the agreement text that is to be signed by the client application using the private key of the client application. If the agreementText is invalid, then an error code (P_INVALID_AGREEMENT_TEXT) is returned.
signingAlgorithm : in TpSigningAlgorithm

This is the algorithm used to compute the digital signature. If the signingAlgorithm is invalid, or unknown to the client application, an error code (P_INVALID_SIGNING_ALGORITHM) is returned.
digitalSignature : out TpStringRef

The digitalSignature is the signed version of a hash of the service token and agreement text given by the framework.
Raises

TpGeneralException,TpFWException
Method

terminateServiceAgreement()

This method is used by the framework to terminate an agreement for the service.

Parameters

serviceToken : in TpServiceToken

This is the token passed back from the framework in a previous selectService() method call. This token is used to identify the service agreement to be terminated. If the serviceToken is invalid, or unknown to the client application, an error code (P_INVALID_SERVICE_TOKEN) is returned.
terminationText : in TpString

This is the termination text that describes the reason for the termination of the service agreement.
digitalSignature : in TpString

This is a signed version of a hash of the service token and the termination text. The signing algorithm used is the same as the signing algorithm given when the service agreement was signed using signServiceAgreement(). The framework uses this to confirm its identity to the client. The client can check that the terminationText has been signed by the framework. If a match is made, the service agreement is terminated, otherwise an error code (P_INVALID_SIGNATURE) is returned.
Raises

TpGeneralException,TpFWException
Method

terminateAccess()

The terminateAccess operation is used to end the client application's access session with the framework. The framework is terminating the client application's access session. (For example, this may be done if the framework believes the client application is masquerading as someone else. Using this operation will force the client application to re-authenticate if it wishes to continue using the framework's services.)

After terminateAccess() is invoked, the client application will not longer be authenticated with the framework. The client application will not be able to use the references to any of the framework interfaces gained during the access session. Any calls to these interfaces will fail.

Parameters

terminationText : in TpString

This is the termination text describes the reason for the termination of the access session.
signingAlgorithm : in TpSigningAlgorithm

This is the algorithm used to compute the digital signature. If the signingAlgorithm is invalid, or unknown to the client application, an error code (P_INVALID_SIGNING_ALGORITHM) is returned.
digitalSignature : in TpString

This is a signed version of a hash of the termination text. The framework uses this to confirm its identity to the client. The client can check that the terminationText has been signed by the framework. If a match is made, the access session is terminated, otherwise an error code (P_INVALID_SIGNATURE) is returned.
Raises

TpGeneralException,TpFWException
	

	

	

8.1.3 Interface Class IpInitial

Inherits from: IpInterface.
The Initial Framework interface is used by the client application to initiate the mutual authentication with the Framework and, when this is finished successfully, to request access to it.

	<<Interface>>

IpInitial

	

	initiateAuthentication (appDomain : in TpAuthDomain, authType : in TpAuthType, fwDomain : out TpAuthDomainRef) : TpResult

requestAccess (accessType : in TpAccessType, appAccessInterface : in IpInterfaceRef, fwAccessInterface : out IpInterfaceRefRef) : TpResult

Method

initiateAuthentication()

This method is invoked by the client application to start the process of mutual authentication with the framework, and request the use of a specific authentication method.

Parameters

appDomain : in TpAuthDomain

This identifies the application domain to the framework, and provides a reference to the domain's authentication interface.

structure TpAuthDomain {

domainID:

TpDomainID;

authInterface:

IpInterfaceRef;

};

The domainID parameter is an identifier either for a client application (i.e. TpClientAppID) or for an enterprise operator (i.e. TpEntOpID). It is used to identify the enterprise domain to the framework, (see authenticate() on IpAuthentication). If the framework does not recognise the domainID, the framework returns an error code (P_INVALID_DOMAIN_ID).

The authInterface parameter is a reference to call the authentication interface of the client application. The type of this interface is defined by the authType parameter. If the interface reference is not of the correct type, the framework returns an error code (P_INVALID_INTERFACE_TYPE).
authType : in TpAuthType

This identifies the type of authentication mechanism requested by the client. It provides operators and clients with the opportunity to use an alternative to the Authentication interface, e.g. CORBA Security. Authentication is the default authentication mechanism (P_AUTHENTICATION). If P_AUTHENTICATION is selected, then the appDomain and fwDomain authInterface parameters are references to interfaces of type Ip(App)Authentication.
fwDomain : out TpAuthDomainRef

This provides the application domain with a framework identifier, and a reference to call the authentication interface of the framework.

structure TpAuthDomain {

domainID:

TpDomainID;

authInterface:

IpInterfaceRef;

};

The domainID parameter is an identifier for the framework (i.e. TpFwID). It is used to identify the framework to the enterprise domain.

The authInterface parameter is a reference to the authentication interface of the framework. The type of this interface is defined by the authType parameter. The application domain uses this interface to authenticate with the framework.
Raises

TpGeneralException,TpFWException
Method

requestAccess()

Once application and framework are authenticated, the client application invokes the requestAccess operation on the IpInitial interface. This allows the client application to request the type of access they require. If they request P_OSA_ACCESS, then a reference to the IpAccess interface is returned. (Operators can define their own access interfaces to satisfy client requirements for different types of access.)

If this method is called before the client application and framework have successfully completed the authentication process, then the request fails, and an error code (P_ACCESS_DENIED) is returned.

Parameters

accessType : in TpAccessType

This identifies the type of access interface requested by the client application. If the framework does not provide the type of access identified by accessType, then an error code (P_INVALID_ACCESS_TYPE) is returned.
appAccessInterface : in IpInterfaceRef

This provides the reference for the framework to call the access interface of the client application. If the interface reference is not of the correct type, the framework returns an error code (P_INVALID_INTERFACE_TYPE).
fwAccessInterface : out IpInterfaceRefRef

This provides the reference for the client to call the access interface of the framework.
Raises

TpGeneralException,TpFWException
8.1.4 Interface Class IpAuthentication

Inherits from: IpInterface.
The Authentication Framework interface is used by client application to perform its part of the mutual authentication process with the Framework necessary to be allowed to use any of the other interfaces supported by the Framework.

	<<Interface>>

IpAuthentication

	

	selectAuthMethod (authCaps : in TpAuthCapabilityList, prescribedMethod : out TpAuthCapabilityRef) : TpResult

authenticate (prescribedMethod : in TpAuthCapability, challenge : in TpString, response : out TpStringRef) : TpResult

abortAuthentication () : TpResult

Method

selectAuthMethod()

The client application uses this method to initiate the authentication process. The framework returns its preferred mechanism. This should be within capability of the client application. If a mechanism that is acceptable to the framework within the capability of the client application cannot be found, the framework returns an error code (P_NO_ACCEPTABLE_AUTH_CAPABILITY).

Parameters

authCaps : in TpAuthCapabilityList

This is the means by which the authentication mechanisms supported by the client are conveyed to the framework.
prescribedMethod : out TpAuthCapabilityRef

This is returned by the framework to indicate the mechanism preferred by the framework for the authentication process. If the value of the prescribedMethod returned by the framework is not understood by the client application, it is considered a catastrophic error and the client application must abort.
Raises

TpGeneralException,TpFWException
Method

authenticate()

This method is used by the client to authenticate the framework using the mechanism indicated in prescribedMethod. The framework must respond with the correct responses to the challenges presented by the client. The clientAppID received in the initiateAuthentication() can be used by the framework to reference the correct public key for the client application (the key management system is currently outside of the scope of the OSA APIs). The number of exchanges and the order of the exchanges is dependent on the prescribedMethod.

Parameters

prescribedMethod : in TpAuthCapability

see selectAuthMethod(). This parameter contains the method that the framework has specified as acceptable for authentication. If this is not the same value as returned by selectAuthMethod(), then the framework returns an error code (P_INVALID_AUTH_CAPABILITY).
challenge : in TpString

The challenge presented by the client application to be responded to by the framework. The challenge mechanism used will be in accordance with the IETF PPP Authentication Protocols - Challenge Handshake Authentication Protocol [RFC 1994, August1996]. The challenge will be encrypted with the mechanism prescribed by selectAuthMethod().
response : out TpStringRef

This is the response of the framework to the challenge of the client application in the current sequence. The response will be based on the challenge data, decrypted with the mechanism prescribed by selectAuthMethod().
Raises

TpGeneralException,TpFWException
Method

abortAuthentication()

The client application uses this method to abort the authentication process. This method is invoked if the client no longer wishes to continue the authentication process, (e.g. if the framework responds incorrectly to a challenge.) If this method has been invoked, calls to the requestAccess operation on IpInitial will return an error code (P_ACCESS_DENIED), until the client has been properly authenticated.

Parameters

No Parameters were identified for this method

Raises

TpGeneralException,TpFWException
8.1.5 Interface Class IpAccess

Inherits from: IpInterface.
	<<Interface>>

IpAccess

	

	obtainInterface (interfaceName : in TpInterfaceName, fwInterface : out IpInterfaceRefRef) : TpResult

obtainInterfaceWithCallback (interfaceName : in TpInterfaceName, appInterface : in IpInterfaceRef, fwInterface : out IpInterfaceRefRef) : TpResult

accessCheck (serviceToken : in TpServiceToken, securityContext : in TpString, securityDomain : in TpString, group : in TpString, serviceAccessTypes : in TpString, serviceAccessControl : out TpServiceAccessControlRef) : TpResult

selectService (serviceID : in TpServiceID, serviceProperties : in TpServicePropertyList, serviceToken : out TpServiceTokenRef) : TpResult

signServiceAgreement (serviceToken : in TpServiceToken, agreementText : in TpString, signingAlgorithm : in TpSigningAlgorithm, signatureAndServiceMgr : out TpSignatureAndServiceMgrRef) : TpResult

terminateServiceAgreement (serviceToken : in TpServiceToken, terminationText : in TpString, digitalSignature : in TpString) : TpResult

endAccess (endAccessProperties : in TpEndAccessProperties) : TpResult

Method

obtainInterface()

This method is used to obtain other framework interfaces. The client application uses this method to obtain interface references to other framework interfaces. (The obtainInterfacesWithCallback method should be used if the client application is required to supply a callback interface to the framework.)

Parameters

interfaceName : in TpInterfaceName

The name of the framework interface to which a reference to the interface is requested. If the interfaceName is invalid, the framework returns an error code (P_INVALID_INTERFACE_NAME).
fwInterface : out IpInterfaceRefRef

This is the reference to the interface requested.
Raises

TpGeneralException,TpFWException
Method

obtainInterfaceWithCallback()

This method is used to obtain other framework interfaces. The client application uses this method to obtain interface references to other framework interfaces, when it is required to supply a callback interface to the framework. (The obtainInterface method should be used when no callback interface needs to be supplied.)

Parameters

interfaceName : in TpInterfaceName

The name of the framework interface to which a reference to the interface is requested. If the interfaceName is invalid, the framework returns an error code (P_INVALID_INTERFACE_NAME).
appInterface : in IpInterfaceRef

This is the reference to the client application interface, which is used for callbacks. If an application interface is not needed, then this method should not be used. (The obtainInterface method should be used when no callback interface needs to be supplied.) If the interface reference is not of the correct type, the framework returns an error code (P_INVALID_INTERFACE_TYPE).
fwInterface : out IpInterfaceRefRef

This is the reference to the interface requested.
Raises

TpGeneralException,TpFWException
Method

accessCheck()

This method may be used by the client application to check if it is authorised to access the specified service. The response is used to indicate whether the request for access has been granted or denied and if granted the level of trust that will be applied. The securityModelID and the relevant securityLevel are defined as part of the registration data for the service, and the service agreement. They are specific to the service.

securityModelID:

The identity of the specific Security Model that is to be used to define a set of appropriate policies for the service that can be used by the framework to determine access rights. The model may include blanket permission, session permission or one shot permission. A number of security models will be stored by the framework, and referenced by the access control module, according to the security model identifier of the service.

securityLevel:

The trust level required by the service for granting access. The Security Level is used by the framework's access control module when it checks for access rights.

Parameters

serviceToken : in TpServiceToken

The serviceToken identifies the specific service that the client application wishes to access. The service Token identifies the service type and service properties selected by the client application when it invoked selectService().
securityContext : in TpString

A context is a group of security relevant attributes that may have an influence on the result of the accessCheck request.
securityDomain : in TpString

The security domain in which the client application is operating may influence the access control decisions and the specific set of features that the requestor is entitled to use.
group : in TpString

A group can be used to define the access rights associated with all clients that belong to that group. This simplifies the administration of access rights.
serviceAccessTypes : in TpString

These are defined by the specific Security Model in use but are expected to include: Create, Read, Update, Delete as well as those specific to services.
serviceAccessControl : out TpServiceAccessControlRef

This contains the access control policy information that controls access to the service feature, and the trustLevel that the service provider has assigned to the client application.

structure TpServiceAccessControl {

policy:
TpString;

trustLevel:
TpString;

};

The policy parameter indicates whether access has been granted or denied. If granted then the parameter trustLevel must also have a value.

The trustLevel parameter indicates the trust level that the service provider has assigned to the client application.
Raises

TpGeneralException,TpFWException
Method

selectService()

This method is used by the client application to identify the service that the client application wishes to use. If the client application is not allowed to access the service, then an error code (P_SERVICE_ACCESS_DENIED) is returned.

Parameters

serviceID : in TpServiceID

This identifies the service required. If the serviceID is not recognised by the framework, an error code (P_INVALID_SERVICE_ID) is returned.
serviceProperties : in TpServicePropertyList

This is a list of the service properties that the service should support. (These properties (names and values) are used to initialise the service instance for use by the client application.) If a service property is not recognised by the framework, an error code (P_INVALID_PROPERTY) is returned.
serviceToken : out TpServiceTokenRef

This is a free format text token returned by the framework, which can be signed as part of a service agreement. This will contain operator specific information relating to the service level agreement. The serviceToken has a limited lifetime. If the lifetime of the serviceToken expires, a method accepting the serviceToken will return an error code (P_INVALID_SERVICE_TOKEN). Service Tokens will automatically expire if the client or framework invokes the endAccess method on the other's corresponding access interface.
Raises

TpGeneralException,TpFWException
Method

signServiceAgreement()

This method is used by the client application to request that the framework sign an agreement on the service, which allows the client application to use the service. If the framework agrees, both parties sign the service agreement, and a reference to the service manager interface of the service is returned to the client application. If the client application is not allowed to access the service, then an error code (P_SERVICE_ACCESS_DENIED) is returned.

Parameters

serviceToken : in TpServiceToken

This is the token returned by the framework in a call to the selectService() method. This token is used to identify the service instance requested by the client application. If the serviceToken is invalid, or has expired, an error code (P_INVALID_SERVICE_TOKEN) is returned.
agreementText : in TpString

This is the agreement text that is to be signed by the framework using the private key of the framework. If the agreementText is invalid, then an error code (P_INVALID_AGREEMENT_TEXT) is returned.
signingAlgorithm : in TpSigningAlgorithm

This is the algorithm used to compute the digital signature. If the signingAlgorithm is invalid, or unknown to the framework, an error code (P_INVALID_SIGNING_ALGORITHM) is returned.
signatureAndServiceMgr : out TpSignatureAndServiceMgrRef

This contains the digital signature of the framework for the service agreement, and a reference to the service manager interface of the service.

structure TpSignatureAndServiceMgr {

digitalSignature:
TpString;

serviceMgrInterface:
 IpInterfaceRef;

};

The digitalSignature is the signed version of a hash of the service token and agreement text given by the client application.

The serviceMgrInterface is a reference to the service manager interface for the selected service.
Raises

TpGeneralException,TpFWException
Method

terminateServiceAgreement()

This method is used by the client application to terminate an agreement for the service.

Parameters

serviceToken : in TpServiceToken

This is the token passed back from the framework in a previous selectService() method call. This token is used to identify the service agreement to be terminated. If the serviceToken is invalid, or has expired, an error code (P_INVALID_SERVICE_TOKEN) is returned.
terminationText : in TpString

This is the termination text describes the reason for the termination of the service agreement.
digitalSignature : in TpString

This is a signed version of a hash of the service token and the termination text. The signing algorithm used is the same as the signing algorithm given when the service agreement was signed using signServiceAgreement().The framework uses this to check that the terminationText has been signed by the client. If a match is made, the service agreement is terminated, otherwise an error code (P_INVALID_SIGNATURE) is returned.
Raises

TpGeneralException,TpFWException
Method

endAccess()

The endAccess operation is used to end the client application's access session with the framework. The client requests that its access session is ended. After it is invoked, the client application will no longer be authenticated with the framework. The client application will not be able to use the references to any of the framework interfaces gained during the access session. Any calls to these interfaces will fail.

Parameters

endAccessProperties : in TpEndAccessProperties

 This is a list of properties that can be used to tell the framework the actions to perform when ending the access session (e.g. existing service sessions may be stopped, or left running). If a property is not recognised by the framework, an error code (P_INVALID_PROPERTY) is returned.
Raises

TpGeneralException,TpFWException
	

	

	

	

	

	

	

	

	

8.2 Service Subscription Interface Classes
8.2.1 Interface Class IpClientAppManagement

Inherits from: IpInterface.
If the enterprise operator wants the client applications in its domain to access the subscribed services in name of the enterprise, then (s)he has to register these client applications in the Framework domain. For this the enterprise operator must use the client application management interface, to which (s)he can subscribe as a privileged user. The client application management interface is intended for cases where an organisation wants to allow several client applications to register with a Framework as service consumers. It allows enterprise operators to dynamically add new client applications and SAGs, delete them and to modify subscription related information concerning the client applications and the SAGs. Client applications use the subscribed services in the enterprise operator's name. The main task of client application management is to: · register, modify and delete client applications (Client Application Management), · manage groups of client applications, called Subscription Assignment Groups (SAG Management).

	<<Interface>>

IpClientAppManagement

	

	createClientApp (clientAppDescription : in TpClientAppDescription) : TpResult

modifyClientApp (clientAppDescription : in TpClientAppDescription) : TpResult

deleteClientApp (clientAppID : in TpClientAppID) : TpResult

createSAG (sag : in TpSag, clientAppIDs : out TpClientAppIDListRef) : TpResult

modifySAG (sag : in TpSag) : TpResult

deleteSAG (sagID : in TpSagID) : TpResult

addSAGMembers (sagID : in TpSagID, clientAppIDs : in TpClientAppIDList) : TpResult

removeSAGMembers (sagID : in TpSagID, clientAppIDList : in TpClientAppIDList) : TpResult

Method

createClientApp()

A client application is represented in the Framework domain as a "clientApp object". This method creates a new clientApp object associated with the enterprise operator object. Each clientApp object has a clientApp ID, password, and other subscription related client application's properties stored in it.

Parameters

clientAppDescription : in TpClientAppDescription

The "clientAppDescription" parameter contains the clientApp ID that is to be associated with the newly created clientApp object, the password that is assigned to the client application, and the subscription-related "client application properties". The client application properties is a list of name/value pairs. The client application properties is an item for bi-lateral agreement between the enterprise operator and the framework operator.
Raises

TpGeneralException,TpFWException
Method

modifyClientApp()

Modify the information contained in an existing clientApp object associated with the enterprise operator.

Parameters

clientAppDescription : in TpClientAppDescription

The "clientAppDescription" parameter contains the modified client application information.
Raises

TpGeneralException,TpFWException
Method

deleteClientApp()

Delete the specified clientApp object associated with the enterprise operator.

Parameters

clientAppID : in TpClientAppID

The "clientAppID" parameter identifies the clientApp object that is to be deleted..
Raises

TpGeneralException,TpFWException
Method

createSAG()

Create a new SAG associated with the enterprise operator. The SAG object is identified by a SAG - ID and contains SAG - specific description.

Parameters

sag : in TpSag

The "sag" parameter contains the SAG-ID and SAG-specific description. The Framework checks the Sag-ID for uniqueness.
clientAppIDs : out TpClientAppIDListRef

The "clientAppIDs" parameter contains the list of client application IDs that are to be associated with the newly created SAG.
Raises

TpGeneralException,TpFWException
Method

modifySAG()

Modify the description of an existing SAG associated with the enterprise operator.

Parameters

sag : in TpSag

The "sag" parameter contains the modified SAG-specific description.
Raises

TpGeneralException,TpFWException
Method

deleteSAG()

Delete an existing SAG.

Parameters

sagID : in TpSagID

The "sagID" parameter identifies the SAG that is to be deleted.
Raises

TpGeneralException,TpFWException
Method

addSAGMembers()

Add the specified client applications to the specified SAG associated with the enterprise operator.

Parameters

sagID : in TpSagID

The "sagID" parameter identifies the SAG object to which the client applications are to be added.
clientAppIDs : in TpClientAppIDList

The "clientAppIDs" parameter contains the list of the clientApp IDs that are to be added to the specified SAG. The clientApp objects are first created using the createClientApp() method.
Raises

TpGeneralException,TpFWException
Method

removeSAGMembers()

Delete specified client applications from the specified SAG object of the enterprise operator.

Parameters

sagID : in TpSagID

The "sagID" parameter identifies the SAG from which the client applications are to be removed.
clientAppIDList : in TpClientAppIDList

The "clientAppIDList" parameter contains the list of the clientApp IDs that are to be removed from the specified SAG.
Raises

TpGeneralException,TpFWException
8.2.2 Interface Class IpClientAppInfoQuery

Inherits from: IpInterface.
This interface is used by the enterprise operator to list the client applications and the SAGs in its domain and to obtain information about them.

	<<Interface>>

IpClientAppInfoQuery

	

	getClientApp (clientAppID : in TpClientAppID, clientAppDescription : out TpClientAppDescriptionRef) : TpResult

listClientApps (clientAppIDs : out TpClientAppIDListRef) : TpResult

getSAG (sagID : in TpSagID, sagDescription : out TpSagDescriptionRef) : TpResult

listSAGs (sagIDList : out TpSagIDListRef) : TpResult

listSAGMembers (sagID : in TpSagID, clientAppIDList : out TpClientAppIDListRef) : TpResult

Method

getClientApp()

Query information about the specified client application of the enterprise operator.

Parameters

clientAppID : in TpClientAppID

The "clientAppID" parameter identifies the clientApp object whose description is requested.
clientAppDescription : out TpClientAppDescriptionRef

The "clientAppDescription" parameter contains the clientApp description.
Raises

TpGeneralException,TpFWException
Method

listClientApps()

Get a list of all client applications belonging to an enterprise operator.

Parameters

clientAppIDs : out TpClientAppIDListRef

The "clientAppIDs" parameter identifies the list of client applications in the enterprise operator domain.
Raises

TpGeneralException,TpFWException
Method

getSAG()

Query information about the specified SAG associated with the enterprise operator.

Parameters

sagID : in TpSagID

The "sagID" parameter identifies the SAG whose description is required.
sagDescription : out TpSagDescriptionRef

The "sagDescription" parameter returns the SAG-specific description.
Raises

TpGeneralException,TpFWException
Method

listSAGs()

Get a list of all SAGs associated with an enterprise operator.

Parameters

sagIDList : out TpSagIDListRef

The "sagIDList" parameter returns the list of the identifiers of the SAGs associated with the enterprise operator.
Raises

TpGeneralException,TpFWException
Method

listSAGMembers()

Get a list of all client applications associated with the specified SAG.

Parameters

sagID : in TpSagID

The "sagID" parameter identifies the SAG whose clientAppID list is required.
clientAppIDList : out TpClientAppIDListRef

The "clientAppIDList" parameter returns the list of the client applications associated with the SAG.
Raises

TpGeneralException,TpFWException
8.2.3 Interface Class IpAppAuthentication

Inherits from: IpInterface.
	<<Interface>>

IpAppAuthentication

	

	authenticate (prescribedMethod : in TpAuthCapability, challenge : in TpString, response : out TpStringRef) : TpResult

abortAuthentication () : TpResult

Method

authenticate()

This method is invoked by the Framework to authenticate the client application using the mechanism indicated in prescribedMethod.

Parameters

prescribedMethod : in TpAuthCapability

The agreed authentication method.
challenge : in TpString

The challenge presented by the Framework.
response : out TpStringRef

Raises

TpGeneralException,TpFWException
Method

abortAuthentication()

This method is invoked by the Framework to abort the authentication process.

Parameters

No Parameters were identified for this method

Raises

TpGeneralException,TpFWException
	

	

	

8.2.4 Interface Class IpServiceProfileManagement

Inherits from: IpInterface.
This interface is used by the enterprise operator for the management of Service Profiles, which are defined for every subscribed service, and to assign/de - assign the Service Profiles to SAGs.

	<<Interface>>

IpServiceProfileManagement

	

	createServiceProfile (serviceProfile : in TpServiceProfile) : TpResult

modifyServiceProfile (serviceProfile : in TpServiceProfile) : TpResult

deleteServiceProfile (serviceProfileID : in TpServiceProfileID) : TpResult

assign (sagID : in TpSagID, serviceProfileID : in TpServiceProfileID) : TpResult

deassign (sagID : in TpSagID, serviceProfileID : in TpServiceProfileID) : TpResult

Method

createServiceProfile()

Creates a new Service Profile for the specified service contract. The service properties within the service profile restrict the service to meet the client application requirements. A Service Profile is a restriction of the corresponding service contract.

Parameters

serviceProfile : in TpServiceProfile

The "serviceProfile" parameter is a structured data type, which contains a subset of the associated service contract information and which may further restrict the value ranges of the service subscription properties.
Raises

TpGeneralException,TpFWException
Method

modifyServiceProfile()

Modifies the specified Service Profile associated with the enterprise operator.

Parameters

serviceProfile : in TpServiceProfile

The modified Service Profile.
Raises

TpGeneralException,TpFWException
Method

deleteServiceProfile()

Deletes the specified Service Profile.

Parameters

serviceProfileID : in TpServiceProfileID

The "serviceProfileID" parameter identifies the Service Profile that is to be deleted.
Raises

TpGeneralException,TpFWException
Method

assign()

Assign a Service Profile to the specified SAG.

Parameters

sagID : in TpSagID

The "sagID" parameter identifies the SAG to which Service Profile is to be assigned.
serviceProfileID : in TpServiceProfileID

The "serviceProfileID" parameter identifies the Service Profile that is to be assigned to the SAG.
Raises

TpGeneralException,TpFWException
Method

deassign()

De-assign the Service Profile from the specified SAG.

Parameters

sagID : in TpSagID

The "sagID" parameter identifies the SAG whose Service Profile is to be de-assigned
serviceProfileID : in TpServiceProfileID

The "serviceProfileID" parameter identifies the Service Profile that is to be de-assigned.
Raises

TpGeneralException,TpFWException
8.2.5 Interface Class IpServiceProfileInfoQuery

Inherits from: IpInterface.
This interface is used by the enterprise operator to list the Service Profiles associated with each service contract, to obtain information about individual Service Profiles, to find out which SAGs are assigned to a given Service Profile, and to find out what Service Profile is associated with a given client application or SAG.

	<<Interface>>

IpServiceProfileInfoQuery

	

	listServiceProfiles (serviceProfileIDList : out TpServiceProfileIDListRef) : TpResult

getServiceProfile (serviceProfileID : in TpServiceProfileID, serviceProfile : out TpServiceProfileRef) : TpResult

listAssignedMembers (serviceProfileID : in TpServiceProfileID, clientAppIDList : out TpClientAppIDListRef) : TpResult

Method

listServiceProfiles()

Get a list of all service profiles created by the enterprise operator.

Parameters

serviceProfileIDList : out TpServiceProfileIDListRef

The "serviceProfileIDList" is a list of the service profiles associated with the enterprise operator.
Raises

TpGeneralException,TpFWException
Method

getServiceProfile()

Query information about a single service profile.

Parameters

serviceProfileID : in TpServiceProfileID

The "serviceProfileID" parameter identifies the Service Profile which is being queried.
serviceProfile : out TpServiceProfileRef

The "serviceProfile" parameter is a structured data type which contains information about the specified service profile.
Raises

TpGeneralException,TpFWException
Method

listAssignedMembers()

Get a list of client applications assigned to the specified service profile.

Parameters

serviceProfileID : in TpServiceProfileID

The "serviceProfileID" parameter identifies the Service Profile.
clientAppIDList : out TpClientAppIDListRef

The "clientAppIDList" parameter is the list of the clientApp IDs that are assigned to the specified service profile.
Raises

TpGeneralException,TpFWException
8.2.6 Interface Class IpServiceContractManagement

Inherits from: IpInterface.
The enterprise operator uses this interface for service contract management, such as create, modify, and delete service contracts.

	<<Interface>>

IpServiceContractManagement

	

	createServiceContract (serviceContract : in TpServiceContract) : TpResult

modifyServiceContract (serviceContract : in TpServiceContract) : TpResult

deleteServiceContract (serviceContractID : in TpServiceContractID) : TpResult

Method

createServiceContract()

Create a new service contract for an enterprise operator. The enterprise operator provides the service contract. This contract should conform to the previously negotiated high - level agreement (regarding the services, their usage and the price, etc.), if any, between the enterprise operator and the framework operator, otherwise the appropriate exception is raised by the framework.

Parameters

serviceContract : in TpServiceContract

The "serviceContract" parameter provides the information contained in the service contract. The service contract is a structured data type, which contains the following information:

a. contract ID,

b. information about the service requestor, i.e., the enterprise operator,

c. information about the billing contact (person),

d. service start date,

e. service end date,

f. service type (e.g. obtained from listServiceType() method),

g. service ID (e.g. obtained from discoverService() method). For certain services, service type information is sufficient and service ID may not be required. This implies that any service of the type specified above is subscribed and hence accessible to the enterprise operator or to its client applications.

h. list of service subscription properties and their value ranges (service profiles further restrict these value ranges)
Raises

TpGeneralException,TpFWException
Method

modifyServiceContract()

Modify an existing service contract. The service contract can be modified only within the context of a pre-existing off-line negotiated high-level agreement between the enterprise operator and the framework operator.

Parameters

serviceContract : in TpServiceContract

The "serviceContract" parameter provides the modified service contract.
Raises

TpGeneralException,TpFWException
Method

deleteServiceContract()

Delete an existing service contract. All the Service Profiles associated with the service contract are also deleted.

Parameters

serviceContractID : in TpServiceContractID

The "serviceContractID" parameter identifies the service contract that the enterprise operator wishes to delete.
Raises

TpGeneralException,TpFWException
8.2.7 Interface Class IpServiceContractInfoQuery

Inherits from: IpInterface.
The enterprise operator uses this interface to query information about a given service contract.

	<<Interface>>

IpServiceContractInfoQuery

	

	getServiceContract (serviceContractID : in TpServiceContractID, serviceContract : out TpServiceContractRef) : TpResult

Method

getServiceContract()

Query information about the specified service contract. The enterprise operator invokes this operation to obtain information that is stored in the specified service contract. The enterprise operator can only obtain information about the service contracts that it has created.

Parameters

serviceContractID : in TpServiceContractID

The "serviceContractID" parameter identifies the service contract that the enterprise operator wishes to obtain information about.
serviceContract : out TpServiceContractRef

The "serviceContract" parameter contains the information about the specified service contract.
Raises

TpGeneralException,TpFWException
8.2.8 Interface Class IpEntOpAccountManagement

Inherits from: IpInterface.
The enterprise operator, in the role of the service subscriber, uses this interface for the management of enterprise operator subscription accounts, such as create, modify and delete enterprise operator accounts.

	<<Interface>>

IpEntOpAccountManagement

	

	createEntOpAccount (enterpriseOperator : in TpEntOp) : TpResult

modifyEntOpAccount (enterpriseOperator : in TpEntOp) : TpResult

deleteEntOpAccount () : TpResult

Method

createEntOpAccount()

Creates a new enterprise operator account object with the defined set of properties.

Parameters

enterpriseOperator : in TpEntOp

The "enterpriseOperator" parameter conveys the information about the enterprise operator. It contains the unique "enterprise operator ID" followed by a list of "enterprise operator properties". The enterprise operator ID is checked by the framework. The enterprise operator properties is a list of name/value pairs which provide enterprise operator-related information such as, name, organisation, address, phone, e-mail, fax, payment method (credit card, bank account), etc. to the framework. The enterprise operator properties constitute the enterprise operator profile. It is an item for bi-lateral agreement between enterprise operator and the framework operator. The enterprise operator can provide values, within the prescribed range, for those "enterprise operator properties" which have been negotiated earlier (an off line process) between the enterprise operator and the framework operator, otherwise an appropriate exception would be raised.
Raises

TpGeneralException,TpFWException
Method

modifyEntOpAccount()

Modification of the enterprise operator information contained in the enterprise operator object.

Parameters

enterpriseOperator : in TpEntOp

The "enterprise operator" parameter conveys the modified information about the enterprise operator. It identifies the enterprise operator by a unique enterprise operator ID and is followed by a list of modified enterprise operator properties. The values of the "enterprise operator properties" can only be modified within the prescribed range, as negotiated earlier (an off-line process) between the enterprise operator and the framework operator, otherwise an appropriate exception is raised.
Raises

TpGeneralException,TpFWException
Method

deleteEntOpAccount()

Deletion of the specified enterprise operator object. Deletion of the enterprise operator object results in the deletion of all the service contracts (and the Service Profiles) associated with the enterprise operator object. The framework operator may also invoke this operation if it wants to delete a enterprise operator from its domain.

Parameters

No Parameters were identified for this method

Raises

TpGeneralException,TpFWException
8.2.9 Interface Class IpEntOpAccountInfoQuery

Inherits from: IpInterface.
This interface is used by the enterprise operator to query information related to its own subscription account as held within the framework.

	<<Interface>>

IpEntOpAccountInfoQuery

	

	getEntOpAccount (enterpriseOperator : out TpEntOpRef) : TpResult

Method

getEntOpAccount()

Query information about the enterprise operator. The enterprise operator invokes this operation to find out what information about itself is stored in the enterprise operator account object within the Framework.

Parameters

enterpriseOperator : out TpEntOpRef

The "enterpriseOperator" parameter conveys the information stored in the EntOp object about the enterprise operator. It contains the unique "enterprise operation ID" followed by a list of "ënterprise operator properties". The enterprise operator properties is a list of name/value pairs which provide enterprise operator related information such as the name, organisation, address, phone, e-mail, fax, payment method (credit card, bank account), etc. to the framework.
Raises

TpGeneralException,TpFWException
	

	

	

	

	

	

	

	

	

8.3 Service Discovery Interface Classes
8.3.1 Interface Class IpServiceDiscovery

Inherits from: IpInterface.
The service discovery interface, shown below, consists of four methods. Before a service can be discovered, the enterprise operator (or the client applications) must know what "types" of services are supported by the Framework and what service "properties" are applicable to each service type. The "listServiceType() method returns a list of all "service types" that are currently supported by the framework and the "describeServiceType()" returns a description of each service type. The description of service type includes the "service-specific properties" that are applicable to each service type. Then the enterprise operator (or the client applications) can discover a specific set of registered services that both belong to a given type and possess the desired "property values", by using the "discoverService() method. Once the enterprise operator finds out the desired set of services supported by the framework, it subscribes to (a sub-set of) these services using the Subscription Interfaces. The enterprise operator (or the client applications in its domain) can find out the set of services available to it (i.e., the service that it can use) by invoking "listSubscribedServices()". The service discovery APIs are invoked by the enterprise operators or client applications. They are described below.

	<<Interface>>

IpServiceDiscovery

	

	listServiceTypes (listTypes : out TpServiceTypeNameListRef) : TpResult

describeServiceType (name : in TpServiceTypeName, serviceTypeDescription : out TpServiceTypeDescriptionRef) : TpResult

discoverService (serviceTypeName : in TpServiceTypeName, desiredPropertyList : in TpServicePropertyList, max : in TpInt32, serviceList : out TpServiceListRef) : TpResult

listSubscribedServices (serviceList : out TpServiceListRef) : TpResult

Method

listServiceTypes()

This operation returns the names of all service types that are in the repository. The details of the service types can then be obtained using the describeServiceType() method.

Parameters

listTypes : out TpServiceTypeNameListRef

The names of the requested service types.
Raises

TpGeneralException,TpFWException
Method

describeServiceType()

This operation lets the caller obtain the details for a particular service type.

Parameters

name : in TpServiceTypeName

The name of the service type to be described.
· If the "name" is malformed, then the P_ILLEGAL_SERVICE_TYPE exception is raised.
· If the "name" does not exist in the repository, then the P_UNKNOWN_SERVICE_TYPE exception is raised.
serviceTypeDescription : out TpServiceTypeDescriptionRef

The description of the specified service type. The description provides information about:

· the service properties associated with this service type: i.e. a list of service property {name, mode and type} tuples,
· the names of the super types of this service type, and

· whether the service type is currently enabled or disabled.
Raises

TpGeneralException,TpFWException
Method

discoverService()

The discoverService operation is the means by which a client application is able to obtain the service IDs of the services that meet its requirements. The client application passes in a list of desired service properties to describe the service it is looking for, in the form of attribute/value pairs for the service properties. The client application also specifies the maximum number of matched responses it is willing to accept. The framework must not return more matches than the specified maximum, but it is up to the discretion of the Framework implementation to choose to return less than the specified maximum. The discoverService() operation returns a serviceID/Property pair list for those services that match the desired service property list that the client application provided.

Parameters

serviceTypeName : in TpServiceTypeName

The "serviceTypeName" parameter conveys the required service type. It is key to the central purpose of "service trading". It is the basis for type safe interactions between the service exporters (via registerService) and service importers (via discoverService). By stating a service type, the importer implies the service type and a domain of discourse for talking about properties of service.
· If the string representation of the "type" does not obey the rules for service type identifiers, then the P_ILLEGAL_SERVICE_TYPE exception is raised.
· If the "type" is correct syntactically but is not recognised as a service type within the Framework, then the P_UNKNOWN_SERVICE_TYPE exception is raised.
The framework may return a service of a subtype of the "type" requested. A service sub-type can be described by the properties of its supertypes.
desiredPropertyList : in TpServicePropertyList

The "desiredPropertyList"parameter is a list of service property {name, mode and value list} tuples that the discovered set of services should satisfy. These properties deal with the non-functional and non-computational aspects of the desired service. The property values in the desired property list must be logically interpreted as "minimum", "maximum", etc. by the framework (due to the absence of a Boolean constraint expression for the specification of the service criterion). It is suggested that, at the time of service registration, each property value be specified as an appropriate range of values, so that desired property values can specify an "enclosing" range of values to help in the selection of desired services.
max : in TpInt32

The "max" parameter states the maximum number of services that are to be returned in the "serviceList" result.
serviceList : out TpServiceListRef

This parameter gives a list of matching services. Each service is characterised by its service ID and a list of service property {name, mode and value list} tuples associated with the service.
Raises

TpGeneralException,TpFWException
Method

listSubscribedServices()

Returns a list of services so far subscribed by the enterprise operator. The enterprise operator (or the client applications in the enterprise domain) can obtain a list of subscribed services that they are allowed to access.

Parameters

serviceList : out TpServiceListRef

The "serviceList" parameter returns a list of subscribed services. Each service is characterised by its service ID and a list of service property {name, mode and value list} tuples associated with the service.
Raises

TpGeneralException,TpFWException
	

	

	

	

	

	

	

	

	

8.4 Integrity Management Interface Classes
8.4.1 Interface Class IpAppFaultManager

Inherits from: IpInterface.
This interface is used to inform the application of events that affect the integrity of the Framework, Service or Client Application. The Fault Management Framework will invoke methods on the Fault Management Application Interface that is specified when the client application obtains the Fault Management interface: i.e. by use of the obtainInterfaceWithCallback operation on the IpAccess interface

	<<Interface>>

IpAppFaultManager

	

	activityTestRes (activityTestID : in TpActivityTestID, activityTestResult : in TpActivityTestRes) : TpResult

appActivityTestReq (activityTestID : in TpActivityTestID) : TpResult

fwFaultReportInd (fault : in TpInterfaceFault) : TpResult

fwFaultRecoveryInd (fault : in TpInterfaceFault) : TpResult

svcUnavailableInd (serviceId : in TpServiceID, reason : in TpSvcUnavailReason) : TpResult

genFaultStatsRecordRes (faultStatistics : in TpFaultStatsRecord, serviceIDs : in TpServiceIDList) : TpResult

fwUnavailableInd (reason : in TpFwUnavailReason) : TpResult

Method

activityTestRes()

The framework uses this method to return the result of a client application-requested activity test.

Parameters

activityTestID : in TpActivityTestID

Used by the client application to correlate this response (when it arrives) with the original request.
activityTestResult : in TpActivityTestRes

The result of the activity test.
Raises

TpGeneralException,TpFWException
Method

appActivityTestReq()

The framework invokes this method to test that the client application is operational. On receipt of this request, the application must carry out a test on itself, to check that it is operating correctly. The application reports the test result by invoking the appActivityTestRes method on the IpFaultManager interface.

Parameters

activityTestID : in TpActivityTestID

The identifier provided by the framework to correlate the response (when it arrives) with this request.
Raises

TpGeneralException,TpFWException
Method

fwFaultReportInd()

The framework invokes this method to notify the client application of a failure within the framework. The client application must not continue to use the framework until it has recovered (as indicated by a fwFaultRecoveryInd).

Parameters

fault : in TpInterfaceFault

Specifies the fault that has been detected by the framework.
Raises

TpGeneralException,TpFWException
Method

fwFaultRecoveryInd()

The framework invokes this method to notify the client application that a previously reported fault has been rectified. The application may then resume using the framework.

Parameters

fault : in TpInterfaceFault

Specifies the fault from which the framework has recovered.
Raises

TpGeneralException,TpFWException
Method

svcUnavailableInd()

The framework invokes this method to inform the client application that it can no longer use the indicated service. On receipt of this request, the client application must act to reset its use of the specified service (using the normal mechanisms, such as the discovery and authentication interfaces, to stop use of this service instance and begin use of a different service instance).

Parameters

serviceId : in TpServiceID

Identifies the affected service.
reason : in TpSvcUnavailReason

Identifies the reason why the service is no longer available
Raises

TpGeneralException,TpFWException
Method

genFaultStatsRecordRes()

This method is used by the framework to provide fault statistics to a client application in response to a genFaultStatsRecordReq method invocation on the IpFaultManager interface.

Parameters

faultStatistics : in TpFaultStatsRecord

The fault statistics record.
serviceIDs : in TpServiceIDList

Specifies the framework and/or services that are included in the general fault statistics record. The framework is designated by a null value.
Raises

TpGeneralException,TpFWException
Method

fwUnavailableInd()

The framework invokes this method to inform the client application that it is no longer available.

Parameters

reason : in TpFwUnavailReason

Identifies the reason why the framework is no longer available
	

	

	

8.4.2 Interface Class IpFaultManager

Inherits from: IpInterface.
This interface is used by the application to inform the framework of events that affect the integrity of the framework and services, and to request information about the integrity of the system. The fault manager operations do not exchange callback interfaces as it is assumed that the client application supplies its Fault Management callback interface at the time it obtains the Framework's Fault Management interface, by use of the obtainInterfaceWithCallback operation on the IpAccess interface.

	<<Interface>>

IpFaultManager

	

	activityTestReq (activityTestID : in TpActivityTestID, svcID : in TpServiceID) : TpResult

appActivityTestRes (activityTestID : in TpActivityTestID, activityTestResult : in TpActivityTestRes) : TpResult

svcUnavailableInd (serviceID : in TpServiceID) : TpResult

genFaultStatsRecordReq (timePeriod : in TpTimeInterval, serviceIDs : in TpServiceIDList) : TpResult

Method

activityTestReq()

The application invokes this method to test that the framework or a service is operational. On receipt of this request, the framework must carry out a test on itself or on the specified service, to check that it is operating correctly. The framework reports the test result by invoking the activityTestRes method on the IpAppFaultManager interface.

Parameters

activityTestID : in TpActivityTestID

The identifier provided by the client application to correlate the response (when it arrives) with this request.
svcID : in TpServiceID

Identifies either the framework or a service for testing. The framework is designated by a null value.
Raises

TpGeneralException,TpFWException
Method

appActivityTestRes()

The client application uses this method to return the result of a framework-requested activity test.

Parameters

activityTestID : in TpActivityTestID

Used by the framework to correlate this response (when it arrives) with the original request.
activityTestResult : in TpActivityTestRes

The result of the activity test.
Raises

TpGeneralException,TpFWException
Method

svcUnavailableInd()

This method is used by the client application to inform the framework that it can no longer use the indicated service (either due to a failure in the client application or in the service). On receipt of this request, the framework should take the appropriate corrective action. The framework assumes that the session between this client application and service instance is to be closed and updates its own records appropriately as well as attempting to inform the service instance and/or its administrator. Attempts by the client application to continue using this session should be rejected.

Parameters

serviceID : in TpServiceID

Identifies the service that the application can no longer use.
Raises

TpGeneralException,TpFWException
Method

genFaultStatsRecordReq()

This method is used by the application to solicit fault statistics from the framework. On receipt of this request the framework must produce a fault statistics record, for the framework and/or for specified services during the specified time interval, which is returned to the client application using the genFaultStatsRecordRes operation on the IpAppFaultManager interface.

Parameters

timePeriod : in TpTimeInterval

The period over which the fault statistics are to be generated. A null value leaves this to the discretion of the framework.
serviceIDs : in TpServiceIDList

Specifies the framework and/or services to be included in the general fault statistics record. The framework is designated by a null value.
Raises

TpGeneralException,TpFWException
	

	

	

8.4.3 Interface Class IpAppHeartBeatMgmt

Inherits from: IpInterface.
This interface allows the initialisation of a heartbeat supervision of the Framework by the Client application. Since the OSA APIs are inherently synchronous, the heartbeats themselves are synchronous for efficiency reasons. The return of the TpResult is interpreted as a heartbeat response.

	<<Interface>>

IpAppHeartBeatMgmt

	

	enableAppHeartBeat (duration : in TpDuration, fwInterface : in IpHeartBeatRef, session : in TpSessionID) : TpResult

disableAppHeartBeat (session : in TpSessionID) : TpResult

changeTimePeriod (duration : in TpDuration, session : in TpSessionID) : TpResult

Method

enableAppHeartBeat()

With this method, the framework registers at the client application for heartbeat supervision of itself.

Parameters

duration : in TpDuration

The time interval in milliseconds between the heartbeats.
fwInterface : in IpHeartBeatRef

This parameter refers to the callback interface the heartbeat is calling.
session : in TpSessionID

Identifies the heartbeat session.
Raises

TpGeneralException,TpFWException
Method

disableAppHeartBeat()

Allows the stop of the heartbeat supervision of the application.

Parameters

session : in TpSessionID

Identifies the heartbeat session.
Raises

TpGeneralException,TpFWException
Method

changeTimePeriod()

Allows the administrative change of the heartbeat period.

Parameters

duration : in TpDuration

The time interval in milliseconds between the heartbeats.
session : in TpSessionID

Identifies the heartbeat session.
Raises

TpGeneralException,TpFWException
8.4.4 Interface Class IpAppHeartBeat

Inherits from: IpInterface.
The Heartbeat Application interface is used by the Framework to supervise the Application. The return of the TpResult is interpreted as a heartbeat response.

	<<Interface>>

IpAppHeartBeat

	

	send (session : in TpSessionID) : TpResult

Method

send()

This is the method the framework uses in case it supervises the client application. The sender must raise an exception if no result comes back after a certain, user-defined time..

Parameters

session : in TpSessionID

Identifies the heartbeat session.
Raises

TpGeneralException,TpFWException
	

	

	

8.4.5 Interface Class IpHeartBeatMgmt

Inherits from: IpInterface.
This interface allows the initialisation of a heartbeat supervision of the client application. Since the APIs are inherently synchronous, the heartbeats themselves are synchronous for efficiency reasons. The return of the TpResult is interpreted as a heartbeat response.

	<<Interface>>

IpHeartBeatMgmt

	

	enableHeartBeat (duration : in TpDuration, appInterface : in IpAppHeartBeatRef, session : out TpSessionIDRef) : TpResult

disableHeartBeat (session : in TpSessionID) : TpResult

changeTimePeriod (duration : in TpDuration, session : in TpSessionID) : TpResult

Method

enableHeartBeat()

With this method, the client application registers at the framework for heartbeat supervision of itself.

Parameters

duration : in TpDuration

The duration in milliseconds between the heartbeats.
appInterface : in IpAppHeartBeatRef

This parameter refers to the callback interface the heartbeat is calling.
session : out TpSessionIDRef

Identifies the heartbeat session. In general, the application has only one session. In case of framework supervision by the client application (see the application interfaces), the application may maintain more than one session.
Raises

TpGeneralException,TpFWException
Method

disableHeartBeat()

Allows the stop of the heartbeat supervision of the application.

Parameters

session : in TpSessionID

Identifies the heartbeat session.
Raises

TpGeneralException,TpFWException
Method

changeTimePeriod()

Allows the administrative change of the heartbeat period.

Parameters

duration : in TpDuration

The time interval in milliseconds between the heartbeats.
session : in TpSessionID

Identifies the heartbeat session.
Raises

TpGeneralException,TpFWException
8.4.6 Interface Class IpHeartBeat

Inherits from: IpInterface.
The Heartbeat Framework interface is used by the client application to supervise the Framework.

	<<Interface>>

IpHeartBeat

	

	send (session : in TpSessionID) : TpResult

Method

send()

This is the method the client application uses in case it supervises the framework. The sender must raise an exception if no result comes back after a certain, user-defined time.

Parameters

session : in TpSessionID

Identifies the heartbeat session. In general, the application has only one session.
Raises

TpGeneralException,TpFWException
	

	

	

8.4.7 Interface Class IpAppLoadManager

Inherits from: IpInterface.
The client application developer supplies the load manager application interface to handle requests, reports and other responses from the framework load manager function. The application supplies the identity of this callback interface at the time it obtains the framework's load manager interface, by use of the obtainInterfaceWithCallback() method on the IpAccess interface.

	<<Interface>>

IpAppLoadManager

	

	queryAppLoadReq (serviceIDs : in TpServiceIDList, timeInterval : in TpTimeInterval) : TpResult

queryLoadRes (loadStatistics : in TpLoadStatisticList) : TpResult

queryLoadErr (loadStatisticsError : in TpLoadStatisticError) : TpResult

disableLoadControl (serviceIDs : in TpServiceIDList) : TpResult

enableLoadControl (loadStatistics : in TpLoadStatisticList) : TpResult

resumeNotification () : TpResult

suspendNotification () : TpResult

Method

queryAppLoadReq()

The framework uses this method to request the application to provide load statistic records for the application and/or for individual services used by the application.

Parameters

serviceIDs : in TpServiceIDList

Specifies the application and/or the services for which load statistic records should be reported. The application is designated by a null value.
timeInterval : in TpTimeInterval

Specifies the time interval for which load statistic records should be reported.
Raises

TpGeneralException,TpFWException
Method

queryLoadRes()

The framework uses this method to send load statistic records back to the application that requested the information; i.e. in response to an invocation of the queryLoadReq method on the IpLoadManager interface.

Parameters

loadStatistics : in TpLoadStatisticList

Specifies the framework-supplied load statistics
Raises

TpGeneralException,TpFWException
Method

queryLoadErr()

The framework uses this method to return an error response to the application that requested the framework's load statistics information, when the framework is unsuccessful in obtaining any load statistic records; i.e. in response to an invocation of the queryLoadReq method on the IpLoadManager interface.

Parameters

loadStatisticsError : in TpLoadStatisticError

Specifies the error code associated with the failed attempt to retrieve the framework's load statistics.
Raises

TpGeneralException,TpFWException
Method

disableLoadControl()

After load level of the framework or SCF which has been registered for load control moves back to normal, framework disables load control activity at the application based on policy.

Parameters

serviceIDs : in TpServiceIDList

Specifies the framework and/or services for which the load level has returned to normal. The framework is designated by a null value.
Raises

TpGeneralException,TpFWException
Method

enableLoadControl()

Upon detecting load condition change, (i.e. load level changing from 0 to 1, 0 to 2, 1 to 2 or 2 to 1, for the SCFs or framework which has been registered for load control), the framework enables load management activity at the application based on the policy.

Parameters

loadStatistics : in TpLoadStatisticList

Specifies the framework-supplied load statistics, which include the load level change(s).
Raises

TpGeneralException,TpFWException
Method

resumeNotification()

The framework uses this method to request the application to resume sending it notifications: e.g. after a period of suspension during which the framework handled a temporary overload condition.

Parameters

No Parameters were identified for this method

Raises

TpGeneralException,TpFWException
Method

suspendNotification()

The framework uses this method to request the application to suspend sending it any notifications: e.g. while the framework handles a temporary overload condition.

Parameters

No Parameters were identified for this method

Raises

TpGeneralException,TpFWException
	

	

	

8.4.8 Interface Class IpLoadManager

Inherits from: IpInterface.
The framework API should allow the load to be distributed across multiple machines and across multiple component processes, according to a load management policy. The separation of the load management mechanism and load management policy ensures the flexibility of the load management services. The load management policy identifies what load management rules the framework should follow for the specific client application. It might specify what action the framework should take as the congestion level changes. For example, some real-time critical applications will want to make sure continuous service is maintained, below a given congestion level, at all costs, whereas other services will be satisfied with disconnecting and trying again later if the congestion level rises. Clearly, the load management policy is related to the QoS level to which the application is subscribed. The framework load management function is represented by the IpLoadManager interface. Most methods are asynchronous, in that they do not lock a thread into waiting whilst a transaction performs. To handle responses and reports, the client application developer must implement the IpAppLoadManager interface to provide the callback mechanism. The application supplies the identity of this callback interface at the time it obtains the framework's load manager interface, by use of the obtainInterfaceWithCallback operation on the IpAccess interface.

	<<Interface>>

IpLoadManager

	

	reportLoad (loadLevel : in TpLoadLevel) : TpResult

queryLoadReq (serviceIDs : in TpServiceIDList, timeInterval : in TpTimeInterval) : TpResult

queryAppLoadRes (loadStatistics : in TpLoadStatisticList) : TpResult

queryAppLoadErr (loadStatisticsError : in TpLoadStatisticError) : TpResult

registerLoadController (serviceIDs : in TpServiceIDList) : TpResult

unregisterLoadController (serviceIDs : in TpServiceIDList) : TpResult

resumeNotification (serviceIDs : in TpServiceIDList) : TpResult

suspendNotification (serviceIDs : in TpServiceIDList) : TpResult

Method

reportLoad()

The client application uses this method to report its current load level (0,1, or 2) to the framework: e.g. when the load level on the application has changed.

At level 0 load, the application is performing within its load specifications (i.e. it is not congested or overloaded). At level 1 load, the application is overloaded. At level 2 load, the application is severely overloaded.

Parameters

loadLevel : in TpLoadLevel

Specifies the application's load level.
Raises

TpGeneralException,TpFWException
Method

queryLoadReq()

The client application uses this method to request the framework to provide load statistic records for the framework and/or for individual services used by the application.

Parameters

serviceIDs : in TpServiceIDList

Specifies the framework and/or the services for which load statistic records should be reported. The framework is designated by a null value.
timeInterval : in TpTimeInterval

Specifies the time interval for which load statistic records should be reported.
Raises

TpGeneralException,TpFWException
Method

queryAppLoadRes()

The client application uses this method to send load statistic records back to the framework that requested the information; i.e. in response to an invocation of the queryAppLoadReq method on the IpAppLoadManager interface.

Parameters

loadStatistics : in TpLoadStatisticList

Specifies the application-supplied load statistics.
Raises

TpGeneralException,TpFWException
Method

queryAppLoadErr()

The client application uses this method to return an error response to the framework that requested the application's load statistics information, when the application is unsuccessful in obtaining any load statistic records; i.e. in response to an invocation of the queryAppLoadReq method on the IpAppLoadManager interface.

Parameters

loadStatisticsError : in TpLoadStatisticError

Specifies the error code associated with the failed attempt to retrieve the application's load statistics.
Raises

TpGeneralException,TpFWException
Method

registerLoadController()

The client application uses this method to register to receive notifications of load level changes associated with the framework and/or with individual services used by the application.

Parameters

serviceIDs : in TpServiceIDList

Specifies the framework and SCFs to be registered for load control. To register for framework load control only, the serviceIDs is null.
Raises

TpGeneralException,TpFWException
Method

unregisterLoadController()

The client application uses this method to unregister for notifications of load level changes associated with the framework and/or with individual services used by the application.

Parameters

serviceIDs : in TpServiceIDList

Specifies the framework and/or the services for which load level changes should no longer be reported. The framework is designated by a null value.
Raises

TpGeneralException,TpFWException
Method

resumeNotification()

The client application uses this method to request the framework to resume sending it load management notifications associated with the framework and/or with individual services used by the application; e.g. after a period of suspension during which the application handled a temporary overload condition.

Parameters

serviceIDs : in TpServiceIDList

Specifies the framework and/or the services for which the sending of notifications of load level changes by the framework should be resumed. The framework is designated by a null value.
Raises

TpGeneralException,TpFWException
Method

suspendNotification()

The client application uses this method to request the framework to suspend sending it load management notifications associated with the framework and/or with individual services used by the application; e.g. while the application handles a temporary overload condition.

Parameters

serviceIDs : in TpServiceIDList

Specifies the framework and/or the services for which the sending of notifications by the framework should be suspended. The framework is designated by a null value
Raises

TpGeneralException,TpFWException
	

	

	

8.4.9 Interface Class IpOAM

Inherits from: IpInterface.
The OAM interface is used to query the system date and time. The application and the framework can synchronise the date and time to a certain extent. Accurate time synchronisation is outside the scope of of the OSA APIs.

	<<Interface>>

IpOAM

	

	systemDateTimeQuery (clientDateAndTime : in TpDateAndTime, systemDateAndTime : out TpDateAndTimeRef) : TpResult

Method

systemDateTimeQuery()

This method is used to query the system date and time. The client passes in its own date and time to the framework. The framework responds with the system date and time.

Parameters

clientDateAndTime : in TpDateAndTime

This is the date and time of the client (application). The error code P_INVALID_DATE_TIME_FORMAT is returned if the format of the parameter is invalid.
systemDateAndTime : out TpDateAndTimeRef

This is the system date and time of the framework.
Raises

TpGeneralException,TpFWException
	

	

	

8.4.10 Interface Class IpAppOAM

Inherits from: IpInterface.
The OAM client application interface is used by the Framework to query the application date and time, for synchronisation purposes.This method is invoked by the Framework to interchange the framework and client application date and time.

	<<Interface>>

IpAppOAM

	

	systemDateTimeQuery (systemDateAndTime : in TpDateAndTime, clientDateAndTime : out TpDateAndTimeRef) : TpResult

Method

systemDateTimeQuery()

This method is used to query the system date and time. The framework passes in its own date and time to the application. The application responds with its own date and time.

Parameters

systemDateAndTime : in TpDateAndTime

This is the system date and time of the framework.
clientDateAndTime : out TpDateAndTimeRef

This is the date and time of the client (application). The error code P_INVALID_DATE_TIME_FORMAT is returned if the format of the parameter is invalid.
Raises

TpGeneralException,TpFWException
	

	

	

	

	

	

	

	

	

8.5 Event Notification Interface Classes
8.5.1 Interface Class IpAppEventNotification

Inherits from: IpInterface.
This interface is used by the services to inform the application of a generic service-related event. The Event Notification Framework will invoke methods on the Event Notification Application Interface that is specified when the Event Notification interface is obtained.

	<<Interface>>

IpAppEventNotification

	

	eventNotify (eventInfo : in TpFwEventInfo, assignmentID : in TpAssignmentID) : TpResult

notificationTerminated () : TpResult

Method

eventNotify()

This method notifies the application of the arrival of a generic event.

Parameters

eventInfo : in TpFwEventInfo

Specifies specific data associated with this event.
assignmentID : in TpAssignmentID

Specifies the assignment id which was returned by the framework during the enableNotification() method. The application can use assignment id to associate events with event specific criteria and to act accordingly.
Raises

TpGeneralException,TpFWException
Method

notificationTerminated()

This method indicates to the application that all generic event notifications have been terminated (for example, due to faults detected).

Parameters

No Parameters were identified for this method

Raises

TpGeneralException,TpFWException
	

	

	

8.5.2 Interface Class IpEventNotification

Inherits from: IpInterface.
The event notification mechanism is used to notify the application of generic service related events that have occurred.

	<<Interface>>

IpEventNotification

	

	enableNotification (eventCriteria : in TpFwEventCriteria, assignmentID : out TpAssignmentIDRef) : TpResult

disableNotification (assignmentID : in TpAssignmentID) : TpResult

Method

enableNotification()

This method is used to enable generic notifications so that events can be sent to the application.

Parameters

eventCriteria : in TpFwEventCriteria

Specifies the event specific criteria used by the application to define the event required.
assignmentID : out TpAssignmentIDRef

Specifies the ID assigned by the framework for this newly enabled event notification.
Raises

TpGeneralException,TpFWException
Method

disableNotification()

This method is used by the application to disable generic notifications from the framework.

Parameters

assignmentID : in TpAssignmentID

Specifies the assignment ID given by the framework when the previous enableNotification() was called. If the assignment ID does not correspond to one of the valid assignment IDs, the framework will return the error code P_INVALID_ASSIGNMENTID.
Raises

TpGeneralException,TpFWException
	

	

	

	

	

	

	

	

	

	

	

	

9 Framework-to-Application State Transition Diagrams

This section contains the State Transition Diagrams for the objects that implement the Framework interfaces on the gateway side. The State Transition Diagrams show the behaviour of these objects. For each state the methods that can be invoked by the application are shown. Methods not shown for a specific state are not relevant for that state and will return an exception. Apart from the methods that can be invoked by the application also events internal to the gateway or related to network events are shown together with the resulting event or action performed by the gateway. These internal events are shown between quotation marks.

9.1 Trust and Security Management State Transition Diagrams
9.1.1 State Transition Diagrams for IpInitial

[image: image17.wmf]Active

initiateAuthentication / return new IpAuthentication

requestAccess[[authentication successful]] / return new IpAccess

requestAccess[authentication not yet successful] / return P_INVALID_AUTHENTICATION

Figure : State Transition Diagram for IpInitial

9.1.1.1 Active State

9.1.2 State Transition Diagrams for IpAuthentication

[image: image18.wmf]Idle

IpInitial.initiateAuthentication

InitAuthentication

entry/ find auth. mechanism

selectAuthMethod

WaitForApplicationResult

entry/ ^IpAppAuthentication.Authenticate

Application Authenticated

ALL

STATES

authenticate ^result Authenticate(response)

authenticate ^result Authenticate(response)

"no mechanism found" ^result selectAuthMethod(P_INVALID_AUTH_CAPABILITY)

"mechanism found"[[two way authentication] ^result selectAuthenticationMethod(prescribedMethod)

"mechanism found"[one way authentication] / inform IpInitial that application authenticated

abortAuthentication / inform IpInitial that application aborted authentication

result Authenticate[response valid] / inform IpInitial that application authenticated

result Authenticate[response invalid]

IpAccess.endAccess

Figure : State Transition Diagram for IpAuthentication

9.1.2.1 Idle State

When the application has requested the IpInitial interface for initiateAuthentication, an object implementing the IpAuthentication interface is created. The application now has to provide its authentication capabilities by invoking the SelectAuthMethod method.
9.1.2.2 InitAuthentication State

In this state the Framework selects the preferred authentication mechanism within the capability of the application. When a proper mechanism is found, the Framework can decide that the application doesn't have to be authenticated (one way authentication) or that the application has to be authenticated. In case no mechanism can be found the error code P_INVALID_AUTH_CAPABILITY is returned and the Authentication object is destroyed. This implies that the application has to re-initiate the authentication by calling once more the initiateAuthentication method on the IpInitial interface.
9.1.2.3 WaitForApplicationResult State

When entering this state, the Framework requests the application to authenticate itself by invoking the Authenticate method on the application. In case the application requests the Framework to authenticate itself by invoking Authenticate on the IpAuthentication interface, the Framework provides the correct response to the challenge of the application. When the Framework responds to the Authenticate request, the response is analysed and in case the response is valid a transition to the state Application Authenticated is made. In case the response is not valid, the Authentication object is destroyed. This implicates that the application has to re-initiate the authentication by calling once more the initiateAuthentication method on the IpInitial interface.
9.1.2.4 Application Authenticated State

In this state the application is considered authenticated and is now allowed to request access to the IpAccess interface. In case the application requests the Framework to authenticate itself by invoking Authenticate on the IpAuthentication interface, the Framework provides the correct response to the challenge of the application.

9.1.3 State Transition Diagrams for IpAccess

[image: image19.wmf]Active

IpInitial.requestAccess

obtainInterface / return requested FW interface

obtainInterfaceWithCallback / return requested FW interface

accessCheck / return whether application has access to requested service

selectService ^signServiceAgreement

signServiceAgreement[correct service selected] / get Service manager from Service Factory and return to application

terminateServiceAgreement / destroy Service manager object

endAccess / destroy all interface objects used by the application

network operator initiated endAccess / destroy all interface objects used by the application

Figure : State Transition Diagram for IpAccess

9.1.3.1 Active State

When the application requestes access to the Framework on the IpInitial interface, an object implementing the IpAccess interface is created. The application can now request other Framework interfaces, including Service Discovery. When the application is no longer interested in using the interfaces it calls the endAccess method. This results in the destruction of all interface objects used by the application. In case the network operator decides that the application has no longer access to the interfaces the same will happen.
9.2 Service Subscription State Transition Diagrams

There are no State Transition Diagrams defined for Service Subscription
9.3 Service Discovery State Transition Diagrams
9.3.1 State Transition Diagrams for IpServiceDiscovery

[image: image20.wmf]Active

obtainFrameworkInterface(discoveryService)

obtainInterfaceWithCallback(discoveryService)

listServiceTypes

describeServiceType

listSubscribedServices

discoverService

IpAccess.endAccess

Figure : State Transition Diagram for IpServiceDiscovery

9.3.1.1 Active State

When the application requests Service Discovery by invoking the obtainInterface or the obtainInterfaceWithCallback methods on the IpAccess interface, an instance of the IpServiceDiscovery will be created. Next the application is allowed to request a list of the provided SCFs and to obtain a reference to interfaces of SCFs.
9.4 Integrity Management State Transition Diagrams
9.4.1 State Transition Diagrams for IpHeartBeatMgmt

[image: image21.wmf]Application not

supervised

Application supervised

do/ periodically request Application for heartbeat by invoking send() method on IpAppHeartBeat

enableHeartBeat

IpAccess.obtainInterface

IpAccess.obtainInterfaceWithCallback

IpAccess.endAccess

disableHeartBeat

IpAccess.endAccess

changeTimePeriod

Figure : State Transition Diagram for IpHeartBeatMgmg

9.4.1.1 Application not supervised State

In this state the application has not registered for heartbeat supervision by the Framework.
9.4.1.2 Application supervised State

In this state the application has registered for heartbeat supervision by the Framework. Periodically the Framework will request for the application heartbeat by calling the send method on the IpAppHeartBeat interface.

9.4.2 State Transition Diagrams for IpHeartBeat

[image: image22.wmf]FW supervised by

Application

IpAppHeartBeatMgmt.enableAppHeartBeat

send / return heartbeat

IpAppHeartBeatMgmt.disableAppHeartBeat

IpAccess.endAccess

Figure : State Transition Diagram for IpHeatBeat

9.4.2.1 FW supervised by Application State

In this state the Framework has requested the application for heartbeat supervision on itself. Periodically the application calls the send() method and the Framework returns it's heartbeat result.

9.4.3 State Transition Diagrams for IpLoadManager

[image: image23.wmf]Idle

Notifying

do/ obtain load statistics and report them at specified interval with queryLoadRes

Suspending

Notification

reportLoad

Registered

IpAccess.obtainInterface

queryAppLoadRes[load statistics requested by LoadManager]

queryAppLoadErr[load statistics requested by LoadManager]

queryLoadReq

reportLoad

queryAppLoadRes[load statistics requested by LoadManager]

queryAppLoadErr[load statistics requested by LoadManager]

reportLoad

queryAppLoadRes[load statistics requested by LoadManager]

queryAppLoadErr[load statistics requested by LoadManager]

queryLoadReq

unregisterLoadController

registerLoadController

suspendNotification[all notifications suspendend]

unregisterLoadController

queryLoadRes[final load statistics report]

queryLoadErr[final load statistics report]

IpAccess.obtainInterfaceWithCallback

resumeNotification

unregisterLoadController

All States

IpAccess.endAccess

Figure : State Transition Diagram for IpLoadManager

9.4.3.1 Idle State

In this state the application has obtained an interface reference of the LoadManager from the IpAccess interface.
9.4.3.2 Notifying State

In the Notifying state the application has requested for load statistics. The Loadmanager gathers the requested information and (periodically) reports them to the application.
9.4.3.3 Suspending Notification State

Due to e.g. a temporary load condition, the application has requested the LoadManager to suspend sending the load statistics information.
9.4.3.4 Registered State

In this state the application has registered for load control with the method RegisterLoadController(). The LoadManager can now request the application to supply load statistics information (by invoking queryAppLoadReq()). Furthermore the LoadManager can request the application to control its load (by invoking enableLoadControl() or suspendNotification() on the application side of interface). In case the application detects a change in load level, it reports this to the LoadManager by calling the method reportLoad().
When entering this state, an object called LoadManagerInternal is created that has an internal state machine encapsulating the internal behaviour of the LoadManager. The State Transition Diagram of LoadManagerInternal is shown in Figure .

9.4.4 State Transition Diagrams for IpLoadManagerInternal

[image: image24.wmf]Normal load

Application Overload

entry/ evaluate policy and perform necessary actions

exit/ cancel performed actions

A necessary action can

be suspending the load

notifictions to the

application or enabling

load control mechanisms

on certain services.

Internal overload

entry/ evaluate policy and perform necessary actions

exit/ cancel performed actions

A necessary action can be

suspending the load

notifictions from the

application by invoking

suspendNotification or

enabling load control

mechanisms on the

application by invoking

enableLoadControl.

Internal and Application Overload

entry/ evaluate policy and perform necessary actions

exit/ cancel performed actions

ALL

STATES

reportLoad[loadlevel != 0]

reportLoad[loadlevel = 0]

"internal load change detection"

"internal load change to non overloaded"

"internal load change to non overload"

reportLoad[loadlevel = 0]

reportLoad[loadlevel != 0]

"internal load change detection"

registerLoadController

unregisterLoadController

Figure : State Transition Diagram for IpLoadManagerInternal

9.4.4.1 Normal load State

In this state the none of the entities defined in the load balancing policy between the application and the framework / SCFs is overloaded.
9.4.4.2 Application Overload State

In this state the application has indicated it is overloaded. When entering this state the load policy is consulted and the appropriate actions are taken by the LoadManager.
9.4.4.3 Internal overload State

In this state the Framework or one or more of the SCFs within the specific load policy is overloaded. When entering this state the load policy is consulted and the appropriate actions are taken by the LoadManager.
9.4.4.4 Internal and Application Overload State

In this state the application is overloaded as well as the Framework or one or more of the SCFs within the specific load policy. When entering this state the load policy is consulted and the appropriate actions are taken by the LoadManager.

9.4.5 State Transition Diagrams for IpOAM

[image: image25.wmf]Active

systemDateTimeQuery

IpAccess.endAccess

IpAccess.obtainInterface

IpAccess.obtainInterfaceWithCallback

Figure : State Transition Diagram for IpOAM

9.4.5.1 Active State

In this state the application has obtained a reference to the IpOAM interface. The application is now able to request the date / time of the Framework.

9.4.6 State Transition Diagrams for IpFaultManager

[image: image26.wmf]Framework

Active

Framework Faulty

entry/ ^fwFaultReportInd to all applications with callback

exit/ ^fwFaultRecoveryInd to all applications with callback

All attempts to use

the FW

(all interfaces) are

rejected (HOW?)

Framework Activity Test

entry/ test activity of framework

exit/ ^app.activityTestRes

NOTE: there is no way to tell via

this API when the service

becomes available again.

The application has to try to gain

access to the service via

signServiceAgreement.

Service Activity Test

entry/ test activity of service

exit/ ^app.activityTestRes

genFaultStatsRecordReq ^app.genFaultStatsRecordRes

srvUnavailableInd / test the service, inform service that application is not using it

'service fault' / serviceUnavailableInd to all applications using the service

IpAccess.obtainFrameworkInterfaceWithCallback("FaultManagement") / add application to fault management

fault detected in fw

fault resolved

IpAccess.endAccess / remove application from load management

activityTestReq[null service list]

fault detected in fw

no fault detected

service fault ^srvUnavailableInd to all applications using the service

no fault detected

activityTestReq[services list]

Figure : NewDiagram4

9.4.6.1 Framework Active State

This is the normal state of the framework, which is fully functional and able to handle requests from both applications and services capability features.
9.4.6.2 Framework Faulty State

In this state, the framework has detected an internal problem with itself such that application and services capability features cannot communicate with it anymore; attempts to invoke any methods that belong to any SCFs of the framework return an error. If the framework ever recovers, applications with fault management callbacks will be notified via a fwFaultRecoveryInd message.
9.4.6.3 Framework Activity Test State

In this state, the framework is performing self-diagnostic test. If a problem is diagnosed, all applications with fault management callbacks are notified through a fwFaultReportInd message.
9.4.6.4 Service Activity Test State

In this state, the framework is performing a test on one service capability feature. If the SCF is faulty, applications with fault management callbacks are notified accordingly through a svcUnavailableInd message.
[image: image27.wmf]Framework

Active

Framework Faulty

entry/ ^fwFaultReportInd to all applications with callback

exit/ ^fwFaultRecoveryInd to all applications with callback

All attempts to use

the FW

(all interfaces) are

rejected (HOW?)

Framework Activity Test

entry/ test activity of framework

exit/ ^app.activityTestRes

Service Activity Test

entry/ test activity of service

exit/ ^app.activityTestRes

genFaultStatsRecordReq ^app.genFaultStatsRecordRes

srvUnavailableInd / test the service, inform service that application is not using it

'service fault' / serviceUnavailableInd to all applications using the service

IpAccess.obtainFrameworkInterfaceWithCallback("FaultManagement") / add

application to fault management

fault detected in fw

fault resolved

IpAccess.endAccess / remove application from load management

activityTestReq[null service list]

activityTestReq[services list]

fault detected in fw

no fault detected

IpAccess.endAccess

service fault ^srvUnavailableInd to all applications using the service

no fault detected

IpAccess.endAccess/Abort

pending test request

IpAccess.obtainFrameworkInterfaceWithC

allback("FaultManagement") / add

application to fault management

Figure : State Transition Diagram for IpFaultManager

9.4.6.5 Framework Active State

This is the normal state of the framework, which is fully functional and able to handle requests from both applications and services capability features.
9.4.6.6 Framework Faulty State

In this state, the framework has detected an internal problem with itself such that application and services capability features cannot communicate with it anymore; attempts to invoke any methods that belong to any SCFs of the framework return an error. If the framework ever recovers, applications with fault management callbacks will be notified via a fwFaultRecoveryInd message.
9.4.6.7 Framework Activity Test State

In this state, the framework is performing self-diagnostic test. If a problem is diagnosed, all applications with fault management callbacks are notified through a fwFaultReportInd message.
9.4.6.8 Service Activity Test State

In this state, the framework is performing a test on one service capability feature. If the SCF is faulty, applications with fault management callbacks are notified accordingly through a svcUnavailableInd message.
9.5 Event Notification State Transition Diagrams
9.5.1 State Transition Diagrams for IpEventNotification

[image: image28.wmf]Idle

IpAccess.obtainInterface

Notification

Enabled

enableNotification

disableNotification

disableNotification[no more notifications enabled]

IpAccess.endAccess

IpAccess.obtainInterfaceWithCallback

enableNotification

IpAccess.endAccess

Figure : State Transition Diagram for IpEventNotification

9.5.1.1 Idle State

9.5.1.2 Notification Enabled State

10 Framework-to-Service Sequence Diagrams

10.1 Trust and Security Management Sequence Diagrams

No Sequence Diagrams exist for Trust and Security Management

10.2 Service Discovery Sequence Diagrams

No Sequence Diagrams exist for Service Discovery

10.3 Service Registration Sequence Diagrams

10.3.1 SCF Registration

This sequence diagram shows the registration of a new service capability feature, announcing the availability of a registered SCF to the framework, or deletion of an existing registered SCF from the framework, by the SCS.

The SCSs can register only those SCFs, which are supported by the framework (i.e., the corresponding SCF types are supported in the framework). The SCF registration function is supported by the Service Registration interface of the framework. The SCS obtains the reference to the Service Registration interface of the framework by invoking obtainInterface() on the OSA Access interface of the framework. The SCS may first obtain a list of SCF types supported by the framework by invoking listServiceTypes() on the discovery SCF and then obtain a description of a given SCF type by invoking describeServiceType(). Once the supported SCF types and their description (i.e., the SCF properties applicable to each type) are obtained, the SCS can perform SCF registration.

SCF registration is a two-step process, after which a certain version of an SCF, characterised by a serviceDescription, is assigned a serviceID for identification purposes, and a reference to a service factory interface as a first entry point for applications.

-
As a first step the SCSs invokes registerService() method on the Service Registration interface by giving the SCF type name and the values of the SCF properties. The framework returns a serviceID, which uniquely identifies the registered SCF within the framework.

-
The second step is the instantiation of the SCF at an interface that will be registered in the framework together with its corresponding serviceID. This implies that the SCF in now available for use. The SCSs or the SCF itself invokes announceServiceAvailability() on the framework to announce the availability of the SCF identified by its serviceID at a particular interface. The annouceServiceAvailability() method may associate the serviceID either with the actual SCF interface or with the interface of the SCF manager (to achieve location transparency).

An SCF may be withdrawn from the domain by an SCS by invoking an unregisterService() on the Service Registration interface. The SCF is identified by the serviceID, which was originally returned by the framework after registration. At any time an SCS can obtain a description of the SCFs registered by it through the describeService() method.

[image: image29.wmf]SCS

 : IpAccess

 : IpServiceDiscovery

 : IpFwServiceRegistration

1: obtainInterface()

2: listServiceTypes()

3: describeServiceType()

4: obtainInterface()

5: registerService()

6: announceServiceAvailability()

7: describeService()

8: unregisterService()

10.4 Service Factory Sequence Diagrams

10.4.1 Sign Service Agreement

This sequence illustrates how the application can get access to a specified service. It only illustrates the last part: the signing of the service agreement and the corresponding actions towards the service. For more information on accessing the framework, authentication and discovery of services, see the corresponding sections.

[image: image30.wmf] : IpAppCallControlManager

AppLogic

 : IpInitial

 : IpAccess

 : IpCallControlManager

 : IpAppAccess

GenericCallControlService :

IpSvcFactory

1: selectService()

3: signServiceAgreement()

4: getServiceManager()

5: new()

6: new()

7: setCallback()

We assume that the application is already authenticated and discovered the service it wants to use

2: signServiceAgreement()

1:
The application selects the service, using a serviceID for the generic call control service. The serviceID could have been obtained via the discovery interface. A ServiceToken is returned to the application.

2:
The framework signs the service agreement.

3:
The client application signs the service agreement. As a result a service manager interface reference (in this case of type IpCallControlManager) is returned to the application.

4:
Provided the signature information is correct and all conditions have been fulfilled, the framework will request the service identified by the serviceID to return a service manager interface reference. The service manager is the initial point of contact to the service.

5:
The service factory creates a new manager interface instance (a call control manager) for the specified application. It should be noted that this is an implementation detail. The service implementation may use other mechanism to get a service manager interface instance.

6:
The application creates a new IpAppCallControlManager interface to be used for callbacks.

7:
The Application sets the callback interface to the interface created with the previous message.

10.5 Integrity Management Sequence Diagrams

10.5.1 Load Management: Client and Service Load Balancing

[image: image31.wmf]Application :

IpAppLoadManager

Framework :

IpLoadManager

Framework :

IpLoadManager

Service :

IpSvcLoadManager

1: queryAppLoadReq()

Framework checks

application load.

2: queryAppLoadRes()

Depending on the load, the

framework may chose to stop

sending notifications to the

application, to allow its load to

reduce.

3: suspendNotification()

The framework may then check

the load on the service, and take

action if (according to the load

balancing policy) if required.

4: querySvcLoadReq()

5: querySvcLoadRes()

10.5.2 Fault Management: Service requests Framework activity test

[image: image32.wmf]Framework :

IpFwFaultManager

Service :

IpSvcFaultManager

The Service requests that the

Framework does an activity test.

The Framework is identified as the

target of the test by a NULL appId

parameter value.

1: activityTestReq()

2: activityTestRes()

1:
The service asks the framework to carry out its activity test. The service denotes that it requires the activity test done for the framework, rather than an application, by supplying a NULL value for the appID parameter.

2:
The framework carries out the test and returns the result to the service.

10.5.3 Fault Management: Service requests Application activity test

[image: image33.wmf]Service :

IpSvcFaultManager

Framework :

IpFwFaultManager

Framework :

IpFwFaultMa...

Application :

IpAppFaultManager

1: activityTestReq()

2: appActivityTestReq()

3: appActivityTestRes()

4: activityTestRes()

The Framework checks appId

parameter to identify which Application

the test is directed at, and

comunicates internally to Framework

interface to the Application.

The application

carries out the

activity test and

returns the result to

the Framework.

Internal Framework

Communications.

1:
The service asks the framework to invoke an activity test on a client application, the application is identified by the appId parameter.

2:
The framework asks the application to do the activity test. It is assumed that there is internal communication between the service facing part of the framework (i.e IpFwFaultManager interface) and the part that faces the client application.

3:
The application does the activity test and returns the result to the framework.

4:
The framework internally passes the result from its application facing interface (IpFaultManager) to its service facing side, and sends the result to the service.

10.5.4 Fault Management: Application requests Service activity test

[image: image34.wmf]Client Application :

IpAppFaultManager

Framework :

IpFaultManager

Framework :

IpFaultManager

Service :

IpSvcFaultManager

1: activityTestReq()

The client application asks the

framework to carry out the

activity test on a service.

The Framework identifies which

service the test is directed at by the

svcID parameter, and

communicates internally with the

appropriate framework interface.

Which invokes the call on the

service.

2: svcActivityTestReq()

Service does test and

returns the result.

3: svcActivityTestRes()

4: activityTestRes()

Framework passes result

internally from service facing

part to application facing part,

and sends the result to the

application.

1:
The client application asks the framework to invoke an activity test on a service, the service is identified by the svcId parameter.

2:
The framework asks the service to do the activity test. It is assumed that there is internal communication between the application facing part of the framework (i.e IpFaultManager interface) and the part that faces the service.

3:
The service does the activity test and returns the result to the framework.

4:
The framework internally passes the result from its service facing interface (IpFwFaultManager) to its application facing side, and sends the result to the client application.

10.5.5 Fault Management: Application detects service is unavailable

[image: image35.wmf]Client Application :

IpAppFaultManager

Framework :

IpFaultManager

Service :

IpSvcFaultManager

 :

IpFwFaultManager

1: svcUnavailableInd()

The application detects that

the service is not responding,

so it informs the framework via

the svcUnavailableInd method

and then ceases use of the

service.

The framework informs the

service that the application

is no longer using it.

2: appRemovalInd()

1:
The client application detects that the service instance is currently not available, i.e. the service instance is not responding to the client application in the normal way, so it informs the framework and takes action to stop using this service instance and change to a different one (via the usual mechanisms, such as discovery, selectService etc.). The client application should not need to re-authenticate in order to discover and use an alternative service instance.

2:
The framework informs the service instance that the client application was unable to get a response from it and has ceased to be one of its users. The framework and service instance must carry out the appropriate updates to remove the client application as one of the users of this service instance. The service or framework may then decide to carry out an activity test to see whether there is a general problem with the service instance that requires further action.

10.6 Event Notification Sequence Diagrams

No Sequence Diagrams exist for Event Notification

11 Framework-to-Service Class Diagrams

[image: image36.wmf]IpFwInitial

initiateAuthentication()

requestAccess()

(from Framework interfaces)

<<Interface>>

IpFwAccess

obtainInterface()

obtainInterfaceWithCallba...

endAccess()

(from Framework interfaces)

<<Interface>>

IpFwAuthentication

selectAuthMethod()

authenticate()

abortAuthentication()

(from Framework interfaces)

<<Interface>>

IpSvcAccess

terminateAccess()

(from Service Interfaces)

<<Interface>>

IpSvcAuthentication

authenticate()

abortAuthentication()

(from Service Interfaces)

<<Interface>>

<<uses>>

<<uses>>

Figure: Trust and Security Management Package Overview

[image: image37.wmf]IpFwServiceDiscovery

listServiceTypes()

describeServiceType()

discoverService()

listRegisteredServices()

(from Framework interfaces)

<<Interface>>

Figure: Service Discovery Package Overview

[image: image38.wmf]IpFwServiceRegistration

registerService()

announceServiceAvailabili...

unregisterService()

describeService()

(from Framework interfaces)

<<Interface>>

Figure: Service Registration Package Overview

[image: image39.wmf]IpSvcFactory

getServiceManager()

(from Service Interfaces)

<<Interface>>

Figure: Service Factory Package Overview

[image: image40.wmf]IpSvcHeartBeatMgmt

enableSvcHeartBeat()

disableSvcHeartBeat()

changeTimePeriod()

<<Interface>>

IpSvcHeartBeat

send()

<<Interface>>

1

0..n

1

0..n

IpFwHeartBeat

send()

<<Interface>>

<<uses>>

IpFwHeartBeatMgmt

enableHeartBeat()

disableHeartBeat()

changeTimePeriod()

<<Interface>>

<<uses>>

0..n

1

0..n

1

IpFwLoadManager

reportLoad()

queryLoadReq()

querySvcLoadRes()

querySvcLoadErr()

registerLoadController()

unregisterLoadController()

suspendNotification()

resumeNotification()

<<Interface>>

IpSvcLoadManager

querySvcLoadReq()

queryLoadRes()

queryLoadErr()

enableLoadControl()

disableLoadControl()

suspendNotification()

resumeNotification()

<<Interface>>

<<uses>>

IpSvcFaultManager

activityTestRes()

svcActivityTestReq()

fwFaultReportInd()

fwFaultRecoveryInd()

fwUnavailableInd()

svcUnavailableInd()

appRemovalInd()

genFaultStatsRecordRes()

<<Interface>>

IpFwFaultManager

activityTestReq()

svcActivityTestRes()

appUnavailableInd()

genFaultStatsRecordReq()

svcRemovalInd()

<<Interface>>

<<uses>>

IpFwOAM

systemDateTimeQuery()

<<Interface>>

IpSvcOAM

systemDateTimeQuery()

<<Interface>>

<<uses>>

Figure: Integrity Management Package Overview

[image: image41.wmf]IpFwEventNotification

enableNotification()

disableNotification()

(from Framework Interfaces)

<<Interface>>

IpSvcEventNotification

eventNotify()

notificationTerminated()

(from Service Interfaces)

<<Interface>>

<<uses>>

Figure: Event Notification Package Overview
12 Framework-to-Service Interface Classes

12.1 Trust and Security Management Interface Classes
12.1.1 Interface Class IpFwInitial

Inherits from: IpInterface.
The service entity gains a reference to the IpFwInitial interface for the Framework provider that it wishes to access. This may be gained through a URL, a stringified object reference, etc. At this stage, the service entity has no guarantee that this is a reference to the Framework provider. The service entity uses this interface to initiate the authentication process with the Framework provider. The IpFwInitial interface supports the initiateAuthentication operation to allow the authentication process to take place. This operation must be the first invoked by the service entity. Invocations of other operations will fail until authentication has been successfully completed.

	<<Interface>>

IpFwInitial

	

	initiateAuthentication (svcDomain : in TpAuthDomain, authType : in TpAuthType, fwDomain : out TpAuthDomainRef) : TpResult

requestAccess (accessType : in TpAccessType, svcAccessInterface : in IpInterfaceRef, fwAccessInterface : out IpInterfaceRefRef) : TpResult

Method

initiateAuthentication()

The service entity uses this method to initiate the authentication process.

Parameters

svcDomain : in TpAuthDomain

This identifies the service entity to the framework, and provides a reference to the entity's authentication interface.

structure TpAuthDomain {

domainID:TpDomainID;

authInterface:
IpInterface;

};

The domainID parameter is an identifier either for an existing registered service (i.e. TpServiceID) or for a service supplier (i.e. TpServiceSupplierID). It is used to identify the service (supplier) to the framework, (see authenticate() on IpFwAuthentication). If the framework does not recognise the domainID, the framework returns an error code (P_INVALID_DOMAIN_ID). The authInterface parameter is a reference to call the authentication interface of the service (supplier). The type of this interface is defined by the authType parameter. If the interface reference is not of the correct type, the framework returns an error code (P_INVALID_INTERFACE_TYPE).
authType : in TpAuthType

This identifies the type of authentication mechanism requested by the service entity. It provides the opportunity to use an alternative to the OSA Authentication interface, e.g. CORBA Security. OSA Authentication is the default authentication mechanism (P_AUTHENTICATION). If P_AUTHENTICATION is selected, then the svcDomain and fwDomain authInterface parameters are references to interfaces of type IpSvc/FwAuthentication.
fwDomain : out TpAuthDomainRef

This provides the service entity with a framework identifier, and a reference to call the authentication interface of the framework.

structure TpAuthDomain {

domainID:

TpDomainID;

authInterface:

IpInterface;

};

The domainID parameter is an identifier for the framework (i.e. TpFwID). It is used to identify the framework to the service entity.The authInterface parameter is a reference to the authentication interface of the framework. The type of this interface is defined by the authType parameter. The service entity uses this interface to authenticate with the framework.
Raises

TpGeneralException,TpFWException
Method

requestAccess()

Once service entity and framework are authenticated, the service entity invokes the requestAccess operation on the IpFwInitial interface. This allows the service entity to request the type of access it requires. If it requests P_OSA_ACCESS, then a reference to the IpFwAccess interface is returned. (Operators can define their own access interfaces to satisfy service requirements for different types of access.)

If this method is called before the service entity and framework have successfully completed the authentication process, then the request fails, and an error code (P_ACCESS_DENIED) is returned.

Parameters

accessType : in TpAccessType

This identifies the type of access interface requested by the service entity. If the framework does not provide the type of access identified by accessType, then an error code (P_INVALID_ACCESS_TYPE) is returned.
svcAccessInterface : in IpInterfaceRef

This provides the reference for the framework to call the access interface of the service entity. If the interface reference is not of the correct type, the framework returns an error code (P_INVALID_INTERFACE_TYPE).
fwAccessInterface : out IpInterfaceRefRef

This provides the reference for the service entity to call the access interface of the framework.
Raises

TpGeneralException,TpFWException
12.1.2 Interface Class IpFwAuthentication

Inherits from: IpInterface.
Once the service entity has made initial contact with the provider, authentication of the service entity and Framework provider may be required. The API supports multiple authentication techniques. The procedure used to select an appropriate technique for a given situation is described below. The authentication mechanisms may be supported by cryptographic processes to provide confidentiality, and by digital signatures to ensure integrity. The inclusion of cryptographic processes and digital signatures in the authentication procedure depends on the type of authentication technique selected. In some cases strong authentication may need to be enforced by the framework provider to prevent misuse of resources. In addition it may be necessary to define the minimum encryption key length that can be used to ensure a high degree of confidentiality. The service entity must authenticate with the framework before it will be able to use any of the other interfaces supported by the framework. Invocations on other interfaces will fail until authentication has been successfully completed.

1. The service entity calls initiateAuthentication on the provider's IpFwInitial interface. This allows the service entity to specify the type of authentication process. This authentication process may be specific to the Framework provider, or to the implementation technology used. The initiateAuthentication operation can be used to designate the specific process, (e.g. CORBA security could be used in a CORBA-based implementation of OSA). OSA defines a generic authentication interface (IpFwAuthentication), which can be used to perform the authentication process. The initiateAuthentication operation allows the service entity to pass a reference to its IpSvcAuthentication interface to the Framework, and receive a reference to the IpFwAuthentication interface supported by the framework, in return.

2. The service entity invokes the selectAuthMethod on the framework's IpFwAuthentication interface. This includes the authentication capabilities of the service entity. The framework then chooses an authentication method based on the authentication capabilities of the service entity and the framework. If the service entity is capable of handling more than one authentication method, then the framework chooses one option, the prescribedMethod. In some instances, the authentication capability of the service entity may not fulfil the demands of the framework, in which case, the authentication will fail.

3. The service entity and framework interact to authenticate each other. Depending on the method prescribed, this procedure may consist of a number of messages e.g. a challenge/ response protocol. This authentication protocol is performed using the authenticate operation on the IpFwAuthentication interface. Depending on the authentication method selected the protocol may require invocations on either the IpFwAuthentication interface supported by the framework, or on the IpSvcAuthentication interface supported by the service entity, or on both interfaces.

	<<Interface>>

IpFwAuthentication

	

	selectAuthMethod (authCaps : in TpAuthCapabilityList, prescribedMethod : out TpAuthCapabilityRef) : TpResult

authenticate (prescribedMethod : in TpAuthCapability, challenge : in TpString, response : out TpStringRef) : TpResult

abortAuthentication () : TpResult

Method

selectAuthMethod()

The service entity uses this method to initiate the authentication process. The framework returns its preferred mechanism. This should be within the capability of the service entity. If a mechanism that is both acceptable to the framework and within the capability of the service entity cannot be found, then the framework returns an error code (P_NO_ACCEPTABLE_AUTH_CAPABILITY).

Parameters

authCaps : in TpAuthCapabilityList

This is the means by which the authentication mechanisms supported by the service entity are conveyed to the framework.
prescribedMethod : out TpAuthCapabilityRef

This is the mechanism preferred by the framework for the authentication process. If the service entity does not understand the value of the prescribedMethod returned by the framework, it is considered a catastrophic error and the service entity must abort the authentication process.
Raises

TpGeneralException,TpFWException
Method

authenticate()

The service entity uses this method to authenticate the framework using the mechanism indicated in prescribedMethod. The framework must respond with the correct responses to the challenges presented by the service entity. The serviceID received in the initiateAuthentication() can be used by the framework to reference the correct public key for the service entity (the key management system is currently outside of the scope of the OSA API specification). The number and the order of the exchanges depend upon the prescribedMethod.

Parameters

prescribedMethod : in TpAuthCapability

see selectAuthMethod. This parameter contains the method that the framework has specified as acceptable for authentication. If this is not the same value as returned by selectAuthMethod(), then the framework returns an error code (P_INVALID_AUTH_CAPABILITY).
challenge : in TpString

The challenge presented by the service entity to be responded to by the framework. The challenge mechanism used will be in accordance with the IETF PPP Authentication Protocols - Challenge Handshake Authentication Protocol [RFC 1994, August1996]. The challenge will be encrypted with the mechanism prescribed by selectAuthMethod().
response : out TpStringRef

This is the response of the framework to the challenge of the service entity in the current sequence. The response will be based on the challenge data, decrypted with the mechanism prescribed by the selectAuthMethod() method.
Raises

TpGeneralException,TpFWException
Method

abortAuthentication()

The service entity uses this method to abort the authentication process. This method is invoked if the service entity no longer wishes to continue the authentication process, (e.g. if the framework responds incorrectly to a challenge.) If this method has been invoked, calls to the requestAccess operation on IpFwInitial will return an error code (P_ACCESS_DENIED), until the service entity has been properly authenticated.

Parameters

No Parameters were identified for this method

Raises

TpGeneralException,TpFWException
12.1.3 Interface Class IpFwAccess

Inherits from: IpInterface.
Once the service entity has authenticated with the framework provider, the service entity can gain access to other framework interfaces. After authentication, the service entity can gain access to the framework's functions, by invoking the requestAccess method on the IpFwInitial interface. This allows the service entity to request the type of access they require. If they request P_OSA_ACCESS, then a reference to the IpFwAccess interface is returned. (Operators can define their own access interfaces to satisfy service entity requirements for different types of access.) The service entity must also provide the framework with a reference to a 'callback' interface to allow the framework to initiate interactions during the access session. If the service entity has requested P_OSA_ACCESS, then they must provide a reference to a IpSvcAccess interface to the framework. The IpFwAccess interface allows the service entity to gain references to other interfaces offered by the framework. erences to these framework interfaces are gained by invoking the obtainInterface, or obtainInterfaceWithCallback operations. The latter is used when a callback interface is supplied to the framework. For example, a service registration interface reference is returned when invoking obtainInterface with "registration" as the interface name. The endAccess operation is used to end the service entity's session with the framework. After it is invoked, the service entity will no longer be authenticated with the framework. The service entity will not be able to use the references to any of the framework interfaces gained during the access session. Any calls to these interfaces will fail. The IpSvcAccess interface is offered by the service entity to the framework to allow the framework to initiate interactions during the access session. It can be used to terminate the access session and request that the service entity re-authenticate.

	<<Interface>>

IpFwAccess

	

	obtainInterface (interfaceName : in TpInterfaceName, fwInterface : out IpInterfaceRefRef) : TpResult

obtainInterfaceWithCallback (interfaceName : in TpInterfaceName, svcinterface : in IpInterfaceRef, fwInterface : out IpInterfaceRefRef) : TpResult

endAccess (endAccessProperties : in TpEndAccessProperties) : TpResult

Method

obtainInterface()

This method is used to obtain other framework interfaces. The service entity uses this method to obtain interface references to other framework interfaces. (The obtainInterfacesWithCallback method should be used if the service entity is required to supply a callback interface to the framework.)

Parameters

interfaceName : in TpInterfaceName

The name of the framework interface for which a reference is requested. If the interfaceName is invalid, the framework returns an error code (P_INVALID_INTERFACE_NAME).
fwInterface : out IpInterfaceRefRef

This is the reference to the interface requested.
Raises

TpGeneralException,TpFWException
Method

obtainInterfaceWithCallback()

This method is used to obtain other framework interfaces. The service entity uses this method to obtain interface references to other framework interfaces, when it is required to supply a callback interface to the framework. (The obtainInterface method should be used when no callback interface needs to be supplied.)

Parameters

interfaceName : in TpInterfaceName

The name of the framework interface for which a reference is requested. If the interfaceName is invalid, the framework returns an error code (P_INVALID_INTERFACE_NAME).
svcinterface : in IpInterfaceRef

This is the reference to the service entity interface, which is used for callbacks. If the interface reference is not of the correct type, the framework returns an error code (P_INVALID_INTERFACE_TYPE).
fwInterface : out IpInterfaceRefRef

This is the reference to the interface requested.
Raises

TpGeneralException,TpFWException
Method

endAccess()

The service entity uses this method to end its access session with the framework. After it is invoked, the service entity will no longer be authenticated with the framework. The service entity will not be able to use the references to any of the framework interfaces gained during the access session. Any calls to these interfaces will fail.

Parameters

endAccessProperties : in TpEndAccessProperties

This is a list of properties that can be used to tell the framework the actions to perform when ending the access session (e.g. existing application sessions may be stopped, or left running). If a property is not recognised by the framework, an error code (P_INVALID_PROPERTY) is returned.
Raises

TpGeneralException,TpFWException
	

	

	

12.1.4 Interface Class IpSvcAuthentication

Inherits from: IpInterface.
	<<Interface>>

IpSvcAuthentication

	

	authenticate (prescribedMethod : in TpAuthCapability, challenge : in TpString, response : out TpStringRef) : TpResult

abortAuthentication () : TpResult

Method

authenticate()

The framework uses this method to authenticate the service entity using the mechanism indicated in prescribedMechanism. The service entity must respond with the correct responses to the challenges presented by the framework. The number and order of the exchanges depends upon the prescribedMethod. (These may be interleaved with authenticate() method calls by the service entity on the IpAuthentication interface. This is defined by the prescribedMethod.)

Parameters

prescribedMethod : in TpAuthCapability

see selectAuthMethod() on the IpFwAuthentication interface. This parameter contains the agreed method for authentication. If this is not the same value as returned by selectAuthMethod(), then an error code (P_INVALID_AUTH_CAPABILITY) is returned.
challenge : in TpString

The challenge presented by the framework to be responded to by the service entity. The challenge mechanism used will be in accordance with the IETF PPP Authentication Protocols - Challenge Handshake Authentication Protocol [RFC 1994, August1996]. The challenge will be encrypted with the mechanism prescribed by selectAuthMethod().
response : out TpStringRef

This is the response of the service entity to the challenge of the framework in the current sequence. The response will be based on the challenge data, decrypted with the mechanism prescribed by selectAuthMethod().
Raises

TpGeneralException,TpFWException
Method

abortAuthentication()

The framework uses this method to abort the authentication process. This method is invoked if the framework wishes to abort the authentication process, (e.g. if the service entity responds incorrectly to a challenge.) If this method has been invoked, calls to the requestAccess operation on IpFwInitial will return an error code (P_ACCESS_DENIED), until the service entity has been properly authenticated.

Parameters

No Parameters were identified for this method

Raises

TpGeneralException,TpFWException
12.1.5 Interface Class IpSvcAccess

Inherits from: IpInterface.
	<<Interface>>

IpSvcAccess

	

	terminateAccess (terminationText : in TpString, signingAlgorithm : in TpSigningAlgorithm, digitalSignature : in TpString) : TpResult

Method

terminateAccess()

This method is used to end the service entity's access session with the framework. For example the framework may invoke this method if it believes that the service entity is masquerading as something it is not. The service entity must re-authenticate if it wishes to continue its association with the framework. The service entity will not be able to use the references to any of the framework interfaces gained during the access session. Any method invocations associated with these interfaces will fail.

Parameters

terminationText : in TpString

This is the termination text that describes the reason for the termination of the access session.
signingAlgorithm : in TpSigningAlgorithm

This is the algorithm used to compute the digital signature. If the signingAlgorithm is invalid, or unknown to the service entity, an error code (P_INVALID_SIGNING_ALGORITHM) is returned.
digitalSignature : in TpString

This is a signed version of a hash of the termination text. The framework uses this to confirm its identity to the service entity. The service entity can check that the framework has signed the terminationText. If a match is made, the access session is terminated, otherwise an error code (P_INVALID_SIGNATURE) is returned.
	

	

	

	

	

	

	

	

	

12.2 Service Registration Interface Classes
12.2.1 Interface Class IpFwServiceRegistration

Inherits from: IpInterface.
The Service Registration interface provides the methods used for the registration of network SCFs at the framework.

	<<Interface>>

IpFwServiceRegistration

	

	registerService (serviceTypeName : in TpServiceTypeName, servicePropertyList : in TpServicePropertyList, serviceID : out TpServiceIDRef) : TpResult

announceServiceAvailability (serviceID : in TpServiceID, serviceFactoryRef : in IpServiceRef) : TpResult

unregisterService (serviceID : in TpServiceID) : TpResult

describeService (serviceID : in TpServiceID, serviceDescription : out TpServiceDescriptionRef) : TpResult

Method

registerService()

The registerService() operation is the means by which a service is registered in the Framework, for subsequent discovery by the enterprise applications . A service-ID is returned to the service supplier when a service is registered in the Framework. The service-ID is the handle with which the service supplier can identify the registered service when needed (e.g. for withdrawing it). The service-ID is only meaningful in the context of the Framework that generated it.

Parameters

serviceTypeName : in TpServiceTypeName

The "serviceTypeName" parameter identifies the service type and a set of named property types that may be used in further describing this service (i.e., it restricts what is acceptable in the servicePropertyList parameter). If the string representation of the "type" does not obey the rules for identifiers, then an P_ILLEGAL_SERVICE_TYPE exception is raised. If the "type" is correct syntactically but the Framework is able to unambiguously determine that it is not a recognised service type, then a P_UNKNOWN_SERVICE_TYPE exception is raised.
servicePropertyList : in TpServicePropertyList

The "servicePropertyList" parameter is a list of property name and property value pairs. They describe the service being registered. This description typically covers behavioral, non-functional and non-computational aspects of the service. Service properties are marked "mandatory" or "readonly". These property mode attributes have the following semantics:
a. mandatory - a service associated with this service type must provide an appropriate value for this property when registering.

b. readonly - this modifier indicates that the property is optional, but that once given a value, subsequently it may not be modified.

Specifying both modifiers indicates that a value must be provided and that subsequently it may not be modified. An example of such properties are those which form part of a service agreement and hence cannot be modified by service suppliers during the life time of service.

If the type of any of the property values is not the same as the declared type (declared in the service type), then a P_PROPERTY_TYPE_MISMATCH exception is raised. If an attempt is made to assign a dynamic property value to a readonly property, then the P_READONLY_DYNAMIC_PROPERTY exception is raised. If the "servicePropertyList" parameter omits any property declared in the service type with a mode of mandatory, then a P_MISSING_MANDATORY_PROPERTY exception is raised. If two or more properties with the same property name are included in this parameter, the P_DUPLICATE_PROPERTY_NAME exception is raised.
serviceID : out TpServiceIDRef

This is the unique handle that is returned as a result of the successful completion of this operation. The Service Supplier can identify the registered service when attempting to access it via other operations such as unregisterService(), etc. Enterprise client applications are also returned this service-ID when attempting to discover a service of this type.
Raises

TpGeneralException,TpFWException
Method

announceServiceAvailability()

The registerService() method described previously does not make the service discoverable. The announceServiceAvailability() method is invoked after the service is authenticated and its service factory is instantiated at a particular interface. This method informs the framework of the availability of "service factory" of the previously registered service, identified by its service ID, at a specific interface. After the receipt of this method, the framework makes the corresponding service discoverable.

There exists a "service manager"instance per service instance. Each service implements the IpSvcFactory interface. The IpSvcFactory interface supports a method called the getServiceManager(application: in TpClientAppID, serviceManager: out IpServiceRefRef). When the service agreement is signed for some serviceID (using signServiceAgreement()), the framework calls the getServiceManager() for this service, gets a serviceManager and returns this to the client application.

Parameters

serviceID : in TpServiceID

The service ID of the service that is being announced. If the string representation of the "serviceID" does not obey the rules for service identifiers, then an P_ILLEGAL_SERVICE_ID exception is raised. If the "serviceID" is legal but there is no service offer within the Framework with that ID, then an P_UNKNOWN_SERVICE_ID exception is raised.
serviceFactoryRef : in IpServiceRef

The interface reference at which the service factory of the previously registered service is available.
Raises

TpGeneralException,TpFWException
Method

unregisterService()

The unregisterService() operation is used by the service suppliers to remove a registered service from the Framework. The service is identified by the "service-ID" which was originally returned by the Framework in response to the registerService() operation. After the unregisterService(), the service can no longer be discovered by the enterprise client application.

Parameters

serviceID : in TpServiceID

The service to be withdrawn is identified by the "serviceID" parameter which was originally returned by the registerService() operation. If the string representation of the "serviceID" does not obey the rules for service identifiers, then an P_ILLEGAL_SERVICE_ID exception is raised. If the "serviceID" is legal but there is no service offer within the Framework with that ID, then an P_UNKNOWN_SERVICE_ID exception is raised.
Raises

TpGeneralException,TpFWException
Method

describeService()

The describeService() operation returns the information about a service that is registered in the framework. It comprises, the "type" of the service , and the "properties" that describe this service. The service is identified by the "service-ID" parameter which was originally returned by the registerService() operation.

This operation is intended to be used between a certain framework and the SCS that registered the SCF, since it is only between them that the serviceID is valid. The SCS may register various versions of the same SCF, each with a different description (more or less restrictive, for example), and each getting a different serviceID assigned. Getting the description of these SCFs from the framework where they have been registered helps the SCS internal maintenance.

Parameters

serviceID : in TpServiceID

The service to be described is identified by the "serviceID" parameter which was originally returned by the registerService() operation. If the string representation of the "serviceID" does not obey the rules for object identifiers, then an P_ILLEGAL_SERVICE_ID exception is raised. If the "serviceID" is legal but there is no service offer within the Framework with that ID, then a P_UNKNOWN_SERVICE_ID exception is raised.
serviceDescription : out TpServiceDescriptionRef

This consists of the information about an offered service that is held by the Framework. It comprises the "type" of the service , and the properties that describe this service.
Raises

TpGeneralException,TpFWException
	

	

	

	

	

	

	

	

	

12.3 Service Factory Interface Classes
12.3.1 Interface Class IpSvcFactory

Inherits from: IpInterface.
The IpSvcFactory interface allows the framework to get access to a service manager interface of a service. It is used during the signServiceAgreement, in order to return a service manager interface reference to the application. Each service has a service manager interface that is the initial point of contact for the service. E.g., the generic call control service uses the IpCallControlManager interface.

	<<Interface>>

IpSvcFactory

	

	getServiceManager (application : in TpDomainID, serviceProperties : in TpServicePropertyList, serviceManager : out IpServiceRefRef) : TpResult

Method

getServiceManager()

This method returns a service manager interface reference for the specified application. Usually, but not necessarily, this involves the instantiation of a new service manager interface.

Parameters

application : in TpDomainID

Specifies the application for which the service manager interface is requested.
serviceProperties : in TpServicePropertyList

serviceManager : out IpServiceRefRef

Specifies the service manager interface reference for the specified application ID.
Raises

TpGeneralException,TpFWException
	

	

	

	

	

	

	

	

	

12.4 Service Discovery Interface Classes
12.4.1 Interface Class IpFwServiceDiscovery

Inherits from: IpInterface.
	<<Interface>>

IpFwServiceDiscovery

	

	listServiceTypes (listTypes : out TpServiceTypeNameListRef) : TpResult

describeServiceType (name : in TpServiceTypeName, serviceTypeDescription : out TpServiceTypeDescriptionRef) : TpResult

discoverService (serviceTypeName : in TpServiceTypeName, desiredPropertyList : in TpServicePropertyList, max : in TpInt32, serviceList : out TpServiceListRef) : TpResult

listRegisteredServices (serviceList : out TpServiceListRef) : TpResult

Method

listServiceTypes()

This operation returns the names of all service types that are in the repository. The details of the service types can then be obtained using the describeServiceType() method.

Parameters

listTypes : out TpServiceTypeNameListRef

The names of the requested service types.
Raises

TpGeneralException,TpFWException
Method

describeServiceType()

This operation lets the caller obtain the details for a particular service type.

Parameters

name : in TpServiceTypeName

The name of the service type to be described. If the "name" is malformed, then the P_ILLEGAL_SERVICE_TYPE exception is raised. If the "name" does not exist in the repository, then the P_UNKNOWN_SERVICE_TYPE exception is raised.
serviceTypeDescription : out TpServiceTypeDescriptionRef

The description of the specified service type. The description provides information about: the service properties associated with this service type: i.e. a list of service property {name, mode and type} tuples, the names of the super types of this service type, and whether the service type is currently enabled or disabled.
Raises

TpGeneralException,TpFWException
Method

discoverService()

The discoverService operation is the means by which the service supplier can retrieve a specific set of registered services that both belong to a given type and possess a specific set of "property values". The service supplier passes in a list of desired service properties to describe the service it is looking for, in the form of attribute/value pairs for the service properties. The service supplier also specifies the maximum number of matched responses it is willing to accept. The framework must not return more matches than the specified maximum, but it is up to the discretion of the Framework implementation to choose to return less than the specified maximum. The discoverService() operation returns a serviceID/Property pair list for those services that match the desired service property list that the service supplier provided.

Parameters

serviceTypeName : in TpServiceTypeName

The name of the required service type. If the string representation of the "type" does not obey the rules for service type identifiers, then the P_ILLEGAL_SERVICE_TYPE exception is raised. If the "type" is correct syntactically but is not recognised as a service type within the Framework, then the P_UNKNOWN_SERVICE_TYPE exception is raised. The framework may return a service of a subtype of the "type" requested. A service sub-type can be described by the properties of its supertypes.
desiredPropertyList : in TpServicePropertyList

The "desiredPropertyList"parameter is a list of service property {name, mode and value list} tuples that the required services should satisfy. These properties deal with the non-functional and non-computational aspects of the desired service. The property values in the desired property list must be logically interpreted as "minimum", "maximum", etc. by the framework (due to the absence of a Boolean constraint expression for the specification of the service criterion). It is suggested that, at the time of service registration, each property value be specified as an appropriate range of values, so that desired property values can specify an "enclosing" range of values to help in the selection of desired services.
max : in TpInt32

The "max" parameter states the maximum number of services that are to be returned in the "serviceList" result.
serviceList : out TpServiceListRef

This parameter gives a list of matching services. Each service is characterised by its service ID and a list of service property {name, mode and value list} tuples associated with the service.
Raises

TpGeneralException,TpFWException
Method

listRegisteredServices()

Returns a list of services so far registered in the framework.

Parameters

serviceList : out TpServiceListRef

The "serviceList" parameter returns a list of registered services. Each service is characterised by its service ID and a list of service property {name, mode and value list} tuples associated with the service.
Raises

TpGeneralException,TpFWException
	

	

	

	

	

	

	

	

	

12.5 Integrity Management Interface Classes
12.5.1 Interface Class IpFwFaultManager

Inherits from: IpInterface.
	<<Interface>>

IpFwFaultManager

	

	activityTestReq (activityTestID : in TpActivityTestID, appID : in TpClientAppID) : TpResult

svcActivityTestRes (activityTestID : in TpActivityTestID, activityTestResult : in TpActivityTestRes) : TpResult

appUnavailableInd (appID : in TpClientAppID) : TpResult

genFaultStatsRecordReq (timePeriod : in TpTimeInterval, appIDs : in TpClientAppIDList) : TpResult

svcRemovalInd (reason : in TpSvcUnavailReason) : TpResult

Method

activityTestReq()

The service invokes this method to test that the framework or a client application is operational. On receipt of this request, the framework must carry out a test on itself or on the specified application, to check that it is operating correctly. The framework reports the test result by invoking the activityTestRes method on the IpSvcFaultManager interface.

Parameters

activityTestID : in TpActivityTestID

The identifier provided by the service to correlate the response (when it arrives) with this request.
appID : in TpClientAppID

Identifies either the framework or an application for testing. The framework is designated by a null value.
Raises

TpGeneralException,TpFWException
Method

svcActivityTestRes()

The service uses this method to return the result of a framework-requested activity test.

Parameters

activityTestID : in TpActivityTestID

Used by the framework to correlate this response (when it arrives) with the original request.
activityTestResult : in TpActivityTestRes

The result of the activity test.
Raises

TpGeneralException,TpFWException
Method

appUnavailableInd()

This method is used by the service to inform the framework that a client application is not responding. On receipt of this indication, the framework must act to inform the client application that it should cease use of this service instance.

Parameters

appID : in TpClientAppID

Identifies the application that is not responding.
Raises

TpGeneralException,TpFWException
Method

genFaultStatsRecordReq()

This method is used by the service to solicit fault statistics from the framework. On receipt of this request, the framework must produce a fault statistics record, for the framework and/or for specified applications during the specified time interval, which is returned to the service using the genFaultStatsRecordRes operation on the IpSvcFaultManager interface.

Parameters

timePeriod : in TpTimeInterval

The period over which the fault statistics are to be generated. A null value leaves this to the discretion of the framework.
appIDs : in TpClientAppIDList

Specifies the framework and/or applications to be included in the general fault statistics record. The framework is designated by a null value.
Raises

TpGeneralException,TpFWException
Method

svcRemovalInd()

This method is used by the service to inform the framework that it is about to become unavailable for use. The framework should inform any client applications that are currently using this service instance that it is unavailable for use (via the svcUnavailableInd method on the IpAppFaultManager interface).

Parameters

reason : in TpSvcUnavailReason

Identifies the reason for the service's unavailability.
Raises

TpGeneralException,TpFWException
	

	

	

12.5.2 Interface Class IpSvcFaultManager

Inherits from: IpInterface.
	<<Interface>>

IpSvcFaultManager

	

	activityTestRes (activityTestID : in TpActivityTestID, activityTestResult : in TpActivityTestRes) : TpResult

svcActivityTestReq (activityTestID : in TpActivityTestID) : TpResult

fwFaultReportInd (fault : in TpInterfaceFault) : TpResult

fwFaultRecoveryInd (fault : in TpInterfaceFaultRef) : TpResult

fwUnavailableInd (reason : in TpFwUnavailReason) : TpResult

svcUnavailableInd (appID : in TpClientAppID) : TpResult

appRemovalInd (appID : in TpClientAppID) : TpResult

genFaultStatsRecordRes (faultStatistics : in TpFaultStatsRecord, appIDs : in TpClientAppIDList) : TpResult

Method

activityTestRes()

The framework uses this method to return the result of a service-requested activity test.

Parameters

activityTestID : in TpActivityTestID

Used by the service to correlate this response (when it arrives) with the original request.
activityTestResult : in TpActivityTestRes

The result of the activity test.
Raises

TpGeneralException,TpFWException
Method

svcActivityTestReq()

The framework invokes this method to test that the service is operational. On receipt of this request, the service must carry out a test on itself, to check that it is operating correctly. The service reports the test result by invoking the svcActivityTestRes method on the IpFwFaultManager interface.

Parameters

activityTestID : in TpActivityTestID

The identifier provided by the framework to correlate the response (when it arrives) with this request.
Raises

TpGeneralException,TpFWException
Method

fwFaultReportInd()

The framework invokes this method to notify the service of a failure within the framework. The service must not continue to use the framework until it has recovered (as indicated by a fwFaultRecoveryInd).

Parameters

fault : in TpInterfaceFault

Specifies the fault that has been detected by the framework.
Raises

TpGeneralException,TpFWException
Method

fwFaultRecoveryInd()

The framework invokes this method to notify the service that a previously reported fault has been rectified. The service may then resume using the framework.

Parameters

fault : in TpInterfaceFaultRef

Specifies the fault from which the framework has recovered.
Raises

TpGeneralException,TpFWException
Method

fwUnavailableInd()

The framework invokes this method to inform the service that it is no longer available.

Parameters

reason : in TpFwUnavailReason

Identifies the reason why the framework is no longer available
Raises

TpGeneralException,TpFWException
Method

svcUnavailableInd()

The framework invokes this method to inform the service that the client application, (identified in the appID parameter), has reported that it can no longer use the service (either due to a failure in the client application or in the service). The service should assume that the client application is leaving the service session and the service should act accordingly to terminate the session from its own end too.

Parameters

appID : in TpClientAppID

Identifies the application that can no longer use the service.
Raises

TpGeneralException,TpFWException
Method

appRemovalInd()

The framework invokes this method to inform the service that a client application is ceasing its current use of the service. This may a result of the application reporting a failure. Alternatively, the framework may have detected that the application has failed: e.g. non-response from an activity test, failure to return heartbeats.

Parameters

appID : in TpClientAppID

Identifies the affected application.
Raises

TpGeneralException,TpFWException
Method

genFaultStatsRecordRes()

This method is used by the framework to provide fault statistics to a service in response to a genFaultStatsRecordReq method invocation on the IpFwFaultManager interface.

Parameters

faultStatistics : in TpFaultStatsRecord

The fault statistics record.
appIDs : in TpClientAppIDList

Specifies the framework and/or applications that are included in the general fault statistics record. The framework is designated by a null value.
Raises

TpGeneralException,TpFWException
	

	

	

12.5.3 Interface Class IpFwHeartBeatMgmt

Inherits from: IpInterface.
This interface allows the initialisation of a heartbeat supervision of the service. Since the API is inherently synchronous, the heartbeats themselves are synchronous for efficiency reasons. The return of the void is interpreted as a heartbeat response.

	<<Interface>>

IpFwHeartBeatMgmt

	

	enableHeartBeat (duration : in TpDuration, svcInterface : in IpSvcHeartBeatRef, session : out TpSessionIDRef) : TpResult

disableHeartBeat (session : in TpSessionID) : TpResult

changeTimePeriod (duration : in TpDuration, session : in TpSessionID) : TpResult

Method

enableHeartBeat()

With this method, the service registers at the framework for heartbeat supervision of itself.

Parameters

duration : in TpDuration

The duration in milliseconds between the heartbeats.
svcInterface : in IpSvcHeartBeatRef

This parameter refers to the callback interface the heartbeat is calling.
session : out TpSessionIDRef

Identifies the heartbeat session. In general, the service has only one session. In case of framework supervision by the service (see the Svc interfaces), the service may maintain more than one session.
Raises

TpGeneralException,TpFWException
Method

disableHeartBeat()

Allows the stop of the heartbeat supervision of the service.

Parameters

session : in TpSessionID

Identifies the heartbeat session.
Raises

TpGeneralException,TpFWException
Method

changeTimePeriod()

Allows the administrative change of the heartbeat period.

Parameters

duration : in TpDuration

The time interval in milliseconds between the heartbeats.
session : in TpSessionID

Identifies the heartbeat session.
Raises

TpGeneralException,TpFWException
12.5.4 Interface Class IpFwHeartBeat

Inherits from: IpInterface.
	<<Interface>>

IpFwHeartBeat

	

	send (session : in TpSessionID) : TpResult

Method

send()

This is the method the service uses in case it supervises the framework. The sender must raise an exception if no result comes back after a certain, user-defined time.

Parameters

session : in TpSessionID

Identifies the heartbeat session.
Raises

TpGeneralException,TpFWException
	

	

	

12.5.5 Interface Class IpSvcHeartBeatMgmt

Inherits from: IpInterface.
This interface allows the initialisation of a heartbeat supervision of the Framework by the service. Since the API is inherently synchronous, the heartbeats themselves are synchronous for efficiency reasons. The return of the void is interpreted as a heartbeat response.

	<<Interface>>

IpSvcHeartBeatMgmt

	

	enableSvcHeartBeat (duration : in TpDuration, fwInterface : in IpFwHeartBeatRef, session : in TpSessionID) : TpResult

disableSvcHeartBeat (session : in TpSessionID) : TpResult

changeTimePeriod (duration : in TpDuration, session : in TpSessionID) : TpResult

Method

enableSvcHeartBeat()

With this method, the framework registers at the service for heartbeat supervision of itself.

Parameters

duration : in TpDuration

The time interval in milliseconds between the heartbeats.
fwInterface : in IpFwHeartBeatRef

This parameter refers to the callback interface the heartbeat is calling.
session : in TpSessionID

Identifies the heartbeat session.
Raises

TpGeneralException,TpFWException
Method

disableSvcHeartBeat()

Allows the stop of the heartbeat supervision of the service.

Parameters

session : in TpSessionID

Identifies the heartbeat session.
Raises

TpGeneralException,TpFWException
Method

changeTimePeriod()

Allows the administrative change of the heartbeat period.

Parameters

duration : in TpDuration

The time interval in milliseconds between the heartbeats.
session : in TpSessionID

Identifies the heartbeat session.
Raises

TpGeneralException,TpFWException
12.5.6 Interface Class IpSvcHeartBeat

Inherits from: IpInterface.
	<<Interface>>

IpSvcHeartBeat

	

	send (session : in TpSessionID) : TpResult

Method

send()

This is the method the framework uses in case it supervises the service. The sender must raise an exception if no result comes back after a certain, user-defined time.

Parameters

session : in TpSessionID

Identifies the heartbeat session.
Raises

TpGeneralException,TpFWException
	

	

	

12.5.7 Interface Class IpFwLoadManager

Inherits from: IpInterface.
	<<Interface>>

IpFwLoadManager

	

	reportLoad (loadLevel : in TpLoadLevel) : TpResult

queryLoadReq (appIDs : in TpClientAppIDList, timeInterval : in TpTimeInterval) : TpResult

querySvcLoadRes (loadStatistics : in TpLoadStatisticList) : TpResult

querySvcLoadErr (loadStatisticError : in TpLoadStatisticError) : TpResult

registerLoadController (appIDs : in TpClientAppIDList) : TpResult

unregisterLoadController (appIDs : in TpClientAppIDList) : TpResult

suspendNotification (appIDs : in TpClientAppIDList) : TpResult

resumeNotification (appIDs : in TpClientAppIDList) : TpResult

Method

reportLoad()

The Service uses this method to report its current load level (0,1, or 2) to the framework: e.g. when the load level on the service has changed.

At level 0 load, the service is performing within its load specifications (i.e. it is not congested or overloaded). At level 1 load, the service is overloaded. At level 2 load, the service is severely overloaded.

Parameters

loadLevel : in TpLoadLevel

Specifies the service's load level.
Raises

TpGeneralException,TpFWException
Method

queryLoadReq()

The service uses this method to request the framework to provide load statistic records for the framework and/or for individual applications that use the service.

Parameters

appIDs : in TpClientAppIDList

Specifies the framework and/or the applications for which the load statistics should be reported. The framework is designated by a null value.
timeInterval : in TpTimeInterval

Specifies the time interval for which load statistic records should be reported.
Raises

TpGeneralException,TpFWException
Method

querySvcLoadRes()

The service uses this method to send load statistic records back to the framework that requested the information; i.e. in response to an invocation of the querySvcLoadReq method on the IpSvcLoadManager interface.

Parameters

loadStatistics : in TpLoadStatisticList

Specifies the service-supplied load statistics.
Raises

TpGeneralException,TpFWException
Method

querySvcLoadErr()

The service uses this method to return an error response to the framework that requested the service's load statistics information, when the service is unsuccessful in obtaining any load statistic records; i.e. in response to an invocation of the querySvcLoadReq method on the IpSvcLoadManager interface.

Parameters

loadStatisticError : in TpLoadStatisticError

Specifies the error code associated with the failed attempt to retrieve the service's load statistics.
Raises

TpGeneralException,TpFWException
Method

registerLoadController()

The service uses this method to register to receive notifications of load level changes associated with the framework and/or with individual applications that use the service.

Parameters

appIDs : in TpClientAppIDList

Specifies the framework and/or the applications for which load level changes should be reported. The framework is designated by a null value.
Raises

TpGeneralException,TpFWException
Method

unregisterLoadController()

The service uses this method to unregister for notifications of load level changes associated with the framework and/or with individual applications that use the service.

Parameters

appIDs : in TpClientAppIDList

Specifies the framework and/or the applications for which load level changes should no longer be reported. The framework is designated by a null value.
Raises

TpGeneralException,TpFWException
Method

suspendNotification()

The service uses this method to request the framework to suspend sending it notifications associated with the framework and/or with individual applications that use the service; e.g. while the service handles a temporary overload condition.

Parameters

appIDs : in TpClientAppIDList

Specifies the framework and/or the applications for which the sending of notifications by the framework should be suspended. The framework is designated by a null value.
Raises

TpGeneralException,TpFWException
Method

resumeNotification()

The service uses this method to request the framework to resume sending it notifications associated with the framework and/or with individual applications that use the service; e.g. after a period of suspension during which the service handled a temporary overload condition.

Parameters

appIDs : in TpClientAppIDList

Specifies the framework and/or the applications for which the sending of notifications of load level changes by the framework should be resumed. The framework is designated by a null value.
Raises

TpGeneralException,TpFWException
	

	

	

12.5.8 Interface Class IpSvcLoadManager

Inherits from: IpInterface.
	<<Interface>>

IpSvcLoadManager

	

	querySvcLoadReq (timeInterval : in TpTimeInterval) : TpResult

queryLoadRes (loadStatistics : in TpLoadStatisticList) : TpResult

queryLoadErr (loadStatisticsError : in TpLoadStatisticError) : TpResult

enableLoadControl (loadStatistics : in TpLoadStatisticList) : TpResult

disableLoadControl (appIDs : in TpClientAppIDList) : TpResult

suspendNotification () : TpResult

resumeNotification () : TpResult

Method

querySvcLoadReq()

The framework uses this method to request the service to provide its load statistic records.

Parameters

timeInterval : in TpTimeInterval

Specifies the time interval for which load statistic records should be reported.
Raises

TpGeneralException,TpFWException
Method

queryLoadRes()

The framework uses this method to send load statistic records back to the service that requested the information; i.e. in response to an invocation of the queryLoadReq method on the IpFwLoadManager interface.

Parameters

loadStatistics : in TpLoadStatisticList

Specifies the framework-supplied load statistics
Raises

TpGeneralException,TpFWException
Method

queryLoadErr()

The framework uses this method to return an error response to the service that requested the framework's load statistics information, when the framework is unsuccessful in obtaining any load statistic records; i.e. in response to an invocation of the queryLoadReq method on the IpFwLoadManager interface.

Parameters

loadStatisticsError : in TpLoadStatisticError

Specifies the error code associated with the failed attempt to retrieve the framework's load statistics.
Raises

TpGeneralException,TpFWException
Method

enableLoadControl()

The framework uses this method to notify the service of any load level change in the framework or in applications that use the service, other than a return of the load to a normal level. The service must have previously registered to receive such notifications (reference the registerLoadController method of the IpFwLoadManager interface) and must not have requested the framework to temporarily suspend such notifications (reference the suspendNotification method of the IpFwLoadManager interface).

Parameters

loadStatistics : in TpLoadStatisticList

Specifies the framework-supplied load statistics, which include the load level change(s).
Raises

TpGeneralException,TpFWException
Method

disableLoadControl()

The framework uses this method to notify the service of the end of an overload condition in the framework or in applications that use the service. The service must have previously registered to receive such notifications (reference the registerLoadController method of the IpFwLoadManager interface) and must not have requested the framework to temporarily suspend such notifications (reference the suspendNotification method of the IpFwLoadManager interface).

Parameters

appIDs : in TpClientAppIDList

Specifies the framework and/or applications for which the load level has returned to normal. The framework is designated by a null value.
Raises

TpGeneralException,TpFWException
Method

suspendNotification()

The framework uses this method to request the service to suspend sending it any notifications: e.g. while the framework handles a temporary overload condition.

Parameters

No Parameters were identified for this method

Raises

TpGeneralException,TpFWException
Method

resumeNotification()

The framework uses this method to request the service to resume sending it notifications: e.g. after a period of suspension during which the framework handled a temporary overload condition.

Parameters

No Parameters were identified for this method

Raises

TpGeneralException,TpFWException
	

	

	

12.5.9 Interface Class IpFwOAM

Inherits from: IpInterface.
	<<Interface>>

IpFwOAM

	

	systemDateTimeQuery (clientDateAndTime : in TpDateAndTime, systemDateAndTime : out TpDateAndTimeRef) : TpResult

Method

systemDateTimeQuery()

This method is used to query the system date and time. The client (service) passes in its own date and time to the framework. The framework responds with the system date and time.

Parameters

clientDateAndTime : in TpDateAndTime

This is the date and time of the client (service). The error code P_INVALID_DATE_TIME_FORMAT is returned if the format of the parameter is invalid.
systemDateAndTime : out TpDateAndTimeRef

This is the system date and time of the framework.
Raises

TpGeneralException,TpFWException
	

	

	

12.5.10 Interface Class IpSvcOAM

Inherits from: IpInterface.
The OAM interface is used to query the system date and time. The service and the framework can synchronise the date and time to a certain extent. Accurate time synchronisation is outside the scope of the OSA API.

	<<Interface>>

IpSvcOAM

	

	systemDateTimeQuery (systemDateAndTime : in TpDateAndTime, clientDateAndTime : out TpDateAndTimeRef) : TpResult

Method

systemDateTimeQuery()

This method is used by the framework to send the system date and time to the service. The service responds with its own date and time.

Parameters

systemDateAndTime : in TpDateAndTime

This is the system date and time of the framework. The error code P_INVALID_DATE_TIME_FORMAT is returned if the format of the parameter is invalid.
clientDateAndTime : out TpDateAndTimeRef

This is the date and time of the client (service).
Raises

TpGeneralException,TpFWException
	

	

	

	

	

	

	

	

	

12.6 Event Notification Interface Classes
12.6.1 Interface Class IpFwEventNotification

Inherits from: IpInterface.
The event notification mechanism is used to notify the service of generic events that have occurred.

	<<Interface>>

IpFwEventNotification

	

	enableNotification (eventCriteria : in TpFwEventCriteria, assignmentID : out TpAssignmentIDRef) : TpResult

disableNotification (assignmentID : in TpAssignmentID) : TpResult

Method

enableNotification()

This method is used to enable generic notifications so that events can be sent to the service.

Parameters

eventCriteria : in TpFwEventCriteria

Specifies the event specific criteria used by the service to define the event required.
assignmentID : out TpAssignmentIDRef

Specifies the ID assigned by the framework for this newly enabled event notification.
Raises

TpGeneralException,TpFWException
Method

disableNotification()

This method is used by the service to disable generic notifications from the framework.

Parameters

assignmentID : in TpAssignmentID

Specifies the assignment ID given by the framework when the previous enableNotification() was called. If the assignment ID does not correspond to one of the valid assignment IDs, the framework will return the error code P_INVALID_ASSIGNMENT_ID.
Raises

TpGeneralException,TpFWException
	

	

	

12.6.2 Interface Class IpSvcEventNotification

Inherits from: IpInterface.
This interface is used by the framework to inform the service of a generic event. The Event Notification Framework will invoke methods on the Event Notification Service Interface that is specified when the Event Notification interface is obtained.

	<<Interface>>

IpSvcEventNotification

	

	eventNotify (eventInfo : in TpFwEventInfo, assignmentID : in TpAssignmentID) : TpResult

notificationTerminated () : TpResult

Method

eventNotify()

This method notifies the service of the arrival of a generic event.

Parameters

eventInfo : in TpFwEventInfo

Specifies specific data associated with this event.
assignmentID : in TpAssignmentID

Specifies the assignment id which was returned by the framework during the enableNotification() method. The service can use the assignment id to associate events with event specific criteria and to act accordingly.
Raises

TpGeneralException,TpFWException
Method

notificationTerminated()

This method indicates to the service that all generic event notifications have been terminated (for example, due to faults detected).

Parameters

No Parameters were identified for this method

Raises

TpGeneralException,TpFWException
	

	

	

	

	

	

	

	

	

	

	

	

13 Framework-to-Service State Transition Diagrams

13.1 Trust and Security Management State Transition Diagrams

There are no State Transition Diagrams defined for Trust and Security Management
13.2 Service Registration State Transition Diagrams
13.2.1 State Transition Diagrams for IpFwServiceRegistration

[image: image42.wmf]Registering

SCF

registerService

SCF

registered

announceServiceAvailability

describeService

unregisterService

Figure : State Transition Diagram for IpFwServiceRegistration

13.2.1.1 Registering SCF State

This is the state entered when a Service Capability Server (SCS) starts the registration of its SCF in the Framework, by informing it of the existence of an SCF characterised by a service type and a set of service properties. As a result the Framework associates a service ID to this SCF, that will be used to identify it by both sides. When receiving this ID, the SCS instantiates a manager interface for this SCF, which will be the entry point for applications that want to use it.
13.2.1.2 SCF registered State

This is the state entered when, the service manager interface having been instantiated, the SCS informs the Framework of the availability of the SCF, and makes it actually available by providing the Framework with the manager interfaces to be used by applications. Anytime the SCF availability may be withdrawn by un-registering it.
13.3 Service Factory State Transition Diagrams

There are no State Transition Diagrams defined for Service Factory
13.4 Service Discovery State Transition Diagrams

There are no State Transition Diagrams defined for Service Discovery
13.5 Integrity Management State Transition Diagrams

There are no State Transition Diagrams defined for Integrity Management
13.6 Event Notification State Transition Diagrams

There are no State Transition Diagrams defined for Event Notification

14 Data Definitions

This section provides the framework specific data definitions necessary to support the OSA interface specification. It is written using Hypertext link, to aid navigation through the data structures. Underlined text represents Hypertext links. The general format of a data definition specification is the following:

· Data Type

This shows the name of the data type.

· Description

This describes the data type.

· Tabular Specification

This specifies the data types and values of the data type.

· Example

If relevant, an example is shown to illustrate the data type.

14.1 Common Framework Data Definitions
TpClientAppID

An identifier for the client application. It is used to identify the client to the framework. This data type is identical to TpString and is defined as a string of characters that uniquely identifies the application. The content of this string shall be unique for each OSA API implementation (or unique for a network operator’s domain). This unique identifier shall be negotiated with the OSA operator and the application shall use it to identify itself.

TpClientAppIDList

Defines a Numbered Set of Data Elements of type TpClientAppID.

TpEntOpID

Identical to TpString, it is defined as a string of characters that identifies an enterprise operator. In conjunction with the application it uniquely identifies the enterprise operator which uses a particular OSA Service Capability Feature.

TpEntOpIDList

Defines a Numbered Set of Data Elements of type TpEntOpID.

TpService

A Sequence of Data Elements which describes a registered SCFs. It is a structured type which consists of:

	Sequence Element

Name
	Sequence Element

Type
	Documentation

	ServiceID
	TpServiceID
	

	ServicePropertyList
	TpServicePropertyList
	

TpServiceList

Defines a Numbered Set of Data Elements of type TpService.

TpServiceDescription

A Sequence of Data Elements which describes a registered SCF. It is a structured data type which consists of:

	Sequence Element

Name
	Sequence Element

Type
	Documentation

	ServiceTypeName
	TpServiceTypeName
	

	ServicePropertyList
	TpServicePropertyList
	

TpServiceID

Identical to a TpString, it is defined as a string of characters that uniquely identifies an instance of a SCF interface. The string is automatically generated by the Framework, and comprises a TpUniqueServiceNumber, TpServiceNameString, and a number of relevant TpServiceSpecString, which are concatenated using a forward separator (/) as the separation character.

TpServiceIDList

Defines a Numbered Set of Data Elements of type TpServiceID.

TpServiceIDRef

Defines a Reference to type TpServiceId.

TpServiceNameString

Identical to a TpString, it is defined as a string of characters that uniquely identifies the name of an SCF interface. Other Network operator specific capabilities may also be used, but should be preceded by the string "SP_".The following values are defined for OSA release 99.

	Character String Value
	Description

	NULL
	An empty (NULL) string indicates no SCF name

	P_CALL_CONTROL
	The name of the Call Control SCF

	P_USER_INTERACTION
	The name of the User Interaction SCFs

	P_TERMINAL_CAPABILITIES
	The name of the Terminal Capabilities SCF

	P_USER_LOCATION
	The name of the Network User Location SCF

	P_USER_STATUS
	The name of the User Status SCF

	P_DATA_SESSION_CONTROL
	The name of the Data Session Control SCF

TpServiceSpecString

Identical to a TpString, it is defined as a string of characters that uniquely identifies the name of an SCF specialisation interface. Other network operator specific capabilities may also be used, but should be preceded by the string "SP_".The following values are defined for OSA release 99.

	Character String Value
	Description

	NULL
	An empty (NULL) string indicates no SCF specialisation

	P_CALL
	The Call specialisation of the of the User Interaction SCF

TpUniqueServiceNumber

Identical to a TpString, it is defined as a string of characters that represents a unique number that is used to build the service ID (refer to TpServiceID).

TpPropertyStruct

A Sequence of Data Elements which describes an SCF property. It consists of:

	Sequence Element

Name
	Sequence Element

Type
	Documentation

	ServicePropertyName
	TpServiceTypeName
	

	ServicePropertyMode
	TpServicePropertyMode
	

	ServicePropertyTypeName
	TpServicePropertyTypeName
	

TpPropertyStructList

Defines a Numbered Set of Data Elements of type TpPropertyStruct.

TpServicePropertyMode

This type is left as a placeholder but is not used in release 99.It defines SCF property modes.

	Name
	Value
	Documentation

	NORMAL
	0
	The value of the corresponding SCF property type may optionally be provided

	MANDATORY
	1
	The value of the corresponding SCF property type must be provided at service registration time

	READONLY
	2
	The value of the corresponding SCF property type is optional, but once given a value it may not be modified

	MANDATORY_READONLY
	3
	The value of the corresponding SCF property type must be provided and subsequently it may not be modified.

TpServicePropertyTypeName

Identical to TpString, it describes a valid SCF property name. The valid SCF property names are listed in the SCF data definition.

TpServicePropertyName

Identical to TpString, it defines a valid SFC property name. Valid SCF property names are listed in the SCF data definition.

TpServicePropertyNameList

Defines a Numbered Set of Data Elements of type TpServicePropertyName.

TpServicePropertyValue

Identical to TpString, it describes a valid value of a SCF property. The valid SCF property values are given in the SCF data definition.

TpServicePropertyValueList

Defines a Numbered Set of Data Elements of type TpServicePropertyValue

TpServiceProperty

A Sequence of Data Elements which describes an “SCF property”. It is a structured data type which consists of:

	Sequence Element

Name
	Sequence Element

Type
	Documentation

	ServicePropertyName
	TpServicePropertyName
	

	ServicePropertyValueList
	TpServicePropertyValueList
	

	ServicePropertyMode
	TpServicePropertyMode
	

TpServicePropertyList

Defines a Numbered Set of Data Elements of type TpServiceProperty.

TpServiceTypeDescription

This type is left as a placeholder but is not used in release 99.

This data type is a Sequence_of_Data_Elements which describes an SCF type. It is a structured data type. It consists of:

	Sequence Element

Name
	Sequence Element

Type
	Documentation

	PropertyStructList
	TpPropertyStructList
	a sequence of property name and property mode tuples associated with the SCF type

	ServiceTypeNameList
	TpServiceTypeNameList
	the names of the super types of the associated SCF type

	EnabledOrDisabled
	TpBoolean
	an indication whether the SCF type is enabled or disabled

TpServiceTypeName

Identical to TpString, it describes a valid SCF type name.
TpServiceTypeNameList

Defines a Numbered Set of Data Elements of type TpServiceTypeName.

14.2 Trust and Security Management Data Definitions
TpAccessType

Identical to a TpString, it identifies the type of access interface requested by the client application. If they request P_ACCESS, then a reference to the IpAccess interface is returned. (Network operators can define their own access interfaces to satisfy client requirements for different types of access. These can be selected using the TpAccessType, but should be preceded by the string "SP_". The following values are defined for OSA release 99:

	String Value
	Description

	NULL
	An empty (NULL) string indicates the default access type

	P_ACCESS
	Access using the OSA Access Interfaces: IpAccess and IpAppAccess

TpAuthType

Identical to a TpString, it identifies the type of authentication mechanism requested by the client. It provides Network operators and client's with the opportunity to use an alternative to the OSA Authentication interface, e.g. CORBA Security. OSA Authentication is the default authentication method. Other Network operator specific capabilities may also be used, but should be preceded by the string “SP_”. The following values are defined for OSA release 99:

	String Value
	Description

	NULL
	An empty (NULL) string indicates the default authentication method: OSA Authentication.

	P_AUTHENTICATION
	Authenticate using the OSA Authentication Interfaces: IpAuthentication and IpAppAuthentication

TpAuthCapability

Identical to a TpString, it is defined as a string of characters that identify the authentication capabilities that could be supported by the OSA. Other Network operator specific capabilities may also be used, but should be preceded by the string "SP_". Capabilities may be concatenated, using commas (,) as the separation character. The following values are defined for OSA release 99.

	String Value
	Description

	NULL
	An empty (NULL) string indicates no client capabilities.

	P_DES_56
	A simple transfer of secret information that is shared between the client application and the framework with protection against interception on the link provided by the DES algorithm with a 56bit shared secret key

	P_RSA_512
	A public-key cryptography system providing authentication without prior exchange of secrets using 512 bit keys

	P_RSA_1024
	A public-key cryptography system providing authentication without prior exchange of secrets using 1024bit keys

TpAuthCapabilityList

Identical to a TpString, it is a string of multiple TpAuthCapability concatenated using a comma (,)as the separation character.

TpInterfaceName

Identical to a TpString, it is defined as a string of characters that identify the names of the framework SCFs that are be supported by the OSA API. Other Network operator specific SCFs may also be used, but should be preceded by the string "SP_".The following values are defined for OSA release 99.

	Character String Value
	Description

	NULL
	An empty (NULL) string indicates no interface.

	P_DISCOVERY
	The name for the Discovery interface.

	P_OAM
	The name for the OA&M interface.

	P_TRUST_AND_SECURITY_MANAGEMENT
	The name for the Trust and Security Management interface

	P_INTEGRITY_MANAGEMENT
	The name for the Integrity Management interface.

TpServiceAccessControl

A Sequence of Data Elements containing the access control policy information controlling access to the service capability feature, and the trustLevel that the Network operator has assigned to the client application.

	Sequence Element Name
	Sequence Element Type

	Policy
	TpString

	TrustLevel
	TpString

The policy parameter indicates whether access has been granted or denied. If granted then the parameter trustLevel must also have a value.

The trustLevel parameter indicates the trust level that the Network operator has assigned to the client application.

TpServiceToken

Identical to a TpString, it identifies a selected SCF. This is a free format text token returned by the framework, which can be signed as part of a service agreement. This will contain Network operator specific information relating to the service level agreement. The serviceToken has a limited lifetime, which is the same as the lifetime of the service agreement in normal conditions. If something goes wrong the serviceToken expires, and any method accepting the serviceToken will return an error code (P_INVALID_SERVICE_TOKEN). Service Tokens will automatically expire if the client or framework invokes the endAccess method on the other's corresponding access interface.

TpSignatureAndServiceMgr

A Sequence of Data Elements containing the digital signature of the framework for the service agreement, and a reference to the SCF manager interface of the SCF.

	Sequence Element Name
	Sequence Element Type

	DigitalSignature
	TpStringRef

	ServiceMgrInterface
	IpServiceRef

The digitalSignature is the signed version of a hash of the service token and agreement text given by the client application.

The ServiceMgrInterface is a reference to the SCF manager interface for the selected SCF.

TpSigningAlgorithm

Identical to a TpString, and is defined as a string of characters that identify the signing algorithm that must be used. Other Network operator specific capabilities may also be used, but should be preceded by the string "SP_". The following values are defined for OSA release 99.

	String Value
	Description

	NULL
	An empty (NULL) string indicates no signing algorithm is required

	P_MD5_RSA_512
	MD5 takes an input message of arbitrary length and produces as output a 128-bit message digest of the input. This is then encrypted with the private key under the RSA public-key cryptography system using a 512 bit key.

	P_MD5_RSA_1024
	MD5 takes an input message of arbitrary length and produces as output a 128-bit message digest of the input. This is then encrypted with the private key under the RSA public- key cryptography system using a 1024 bit key

14.3 Integrity Management Data Definitions
TpActivityTestRes

Identical to TpString, it is an implementation specific result. The values in this data type are “Available” or “Unavailable”.

TpFaultStatsRecord

Defines the set of records to be returned giving fault information for the requested time period.

	Sequence Element Name
	Sequence Element Type

	Period
	TpTimeInterval

	FaultRecords
	TpFaultStatsSet

TpFaultStatsSet
Defines the sequence of data elements which provide the statistics on a per fault type basis.

	Sequence Element Name
	Sequence Element Type

	Fault
	TpInterfaceFault

	Occurrences
	TpInt32

	MaxDuration
	TpInt32

	TotalDuration
	TpInt32

	NumberOfClientsAffected
	TpInt32

Occurrences is the number of separate instances of this fault during the period. MaxDuration and TotalDuration are the number of seconds duration of the longest fault and the cumulative total during the period. NumberOfClientsAffected is the number of clients informed of the fault by the framework.
TpActivityTestID

Identical to a TpInt32, it is used as a token to match activity test requests with their results..

TpInterfaceFault

Defines the cause of the interface fault detected.

	Name
	Value
	Description

	INTERFACE_FAULT_UNDEFINED
	0
	Undefined

	INTERFACE_FAULT_LOCAL_FAILURE
	1
	A fault in the local API software or hardware has been detected

	INTERFACE_FAULT_GATEWAY_FAILURE
	2
	A fault in the gateway API software or hardware has been detected

	INTERFACE_FAULT_PROTOCOL_ERROR
	3
	An error in the protocol used on the client-gateway link has been detected

TpSvcUnavailReason

Defines the reason why a SCF is unavailable.

	Name
	Value
	Description

	SERVICE_UNAVAILABLE_UNDEFINED
	0
	Undefined

	SERVICE_UNAVAILABLE_LOCAL_FAILURE
	1
	The Local API software or hardware has failed

	SERVICE_UNAVAILABLE_GATEWAY_FAILURE
	2
	The gateway API software or hardware has failed

	SERVICE_UNAVAILABLE_OVERLOADED
	3
	The SCF is fully overloaded

	SERVICE_UNAVAILABLE_CLOSED
	4
	The SCF has closed itself (e.g. to protect from fraud or malicious attack)

TpAPIUnavailReason

Defines the reason why the API is unavailable.

	Name
	Value
	Description

	API_UNAVAILABLE_UNDEFINED
	0
	Undefined

	API_UNAVAILABLE_LOCAL_FAILURE
	1
	The Local API software or hardware has failed

	API_UNAVAILABLE_GATEWAY_FAILURE
	2
	The gateway API software or hardware has failed

	API_UNAVAILABLE_OVERLOADED
	3
	The gateway is fully overloaded

	API_UNAVAILABLE_CLOSED
	4
	The gateway has closed itself (e.g. to protect from fraud or malicious attack)

	API_UNAVAILABLE_PROTOCOL_FAILURE
	5
	The protocol used on the client-gateway link has failed

TpLoadLevel

Defines the Sequence of Data Elements that specify load level values.

	Name
	Value
	Description

	LOAD_LEVEL_NORMAL
	0
	Normal load

	LOAD_LEVEL_OVERLOAD
	1
	Overload

	LOAD_LEVEL_SEVERE_OVERLOAD
	2
	Severe Overload

TpLoadThreshold

Defines the Sequence of Data Elements that specify the load threshold value. The actual load threshold value is application and SCF dependent, so is their relationship with load level.

	Sequence Element Name
	Sequence Element Type

	LoadThreshold
	TpFloat

TpLoadInitVal

Defines the Sequence of Data Elements that specify the pair of load level and associated load threshold value.

	Sequence Element Name
	Sequence Element Type

	LoadLevel
	TpLoadLevel

	LoadThreshold
	TpLoadThreshold

TpTimeInterval

Defines the Sequence of Data Elements that specify a time interval.

	Sequence Element Name
	Sequence Element Type

	StartTime
	TpDateAndTime

	StopTime
	TpDateAndTime

TpLoadPolicy

Defines the load balancing policy.

	Sequence Element Name
	Sequence Element Type

	LoadPolicy
	TpString

TpLoadStatistic

Defines the Sequence of Data Elements that specify the load statistic record at given timestamp.

	Sequence Element Name
	Sequence Element Type

	ServiceID
	TpServiceID

	LoadValue
	TpFloat

	LoadLevel
	TpLoadLevel

	TimeStamp
	TpDateAndTime

LoadValue is expressed in percentage.

TpLoadStatList

Defines a Numbered Set of Data Elements of TpLoadStatistic.

TpLoadStatusError

Defines the error code for getting the load status.

	Name
	Value
	Description

	LOAD_STATUS_ERROR_UNDEFINED
	0
	Undefined error

	LOAD_STATUS_ERROR_UNAVAILABLE
	1
	Unable to get the load status

TpLoadStatisticError

Defines the Sequence of Data Elements that specify the error for getting the load status at given timestamp.

	Sequence Element Name
	Sequence Element Type

	ServiceID
	TpServiceID

	LoadStatusError
	TpFloat

	TimeStamp
	TpDateAndTime

TpLoadStatisticErrorList

Defines a Numbered Set of Data Elements of TpLoadStatisticsError.

Annex A (normative):
OMG IDL Description of Framework

The OMG IDL representation of this interface specification is contained in a text file (fw.idl contained in archive ??????.ZIP) which accompanies the present document.
Annex B (informative):
Contents of 3GPP OSA Framework

A.1
OSA Framework

A.1.1
Sequence Diagrams

Initial Access

Authentication

Integrity Management: Fault Management: the client application requests a Framework activity test

Integrity Management: Fault Management: Framework detects a service failure

Integrity Management: Load Management: Application callback registration and load control

Integrity Management: Load Management: Application and Framework query load statistics

Integrity Management: Load Management: Application reports load condition

Integrity Management: Load Management: Suspend/resume notifications from application

Integrity Management: Heartbeat Management: Start/perform/end heartbeat supervision of application
A.1.2
Packages and Interfaces

A.1.2.1
Trust and Security Management Interfaces

IpInitial

IpAppAuthentication

IpAuthentication

IpAccess

IpAppAccess

A.1.2.2
Discovery Interface

IpServiceDiscovery

A.1.2.3
Integrity Management Interfaces

IpHeartBeatMgmt

IpAppHeartBeatMgmt

IpHeartBeat

IpAppHeartBeat

IpLoadManager

IpAppLoadManager

IpFaultManager

IpAppFaultManager

IpOAM

IpAppOAM

A.2
OSA Internal Framework

A.2.1
Sequence Diagrams

SCF Registration

A.2.2
Interfaces

IpServiceRegistration

IpSvcFactory

Annex <zz> (informative):
Bibliography

The annex entitled "Bibliography" is optional.

Exception: Please use style"Heading 9" and no indication of (informative) or (normative) within a Technical Report.

Bibliography format

· <Publication>: "<Title>".

OR

<Publication>: "<Title>".

History

	Document history

	<Version>
	<Date>
	<Milestone>

	
	
	

	
	
	

	
	
	

	
	
	

 UI

Mobility

Control

Call

Framework

Client Application

Registered Services

[image: image44.bmp]