3GPP TSG_CN WG5#9

Tdoc N5-010066

Helsinki, Finland

6th – 8th February, 2000

Source:
Telcordia Technologies

Title:
JCC 1.0 alignment
Agenda item:

Document for:
DISCUSSION
Introduction

After the studying the latest version of document 120070-4 V0.0.2, Telcordia and other participants in the JAIN JCC Edit Group find the following subjects improperly specified and/or different than anticipated based on the earlier alignment work done. JAIN JCC 1.0 was released on January 22th and is based on Parlay 2.0 alignment efforts and JTAPI experience. Furthermore, Telcordia and Edit Group members draw their experience from prototyping/-“productizing” the JCC API and/or building the actual JCC RI (Reference Implementation).

CallLeg object immutability

In Section 6.3 of document 120070-4 V0.0.2 the call leg object is described:

* a call leg object. The leg object represents a logical association between a call and an address. The relationship includes at least the signalling relation with the party. The relation with the address is only made when the leg is routed. Before that the leg object is IDLE and not yet associated with the address.
The JCC Edit Group likes to know why the call leg has become ‘mutable’. This seriously impacts the alignment with JCC and contradicts earlier alignment consensus.

Note: contributions clarifying this issue have been received.

Controlling vs. Passive CallLegs vs. Call Owners

The documentation distinguishes between controlling and passive callLegs and call owners. However, for application there is no way to learn which (if any) of the callLegs in a call is the controlling callLeg/call owner.

Note: contributions regarding this issue have been received.

How are P_CALL*s and (super) state (transitions) related?

The document does not specify clearly in which super states or state transitions applications can expect P_CALL_* events. We would recommend to describe per event in which state it can occur. Additionally, in case of a variable length number plan, the method getMoreDialledDigitsReq() can only be invoked in the state machine’s processing is blocked in ‘p_call_event_address-_collected’, such pre-conditions are not given the method’s description.
Example Call Flows

For clarity, it is advised to show arguments per method in the example call flows.

MPCCS Example Call Flows

The document shows GCCS-based call flows for, e.g., number translation. The JAIN JCC Edit Group advises to provide example call flows based on MPCCS now that MPCCS interfaces do not inherit from GCCS interfaces and since MPCCS recognizes CallLeg objects (whereas the GCCS API doesn’t).

Reduce the clutter …

It is advised to remove the CallLoadControl and Charging methods from the CallControl API and put them in a separate API.

In an earlier meeting, a contribution to this effect has been discussed. These methods can be switched of/on using a property.

continueProcessing()

The callLeg has a continueProcessing() method. This method un-blocks the state machine’s processing. Do other methods also un-block the processing? Is it possible to arm event for notification purposes only, i.e. without blocking the state machine’s processing?

Multiple applications on a call

Telcordia encourages the N5-000329 discussion.

� John-Luc Bakker (� HYPERLINK mailto:unmehopa@lucent.com ��JLBakker@research.telcordia.com�), Farooq Anjum (fanjum@telcordia.com), Ravi Jain (rjain@research.telcordia.com)

Page 2

