[image: image9.png]

DES/SPAN-120070-5 V0.0.2 (2001-02)
Open Service Access;

Application Programming Interface;

Part 5: Generic User Interaction;

Reference

DES/SPAN-120070-5

Keywords

API, OSA, IDL, UI, User Interaction

ETSI

650 Route des Lucioles

F-06921 Sophia Antipolis Cedex - FRANCE
Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C

Association à but non lucratif enregistrée à la

Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org
The present document may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at http://www.etsi.org/tb/status/
If you find errors in the present document, send your comment to:
editor@etsi.fr
Copyright Notification

Reproduction is only permitted for the purpose of standardization work undertaken within ETSI.
The copyright and the foregoing restrictions extend to reproduction in all media.
© European Telecommunications Standards Institute 2000.

All rights reserved.

Contents

5Intellectual Property Rights

Foreword
5
Introduction
5
1
Scope
6
2
References
6
3
Definitions, symbols and abbreviations
7
3.1
Definitions
7
3.2
Symbols
7
3.3
Abbreviations
7
4
Generic and Call User Interaction SCF
7
5
Sequence Diagrams
8
5.1
Alarm Call
9
5.2
Call Barring 1
10
5.3
Prepaid
12
5.4
Pre-Paid with Advice of Charge (AoC)
14
6
Class Diagrams
17
7
The Service Interface Specifications
18
7.1
Interface Specification Format
18
7.1.1
Interface Class
18
7.1.2
Method descriptions
18
7.1.3
Parameter descriptions
18
7.1.4
State Model
18
7.2
Base Interface
18
7.2.1
Interface Class IpInterface
18
7.3
Service Interfaces
19
7.3.1
Overview
19
7.4
Generic Service Interface
19
7.4.1
Interface Class IpService
19
8
Generic User Interaction Interface Classes
20
8.1
Interface Class IpUIManager
20
8.2
Interface Class IpAppUIManager
22
8.3
Interface Class IpUI
24
8.4
Interface Class IpAppUI
26
8.5
Interface Class IpUICall
29
8.6
Interface Class IpAppUICall
31
9
State Transition Diagrams
34
9.1
State Transition Diagrams for IpUIManager
34
9.1.1
Active State
34
9.1.2
Notification Terminated State
34
9.2
State Transition Diagrams for IpUI
35
9.2.1
Active State
35
9.2.2
Release Pending State
35
9.2.3
Finished State
35
9.3
State Transition Diagrams for IpUICall
36
9.3.1
Active State
36
9.3.2
Release Pending State
36
9.3.3
Finished State
37
10
Data Definitions
37
10.1
TpUIFault
37
10.2
IpUI
37
10.3
IpUIRef
37
10.4
IpUIRefRef
37
10.5
IpAppUI
37
10.6
IpAppUIRef
37
10.7
IpAppUIRefRef
38
10.8
IpAppUIManager
38
10.9
IpAppUIManagerRef
38
10.10
TpUICallIdentifier
38
10.11
TpUICallIdentifierRef
38
Annex A (normative): OMG IDL Description of User Interaction SCF
44
Annex B (informative): CN5 Documents Implemented in this draft
45
Annex C (informative): Differences between this draft and 3GPP 29.198 R99
46
C.1
Interface IpAppUIManager
46
C.2
Interface IpAppUI
46
C.3
Interface IpUICall
46
C.4
Interface IpAppUICall
46
C.5
Type TpUIReport
46
Annex D (informative): Contents of 3GPP OSA R4 User Interaction
48
Annex <zz> (informative): Bibliography
49
History
51

Intellectual Property Rights

Foreword

Introduction

1
Scope

The scope of this document is to consider the interface specification of an API for accessing Third Party Service Applications. UML techniques have been utilized for this purpose. This document specifies the Generic User Interaction aspects of the interface for ‘Access to Third Party Service provision. This part also includes Call User Interaction, which inherits from Generic User Interaction. All aspects of Generic User Interaction are defined here, these being:

· Sequence Diagrams

· Class Diagrams

· Interface specification plus detailed method descriptions

· State Transition diagrams

· Data definitions

The process by which this task is accomplished is through the use of Object modeling techniques described by the Unified Modeling Language (UML). UML is a combined tools and methodology process which results in a comprehensive set of specifications representing, in this case, an interface between client and server applications. Further information can be found in the latest version of the ITU-T Recommendation Q.65.

The reader should note that this specification has been defined in co-operation with 3GPP CN5 and two industry consortiums, PARLAY and JAIN.

2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

· References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

· For a specific reference, subsequent revisions do not apply.

· For a non-specific reference, subsequent revisions do apply.

For the purposes of this Technical Report, the following references apply:

[1]
ETSI EN 301 234 (V2.1.1 onwards): "Example 1".

[2]
ETSI EG 201 568 (V1.3.5): "Example 2".

[3]
ETSI ETS 300 499 (1996): "Example 3".

[4]
ETSI ETS 300 999: "Example 4".

OR

ETSI EN 301 234 (V2.1.1 onwards): "Example 1".

ETSI EG 201 568 (V1.3.5): "Example 2".

ETSI ETS 300 499 (1996): "Example 3".

ETSI ETS 300 999: "Example 4".

OR

[EN301234]
ETSI EN 301 234 (V2.1.1 onwards): "Example 1".

[EG201568]
ETSI EG 201 568 (V1.3.5): "Example 2".

[ETS300499]
ETSI ETS 300 499 (1996): "Example 3".

[ETS300999]
ETSI ETS 300 999: "Example 4".

3
Definitions, symbols and abbreviations

3.1
Definitions

For the purposes of the present document, the following terms and definitions apply:

<defined term>: <definition>

example: text serving as an example

3.2
Symbols

For the purposes of the present document, the following symbols apply:

<symbol>
<Explanation>

<2nd symbol>
<2nd Explanation>

3.3
Abbreviations

For the purposes of the present document, the following abbreviations apply:

<ACRONYM1>
<Explanation>

<ACRONYM2>
<Explanation>

<ACRONYM3>
<Explanation>

4 Generic and Call User Interaction SCF

The Generic User Interaction service capability feature is used by applications to interact with end users. It consists of two interfaces:

1)
User Interaction Manager, containing management functions for User Interaction related issues;

2)
Generic User Interaction, containing methods to interact with an end-user.

The Generic User Interaction service capability feature is described in terms of the methods in the Generic User Interaction interfaces.

The following table gives an overview of the Generic User Interaction methods and to which interfaces these methods belong.

Table 1: Overview of Generic User Interaction interfaces and their methods

	User Interaction Manager
	Generic User Interaction

	createUI
	sendInfoReq

	createUICall
	sendInfoRes

	enableUINotification
	sendInfoErr

	disableUINotification
	sendInfoAndCollectReq

	userInteractionEventNotify
	sendInfoAndCollectRes

	userInteractionAborted
	sendInfoAndCollectErr

	userInteractionNotificationInterrupted
	release

	userInteractionNotificationContinued
	userInteractionFaultDetected

The following table gives an overview of the Call User Interaction methods and to which interfaces these methods belong.

Table 2: Overview of Call User Interaction interfaces and their methods

	User Interaction Manager
	Call User Interaction

	As defined for the Generic User Interaction SCF
	Inherits from Generic User Interaction and adds:

	
	recordMessageReq

	
	recordMessageRes

	
	recordMessageErr

	
	deleteMessageReq

	
	deleteMessageRes

	
	deleteMessageErr

	
	abortActionReq

	
	abortActionRes

	
	abortActionErr

The IpUI Interface provides functions to send information to, or gather information from the user, i.e. this interface allows applications to send SMS and USSD messages. An application can use this interface independently of other SCFs. The IpUICall Interface provides functions to send information to, or gather information from the user (or call party) attached to a call.

The following sections describe each aspect of the Generic User Interaction Service Capability Feature (SCF).

The order is as follows:

· The Sequence diagrams give the reader a practical idea of how each of the service capability feature is implemented.

· The Class relationships section show how each of the interfaces applicable to the SCF, relate to one another

· The Interface specification section describes in detail each of the interfaces shown within the Class diagram part. This section also includes Call User interation.

· The State Transition Diagrams (STD) show the progression of internal processes either in the application, or Gateway.

· The Data definitions section show a detailed expansion of each of the data types associated with the methods within the classes. Note that some data types are used in other methods and classes and are therefore defined within the Common Data types part of this specification.

5 Sequence Diagrams

5.1 Alarm Call

The following sequence diagram shows a 'reminder message', in the form of an alarm, being delivered to a customer as a result of a trigger from an application. Typically, the application would be set to trigger at a certain time, however, the application could also trigger on events.

[image: image1.wmf] :

IpCallControlManager

 : IpAppCall

 : IpCall

 : IpUICall

 :

IpAppUIManager

 :

IpAppUICall

 : (Logical

View::Ip...

5: routeRes()

10: sendInfoRes()

1: new()

2: createCall()

3: new()

4: routeReq()

9: sendInfoReq()

6: 'forward event'

7: createUICall()

8: new()

11: 'forward event'

12: release()

13: release()

1:
This message is used to create an object implementing the IpAppCall interface.

2:
This message requests the object implementing the IpCallControlManager interface to create an object implementing the IpCall interface.

3:
Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load control values not exceeded) is met it is created.

4:
This message instructs the object implementing the IpCall interface to route the call to the customer destined to receive the 'reminder message'

5:
This message passes the result of the call being answered to its callback object.

6:
This message is used to forward the previous message to the IpAppLogic.

7:
The application requests a new UICall object that is associated with the call object.

8:
Assuming all criteria are met, a new UICall object is created by the service.

9:
This message instructs the object implementing the IpUICall interface to send the alarm to the customer's call.

10:
When the announcement ends this is reported to the call back interface.

11:
The event is forwarded to the application logic.

12:
The application releases the UICall object, since no further announcements are required. Alternatively, the application could have indicated P_FINAL_REQUEST in the sendInfoReq in which case the UICall object would have been implicitly released after the announcement was played.

13:
The application releases the call and all associated parties.

5.2 Call Barring 1

The following sequence diagram shows a call barring service, initiated as a result of a prearranged event being received by the framework. Before the call is routed to the destination number, the calling party is asked for a PIN code. The code is accepted and the call is routed to the original called party.

[image: image2.wmf] : (Logical

View::Ip...

 :

IpAppCallControlManager

 : IpAppCall

 : IpCall

 : IpUICall

 :

IpUIManager

 :

IpCallControlManager

 :

IpAppUICall

1: new()

13: routeRes()

14: 'forward event'

12: routeReq()

15: callEnded()

16: "forward event"

17: deassignCall()

8: sendInfoAndCollectReq()

11: release()

6: createUICall()

7: new()

3: callEventNotify()

4: 'forward event'

5: new()

2: enableCallNotification()

9: sendInfoAndCollectRes()

10: 'forward event'

1:
This message is used by the application to create an object implementing the IpAppCallControlManager interface.

2:
This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts a call barring service, it is likely that all new call events destined for a particular address or address range prompted for a password before the call is allowed to progress. When a new call, that matches the event criteria set, arrives, a message (not shown) is directed to the object implementing the IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg object.

3:
This message is used to pass the new call event to the object implementing the IpAppCallControlManager interface.

4:
This message is used to forward the previous message to the IpAppLogic.

5:
This message is used by the application to create an object implementing the IpAppCall interface. The reference to this object is passed back to the object implementing the IpCallControlManager using the return parameter of the callEventNotify.

6:
This message is used to create a new UICall object. The reference to the call object is given when creating the UICall.

7:
Provided all the criteria are fulfilled, a new UICall object is created.

8:
The call barring service dialogue is invoked.

9:
The result of the dialogue, which in this case is the PIN code, is returned to its callback object.

10:
This message is used to forward the previous message to the IpAppLogic.

11:
This message releases the UICall object.

12:
Assuming the correct PIN is entered, the call is forward routed to the destination party.

13:
This message passes the result of the call being answered to its callback object.

14:
This message is used to forward the previous message to the IpAppLogic

15:
When the call is terminated in the network, the application will receive a notification. This notification will always be received when the call is terminated by the network in a normal way, the application does not have to request this event explicitly.

16:
The event is forwarded to the application.

17:
The application must free the call related resources in the parlay gateway by calling deassignCall.

5.3 Prepaid

This sequence shows a Pre-paid application. The subscriber is using a pre-paid card or credit card to pay for the call. The application each time allows a certain timeslice for the call. After the timeslice, a new timeslice can be started or the application can terminate the call. In the following sequence the end-user will received an announcement before his final timeslice.

[image: image3.wmf]Prepaid :

(Logical View:...

 :

IpAppCallControlManager

 :

IpCallControlManager

 : IpCall

 : IpUICall

 : IpUIManager

 : IpAppUICall

 : IpAppCall

1: new()

2: enableCallNotification()

3: callEventNotify()

4: "forward event"

7: routeReq()

10: superviseCallReq()

13: superviseCallReq()

6: superviseCallReq()

21: superviseCallReq()

24: release()

17: sendInfoReq()

20: release()

16: createUICall()

18: sendInfoRes()

19: "forward event"

5: new()

8: superviseCallRes()

9: "forward event"

11: superviseCallRes()

12: "forward event"

14: superviseCallRes()

15: "forward event"

22: superviseCallRes()

23: "forward event:

1:
This message is used by the application to create an object implementing the IpAppGenericCallControlManager interface.

2:
This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts a pre-paid service, it is likely that only new call events within a certain address range will be enabled. When a new call, that matches the event criteria, arrives a message (not shown) is directed to the object implementing the IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg object.

3:
The incoming call triggers the Pre-Paid Application (PPA).

4:
The message is forwarded to the application.

5:
A new object on the application side for the Generic Call object is created

6:
The Pre-Paid Application (PPA) requests to supervise the call. The application will be informed after the period indicated in the message. This period is related to the credits left on the account of the pre-paid subscriber.

7:
Before continuation of the call, PPA sends all charging information, a possible tariff switch time and the call duration supervision period, towards the GW which forwards it to the network.

8:
At the end of each supervision period the application is informed and a new period is started.

9:
The message is forwarded to the application.

10:
The Pre-Paid Application (PPA) requests to supervise the call for another call duration.

11:
At the end of each supervision period the application is informed and a new period is started.

12:
The message is forwarded to the application.

13:
The Pre-Paid Application (PPA) requests to supervise the call for another call duration.

14:
When the user is almost out of credit an announcement is played to inform about this. The announcement is played only to the leg of the A-party, the B-party will not hear the announcement.

15:
The message is forwarded to the application.

16:
A new UICall object is created and associated with the controlling leg.

17:
An announcement is played to the controlling leg informing the user about the near-expiration of his credit limit. The B-subscriber will not hear the announcement.

18:
When the announcement is completed the applicaiton is informed.

19:
The message is forwarded to the application.

20:
The application releases the UICall object.

21:
The user does not terminate so the application terminates the call after the next supervision period.

22:
The supervision period ends

23:
The event is forwarded to the logic.

24:
The application terminates the call. Since the user interaction is already explicitly terminated no userInteractionFaultDetected is sent to the application.

5.4 Pre-Paid with Advice of Charge (AoC)

This sequence shows a Pre-paid Parlay application that uses the Advice of Charge feature. The application will send the charging information before the actual call setup and when during the call the charging changes new information is sent in order to update the end-user. Note: the Advice of Charge feature requires an application in the end-user terminal to display the charges for the call, depending on the information received from the application.

[image: image4.wmf]Prepaid :

(Logical Vie...

 :

IpAppCallControlManager

 :

IpCallControlManager

 : IpCall

 : IpUICall

 : IpUIManager

 : IpAppUICall

 : IpAppCall

1: new()

2: enableCallNotification()

3: callEventNotify()

4: "forward event"

8: routeReq()

11: superviseCallReq()

15: superviseCallReq()

7: superviseCallReq()

24: superviseCallReq()

27: release()

6: setAdviceOfCharge()

21: sendInfoReq()

19: createUICall()

20: new()

22: sendInfoRes()

23: "forward event"

28: userInteractionFaultDetected()

5: new()

9: superviseCallRes()

10: "forward event"

12: superviseCallRes()

13: "forward event"

14: setAdviceOfCharge()

16: superviseCallRes()

17: "forward event"

18: new()

25: superviseCallRes()

26: "forward event:

1:
This message is used by the application to create an object implementing the IpAppCallControlManager interface.

2:
This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts a pre-paid service, it is likely that only new call events within a certain address range will be enabled. When a new call, that matches the event criteria, arrives a message (not shown) is directed to the object implementing the IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg object.

3:
The incoming call triggers the Pre-Paid Application (PPA).

4:
The message is forwarded to the application.

5:
A new object on the application side for the Call object is created

6:
The Pre-Paid Application (PPA) sends the AoC information (e.g the tariff switch time). (it shall be noted the PPA contains ALL the tariff information and knows how to charge the user).

During this call sequence 2 tariff changes take place. The call starts with tariff 1, and at the tariff switch time (e.g., 18:00 hours) switches to tariff 2. The application is not informed about this (but the end-user is!)

7:
The Pre-Paid Application (PPA) requests to supervise the call. The application will be informed after the period indicated in the message. This period is related to the credits left on the account of the pre-paid subscriber.

8:
The application requests to route the call to the destination address.

9:
At the end of each supervision period the application is informed and a new period is started.

10:
The message is forwarded to the application.

11:
The Pre-Paid Application (PPA) requests to supervise the call for another call duration.

12:
At the end of each supervision period the application is informed and a new period is started.

13:
The message is forwarded to the application.

14:
Before the next tariff switch (e.g., 19:00 hours) the application sends a new AOC with the tarif switch time. Again, at the tariff switch time,the network will send AoC information to the end-user.

15:
The Pre-Paid Application (PPA) requests to supervise the call for another call duration.

16:
When the user is almost out of credit an announcement is played to inform about this (19-21). The announcement is played only to the leg of the A-party, the B-party will not hear the announcement.

17:
The message is forwarded to the application.

18:
The application creates a new call back interface for the User interaction messages.

19:
A new UI Call object that will handle playing of the announcement needs to be created

20:
The Gateway creates a new UI call object that will handle playing of the announcement.

21:
With this message the announcement is played to the calling party.

22:
The user indicates that the call should continue.

23:
The message is forwarded to the application.

24:
The user does not terminate so the application terminates the call after the next supervision period.

25:
The user is out of credit and the application is informed.

26:
The message is forwarded to the application.

27:
With this message the application requests to release the call.

28:
Terminating the call which has still a UICall object associated will result in a userInteractionFaultDetected. The UICall object is terminated in the gateway and no further communication is possible between the UICall and the application.

6 Class Diagrams

The application generic user interaction service package consists of one IpAppUIManager interface, zero or more IpAppUI interfaces and zero or more IpAppUICall interfaces.
The generic user interaction service package consists of one IpUIManager interface, zero or more IpUI interfaces and zero or more IpUICall interfaces.
The class diagram in the following figure shows the interfaces that make up the application generic user interaction service package and the generic user interaction service package. Communication between these packages is done via the <<uses>> relationships.
The IpUICall implements call related user interaction and it inherits from the non call related IpUI interface. The same holds for the corresponding application interfaces.

[image: image5.wmf]IpInterface

<<Interface>>

IpService

setCallback()

setCallbackWithSessionID()

<<Interface>>

IpAppUIManager

userInteractionAborted()

userInteractionEventNotify()

userInteractionNotificationInterrupted()

userInteractionNotificationContinued()

<<Interface>>

IpUIManager

createUI()

createUICall()

enableUINotification()

disableUINotification()

<<Interface>>

1

1

1

1

<<uses>>

IpAppUI

sendInfoRes()

sendInfoErr()

sendInfoAndCollectRes()

sendInfoAndCollectErr()

userInteractionFaultDetected()

<<Interface>>

IpUI

sendInfoReq()

sendInfoAndCollectReq()

release()

<<Interface>>

1

1

1

1

<<uses>>

IpAppUICall

recordMessageRes()

recordMessageErr()

deleteMessageRes()

deleteMessageErr()

abortActionRes()

abortActionErr()

<<Interface>>

IpUICall

recordMessageReq()

deleteMessageReq()

abortActionReq()

<<Interface>>

1

1

1

1

<<uses>>

Figure: Generic User Interaction Package Overview
7 The Service Interface Specifications

7.1 Interface Specification Format

This section defines the interfaces, methods and parameters that form a part of the API specification. The Unified Modelling Language (UML) is used to specify the interface classes. The general format of an interface specification is described below.

7.1.1 Interface Class

This shows a UML interface class description of the methods supported by that interface, and the relevant parameters and types. The Service and Framework interfaces for enterprise-based client applications are denoted by classes with name Ip<name>. The callback interfaces to the applications are denoted by classes with name IpApp<name>. For the interfaces between a Service and the Framework, the Service interfaces are typically denoted by classes with name IpSvc<name>, while the Framework interfaces are denoted by classes with name IpFw<name>

7.1.2 Method descriptions

Each method (API method “call”) is described. All methods in the API return a value of type TpResult, indicating, amongst other things, if the method invocation was sucessfully executed or not.
Both synchronous and asynchronous methods are used in the API. Asynchronous methods are identified by a 'Req' suffix for a method request, and, if applicable, are served by asynchronous methods identified by either a 'Res' or 'Err' suffix for method results and errors, respectively. To handle responses and reports, the application or service developer must implement the relevant IpApp<name> or IpSvc<name> interfaces to provide the callback mechanism.

7.1.3 Parameter descriptions

Each method parameter and its possible values are described. Parameters described as 'in' represent those that must have a value when the method is called. Those described as 'out' are those that contain the return result of the method when the method returns.

7.1.4 State Model

If relevant, a state model is shown to illustrate the states of the objects that implement the described interface.

7.2 Base Interface

7.2.1 Interface Class IpInterface

All application, framework and service interfaces inherit from the following interface. This API Base Interface does not provide any additional methods.

	<<Interface>>

IpInterface

	

	

7.3 Service Interfaces

7.3.1 Overview

The Service Interfaces provide the interfaces into the capabilities of the underlying network - such as call control, user interaction, messaging, mobility and connectivity management.

The interfaces that are implemented by the services are denoted as 'Service Interface'. The corresponding interfaces that must be implemented by the application (e.g. for API callbacks) are denoted as 'Application Interface'.

7.4 Generic Service Interface

7.4.1 Interface Class IpService

Inherits from: IpInterface
All service interfaces inherit from the following interface.

	<<Interface>>

IpService

	

	setCallback (appInterface : in IpInterfaceRef) : TpResult

setCallbackWithSessionID (appInterface : in IpInterfaceRef, sessionID : in TpSessionID) : TpResult

Method

setCallback()

This method specifies the reference address of the callback interface that a service uses to invoke methods on the application.

Parameters

appInterface : in IpInterfaceRef

Specifies a reference to the application interface, which is used for callbacks
Raises

TpGeneralException

Method

setCallbackWithSessionID()

This method specifies the reference address of the application's callback interface that a service uses for interactions associated with a specific session ID: e.g. a specific call, or call leg.

Parameters

appInterface : in IpInterfaceRef

Specifies a reference to the application interface, which is used for callbacks
sessionID : in TpSessionID

Specifies the session for which the service can invoke the application's callback interface.
Raises

TpGeneralException

8 Generic User Interaction Interface Classes

The Generic User Interaction Service interface (GUIS) is used by applications to interact with end users. The GUIS is represented by the IpUIManager, IpUI and IpUICall interfaces that interface to services provided by the network. To handle responses and reports, the developer must implement IpAppUIManager and IpAppUI interfaces to provide the callback mechanism.
8.1 Interface Class IpUIManager

Inherits from: IpService.
This interface is the 'service manager' interface for the Generic User Interaction Service and provides the management functions to the Generic User Interaction Service.

	<<Interface>>

IpUIManager

	

	createUI (appUI : in IpAppUIRef, userAddress : in TpAddress, userInteraction : out TpUIIdentifierRef) : TpResult

createUICall (appUI : in IpAppUICallRef, callIdentifier : in cc::TpCallIdentifier, callLegIdentifier : in cc::TpCallLegIdentifier, userInteraction : out TpUICallIdentifierRef) : TpResult
enableUINotification (appInterface : in IpAppUIManagerRef, eventCriteria : in TpUIEventCriteria, assignmentID : out TpAssignmentIDRef) : TpResult

disableUINotification (assignmentID : in TpAssignmentID) : TpResult

Method

createUI()

This method is used to create a new user interaction object for non-call related purposes

Parameters

appUI : in IpAppUIRef

Specifies the application interface for callbacks from the user interaction created.
userAddress : in TpAddress

Indicates the end-user with whom to interact.
userInteraction : out TpUIIdentifierRef

Specifies the interface and sessionID of the user interaction created.
Raises

TpGUISException,TpGeneralException
Method

createUICall()

This method is used to create a new user interaction object for call related purposes.

The user interaction can take place to the specified party (CallLegIdentifier) or to all parties in a call (CallIdentifier). Note that for certain implementation user interaction can only be performed towards the controlling call party, which shall be the only party in the call. Only one of CallIdentifier or CallLegidentifier may be defined (the other should be set to 0).

Parameters

appUI : in IpAppUICallRef

Specifies the application interface for callbacks from the user interaction created.
callIdentifier : in cc::TpCallIdentifier
Specifies the call on which to perform the user interaction.
callLegIdentifier : in cc::TpCallLegIdentifier
 Specifies the call leg on which to perform the user interaction .
userInteraction : out TpUICallIdentifierRef

Specifies the interface and sessionID of the user interaction created.
Raises

TpGUISException,TpGeneralException
Method

enableUINotification()

This method is used to enable the reception of user initiated user interaction.

Parameters

appInterface : in IpAppUIManagerRef

If this parameter is set (i.e. not NULL) it specifies a reference to the application interface, which is used for callbacks. If set to NULL, the application interface defaults to the interface specified via the setCallback() method.
eventCriteria : in TpUIEventCriteria

Specifies the event specific criteria used by the application to define the event required, like user address and service code.
assignmentID : out TpAssignmentIDRef

Specifies the ID assigned by the generic user interaction manager interface for this newly enabled event notification.
Raises

TpGUISException,TpGeneralException
Method

disableUINotification()

This method is used by the application to disable UI notifications.

Parameters

assignmentID : in TpAssignmentID

Specifies the assignment ID given by the generic user interaction manager interface when the previous enableNotification() was called. If the assignment ID does not correspond to one of the valid assignment IDs, the framework will return the error code P_INVALID_ASSIGNMENTID.
Raises

TpGUISException,TpGeneralException
8.2 Interface Class IpAppUIManager

Inherits from: IpInterface.
The Generic User Interaction Service manager application interface provides the application callback functions to the Generic User Interaction Service.

	<<Interface>>

IpAppUIManager

	

	userInteractionAborted (userInteraction : in TpUIIdentifier) : TpResult

userInteractionEventNotify (userInteraction : in TpUIIdentifier, eventInfo : in TpUIEventInfo, assignmentID : in TpAssignmentID, appInterface : out IpAppUIRefRef) : TpResult

userInteractionNotificationInterrupted () : TpResult

userInteractionNotificationContinued () : TpResult

Method

userInteractionAborted()

This method indicates to the application that the User Interaction service instance has terminated or closed abnormally. No further communication will be possible between the User Interaction service instance and application.

Parameters

userInteraction : in TpUIIdentifier

Specifies the interface and sessionID of the user interaction service that has terminated.
Raises

TpGUISException,TpGeneralException
Method

userInteractionEventNotify()

This method notifies the application of an user initiated request for user interaction.

Parameters

userInteraction : in TpUIIdentifier

Specifies the reference to the interface and the sessionID to which the notification relates.
eventInfo : in TpUIEventInfo

Specifies data associated with this event.
assignmentID : in TpAssignmentID

Specifies the assignment id which was returned by the enableNotification() method. The application can use assignment id to associate events with event specific criteria and to act accordingly.
appInterface : out IpAppUIRefRef

Specifies a reference to the application interface, which implements the callback interface for the new user interaction.
Raises

TpGUISException,TpGeneralException
Method

userInteractionNotificationInterrupted()

This method indicates to the application that all event notifications have been temporary interrupted (for example, due to faults detected). Note that more permanent failures are reported via the Framework (integrity management).

Parameters

No Parameters were identified for this method

Raises

TpGUISException,TpGeneralException
Method

userInteractionNotificationContinued()

This method indicates to the application that event notifications will again be possible.

Parameters

No Parameters were identified for this method

Raises

TpGUISException,TpGeneralException
8.3 Interface Class IpUI

Inherits from: IpService.
The User Interaction Service Interface provides functions to send information to, or gather information from the user. An application can use the User Interaction Service Interface independently of other services.

	<<Interface>>

IpUI

	

	sendInfoReq (userInteractionSessionID : in TpSessionID, info : in TpUIInfo, variableInfo : in TpUIVariableInfoSet, repeatIndicator : in TpInt32, responseRequested : in TpUIResponseRequest, assignmentID : out TpAssignmentIDRef) : TpResult

sendInfoAndCollectReq (userInteractionSessionID : in TpSessionID, info : in TpUIInfo, variableInfo : in TpUIVariableInfoSet, criteria : in TpUICollectCriteria, responseRequested : in TpUIResponseRequest, assignmentID : out TpAssignmentIDRef) : TpResult

release (userInteractionSessionID : in TpSessionID) : TpResult

Method

sendInfoReq()

This asynchronous method plays an announcement or sends other information to the user.

Parameters

userInteractionSessionID : in TpSessionID

Specifies the user interaction session ID of the user interaction.
info : in TpUIInfo

Specifies the information to send to the user. This information can be:
- an infoID, identifying pre-defined information to be send (announcement and/or text);
- a string, defining the text to be sent;
- a URL , identifying pre-defined information or data to be sent to or downloaded into the terminal.
variableInfo : in TpUIVariableInfoSet

 Defines the variable part of the information to send to the user.
repeatIndicator : in TpInt32

Defines how many times the information shall be sent to the end-user. A value of zero (0) indicates that the announcement shall be repeated until the call or call leg is released or an abortActionReq() is sent.
responseRequested : in TpUIResponseRequest

Specifies if a response is required from the call user interaction service, and any action the service should take.
assignmentID : out TpAssignmentIDRef

Specifies the ID assigned by the generic user interaction interface for a user interaction request.
Raises

TpGUISException,TpGeneralException
Method

sendInfoAndCollectReq()

This asynchronous method plays an announcement or sends other information to the user and collects some information from the user. The announcement usually prompts for a number of characters (for example, these are digits or text strings such as "YES" if the user's terminal device is a phone).

Parameters

userInteractionSessionID : in TpSessionID

Specifies the user interaction session ID of the user interaction.
info : in TpUIInfo

Specifies the ID of the information to send to the user. This information can be:
- an infoID, identifying pre-defined information to be send (announcement and/or text);
- a string, defining the text to be sent;
- a URL , identifying pre-defined information or data to be sent to or downloaded into the terminal
variableInfo : in TpUIVariableInfoSet

Defines the variable part of the information to send to the user.
criteria : in TpUICollectCriteria

Specifies additional properties for the collection of information, such as the maximum and minimum number of characters, end character, first character timeout and inter-character timeout.
responseRequested : in TpUIResponseRequest

Specifies if a response is required from the call user interaction service, and any action the service should take. For this case it can especially be used to indicate e.g. the final request.
assignmentID : out TpAssignmentIDRef

Specifies the ID assigned by the generic user interaction interface for a user interaction request.
Raises

TpGUISException,TpGeneralException
Method

release()

This method requests that the relationship between the application and the user interaction object be released. It causes the release of the used user interaction resources and interrupts any ongoing user interaction.

Parameters

userInteractionSessionID : in TpSessionID

Specifies the user interaction session ID of the user interaction created.
Raises

TpGUISException,TpGeneralException
8.4 Interface Class IpAppUI

Inherits from: IpInterface.
The User Interaction Application Interface is implemented by the client application developer and is used to handle generic user interaction request responses and reports.

	<<Interface>>

IpAppUI

	

	sendInfoRes (userInteractionSessionID : in TpSessionID, assignmentID : in TpAssignmentID, response : in TpUIReport) : TpResult

sendInfoErr (userInteractionSessionID : in TpSessionID, assignmentID : in TpAssignmentID, error : in TpUIError) : TpResult

sendInfoAndCollectRes (userInteractionSessionID : in TpSessionID, assignmentID : in TpAssignmentID, response : in TpUIReport, collectedInfo : in TpString) : TpResult
sendInfoAndCollectErr (userInteractionSessionID : in TpSessionID, assignmentID : in TpAssignmentID, error : in TpUIError) : TpResult

userInteractionFaultDetected (userInteractionSessionID : in TpSessionID, fault : in TpUIFault) : TpResult

Method

sendInfoRes()

This asynchronous method informs the application about the start or the completion of a sendInfoCallReq(). This response is called only if the responseRequested parameter of the sendInfoCallReq() method was set to P_UICALL_RESPONSE_REQUIRED.

Parameters

userInteractionSessionID : in TpSessionID

Specifies the user interaction session ID of the user interaction.
assignmentID : in TpAssignmentID

Specifies the ID assigned by the generic user interaction interface for a user interaction request.
response : in TpUIReport

Specifies the type of response received from the user.
Raises

TpGUISException,TpGeneralException
Method

sendInfoErr()

This asynchronous method indicates that the request to send information was unsuccessful.

Parameters

userInteractionSessionID : in TpSessionID

Specifies the user interaction session ID of the user interaction.
assignmentID : in TpAssignmentID

Specifies the ID assigned by the generic user interaction interface for a user interaction request.
error : in TpUIError

Specifies the error which led to the original request failing.
Raises

TpGUISException,TpGeneralException
Method

sendInfoAndCollectRes()

This asynchronous method returns the information collected to the application.

Parameters

userInteractionSessionID : in TpSessionID

Specifies the user interaction session ID of the user interaction.
assignmentID : in TpAssignmentID

Specifies the ID assigned by the generic user interaction interface for a user interaction request.
response : in TpUIReport

Specifies the type of response received from the user.
collectedInfo : in TpString

Specifies the information collected from the user.
Raises

TpGUISException,TpGeneralException
Method

sendInfoAndCollectErr()

This asynchronous method indicates that the request to send information and collect a response was unsuccessful.

Parameters

userInteractionSessionID : in TpSessionID

Specifies the user interaction session ID of the user interaction.
assignmentID : in TpAssignmentID

Specifies the ID assigned by the generic user interaction interface for a user interaction request.
error : in TpUIError

Specifies the error which led to the original request failing.
Raises

TpGUISException,TpGeneralException
Method

userInteractionFaultDetected()

This method indicates to the application that a fault has been detected in the user interaction.

Parameters

userInteractionSessionID : in TpSessionID

Specifies the interface and sessionID of the user interaction service in which the fault has been detected.
fault : in TpUIFault

Specifies the fault that has been detected.
Raises

TpGUISException,TpGeneralException
8.5 Interface Class IpUICall

Inherits from: IpUI.
The Call User Interaction Service Interface provides functions to send information to, or gather information from the user (or call party) to which a call leg is connected. An application can use the Call User Interaction Service Interface only in conjunction with another service interface, which provides mechanisms to connect a call leg to a user. At present, only the Call Control service supports this capability.

	<<Interface>>

IpUICall

	

	recordMessageReq (userInteractionSessionID : in TpSessionID, info : in TpUIInfo, criteria : in TpUIMessageCriteria, assignmentID : out TpAssignmentIDRef) : TpResult

deleteMessageReq (usrInteractionSessionID : in TpSessionID, messageID : in TpInt32, assignmentID : out TpAssignmentIDRef) : TpResult

abortActionReq (userInteractionSessionID : in TpSessionID, assignmentID : in TpAssignmentID) : TpResult

Method

recordMessageReq()

This asynchronous method allows the recording of a message. The recorded message can be played back at a later time with the sendInfoReq() method.

Parameters

userInteractionSessionID : in TpSessionID

Specifies the user interaction session ID of the user interaction.
info : in TpUIInfo

Specifies the information to send to the user. This information can be either an ID (for pre-defined announcement or text), a text string, or an URL (indicating the information to be sent, e.g. an audio stream).
criteria : in TpUIMessageCriteria

 Defines the criteria for recording of messages
assignmentID : out TpAssignmentIDRef

Specifies the ID assigned by the generic user interaction interface for a user interaction request.
Raises

TpGUISException,TpGeneralException
Method

deleteMessageReq()

This asynchronous method allows to delete a recorded message.

Parameters

usrInteractionSessionID : in TpSessionID

Specifies the user interaction session ID of the user interaction.
messageID : in TpInt32

Specifies the message ID.
assignmentID : out TpAssignmentIDRef

Specifies the ID assigned by the generic user interaction interface for a user interaction request.
Raises

TpGUISException,TpGeneralException
Method

abortActionReq()

This asynchronous method aborts a user interaction operation, e.g. a sendInfoReq(), from the specified call leg. The call and call leg are otherwise unaffected. The user interaction call service interrupts the current action on the specified leg.

Parameters

userInteractionSessionID : in TpSessionID

Specifies the user interaction session ID of the user interaction.
assignmentID : in TpAssignmentID

Specifies the user interaction request to be cancelled.
Raises

TpGUISException,TpGeneralException
8.6 Interface Class IpAppUICall

Inherits from: IpAppUI.
The Call User Interaction Application Interface is implemented by the client application developer and is used to handle call user interaction request responses and reports.

	<<Interface>>

IpAppUICall

	

	recordMessageRes (userInteractionSessionID : in TpSessionID, assignmentID : in TpAssignmentID, response : in TpUIReport, messageID : in TpInt32) : TpResult

recordMessageErr (userInteractionSessionID : in TpSessionID, assignmentID : in TpAssignmentID, error : in TpUIError) : TpResult

deleteMessageRes (usrInteractionSessionID : in TpSessionID, response : in TpUIReport, assignmentID : in TpAssignmentIDRef) : TpResult

deleteMessageErr (usrInteractionSessionID : in TpSessionID, error : in TpUIError, assignmentID : in TpAssignmentIDRef) : TpResult

abortActionRes (userInteractionSessionID : in TpSessionID, assignmentID : in TpAssignmentID) : TpResult

abortActionErr (userInteractionSessionID : in TpSessionID, assignmentID : in TpAssignmentID, error : in TpUIError) : TpResult

Method

recordMessageRes()

This method returns whether the message is successfully recorded or not. In case the message is recorded, the ID of the message is returned.

Parameters

userInteractionSessionID : in TpSessionID

Specifies the user interaction session ID of the user interaction.
assignmentID : in TpAssignmentID

Specifies the ID assigned by the call user interaction interface for a user interaction request.
response : in TpUIReport

Specifies the type of response received from the device where the message is stored.
messageID : in TpInt32

Specifies the ID that was assigned to the message by the device where the message is stored.
Method

recordMessageErr()

This method indicates that the request for recording of a message was not successful.

Parameters

userInteractionSessionID : in TpSessionID

Specifies the user interaction session ID of the user interaction.
assignmentID : in TpAssignmentID

Specifies the ID assigned by the call user interaction interface for a user interaction request.
error : in TpUIError

Specifies the error which led to the original request failing.
Method

deleteMessageRes()

This method returns whether the message is successfully deleted or not.

Parameters

usrInteractionSessionID : in TpSessionID

Specifies the user interaction session ID of the user interaction.
response : in TpUIReport

Specifies the type of response received from the device where the message was stored.
assignmentID : in TpAssignmentIDRef

Specifies the ID assigned by the call user interaction interface for a user interaction request.
Raises

TpGUISException,TpGeneralException
Method

deleteMessageErr()

This method indicates that the request for deleting a message was not successful.

Parameters

usrInteractionSessionID : in TpSessionID

Specifies the user interaction session ID of the user interaction.
error : in TpUIError

Specifies the error which led to the original request failing.
assignmentID : in TpAssignmentIDRef

Specifies the ID assigned by the call user interaction interface for a user interaction request.
Raises

TpGUISException,TpGeneralException
Method

abortActionRes()

This asynchronous method confirms that the request to abort a user interaction operation on a call leg was successful.

Parameters

userInteractionSessionID : in TpSessionID

Specifies the user interaction session ID of the user interaction.
assignmentID : in TpAssignmentID

Specifies the ID assigned by the call user interaction interface for a user interaction request.
Raises

TpGUISException,TpGeneralException
Method

abortActionErr()

This asynchronous method indicates that the request to abort a user interaction operation on a call leg resulted in an error.

Parameters

userInteractionSessionID : in TpSessionID

Specifies the user interaction session ID of the user interaction.
assignmentID : in TpAssignmentID

Specifies the ID assigned by the call user interaction interface for a user interaction request.
error : in TpUIError

Specifies the error which led to the original request failing.
Raises

TpGUISException,TpGeneralException
	

	

	

9 State Transition Diagrams

9.1 State Transition Diagrams for IpUIManager

[image: image6.wmf]Active

exit/ release UI objects

"new"

enableUINotification

disableUINotification

Creation of UIManager

by Service Factory

Notification

Terminated

disableUINotification

IpAccess.terminateServiceAgreement

"notifications possible again"

 ^userInteractionNotificationContinued

IpAccess.terminateServiceAgreement

"notifications not possible"

 ^userInteractionNotificationInterrupted

"arrival of user initiated request for user interaction"[notification active for this ui

event] / create a UI object ^IpAppUIManager.userInteractionEventNotify

createUI / create UI object

createUICall / create UICall object

Figure : Application view on the UI Manager

9.1.1 Active State

In this state a relation between the Application and a User Interaction Service Capability Feature (Generic User Interaction or Call User Interaction) has been established. The application is now able to request creation of UI and/orUICall objects.
9.1.2 Notification Terminated State

When the UI manager is in the Notification terminated state, events requested with enableUINotification() will not be forwarded to the application. There can be multiple reasons for this: for instance it might be that the application receives more notifications than defined in the Service Level Agreement. Another example is that the SCS has detected it receives no notifications from the network due to e.g. a link failure. In this state no requests for new notifications will be accepted.

9.2 State Transition Diagrams for IpUI

The state transition diagram shows the application view on the User Interaction object.

[image: image7.wmf]Active

IpUIManager.createUI

IpAppUIManager.userInteractionEventNotify

sendInfoReq

sendInfoAndCollectReq

Release

Pending

Finished

In state Finished a timer mechanism

should prevent that the object keeps

occupying resources. In case the timer

expires, the object should be destroyed

and userInteractionFaultDetected should

be reported to the application.

release

timeout ^userInteractionFaultDetected

"requested message has been sent"[not final request] ^sendInfoRes

"user input received"[not final request] ^sendInfoAndCollectRes

"request to send message unsuccessful"[not final request] ^sendInfoErr

"request to send info and collect a response unsuccessful"[not final request]

^sendInfoAndCollectErr

"fault detected in the user interaction" / report error

on outstanding user interaction

^userInteractionFaultDetected

release

"requested message has been sent"[final request] ^sendInfoRes

"user input received"[final request] ^sendInfoAndCollectRes

"request to send message unsuccessful"[final

request] ^sendInfoErr

"request to send info and collect response

unsuccessful"[final request]

^sendInfoAndCollectErr

"requested message has been sent" ^sendInfoRes

"user input received" ^sendInfoAndCollectRes

"request to send message unsuccessful" ^sendInfoErr

"request to send info and collect a response unsuccessful"

^sendInfoAndCollectErr

sendInfoReq[final request]

sendInfoAndCollectReq[final request]

"fault detected in the user interaction" /

report error on outstanding user interaction

^userInteractionFaultDetected

release

Figure : Application view on the UI object

9.2.1 Active State

In this state the UI object is available for requesting messages to be send to the network.
In case a fault is detected on the user interaction (e.g. a link failure to the IVR system), userInteractionFaultDetected() will be invoked on the application and an error will be reported on all outstanding requests.
9.2.2 Release Pending State

A transition to this state is made when the Application has indicated that after a certain message no further messages need to be sent to the end-user. There are, however, still a number of messages that are not yet completed. When the last message is sent or when the last user interaction has been obtained, the UI object is destroyed.
In case the final request failed or the application requested to abort the final request, a transition is made back to the Active state.
In case a fault is detected on the user interaction (e.g. a link failure to the IVR system), userInteractionFaultDetected() will be invoked on the application and an error will be reported on all outstanding requests.
9.2.3 Finished State

In this state the user interaction has ended. The application can only release the UI object. Note that the application has to release the object itself as good OO practice requires that when an object is created on behalf of a certain entity, this entity is also responsible for destroying it when the object is no longer needed.

9.3 State Transition Diagrams for IpUICall

The state transition diagram shows the application view on the Call User Interaction object.

[image: image8.wmf]Active

Release

Pending

Finished

IpUIManager.createUICall

release

abortActionReq / cancel the user interaction

abortActionReq[not the final request] / cancel the

user interaction

Already requested announcements

will continue, even when

application releases the object.

In state Finished a timer mechanism

should prevent that the object keeps

occupying resources. In case the timer

expires, the object should be destroyed

and userInteractionFaultDetected should

be reported to the application.

timeout ^userInteractionFaultDetected

"requested message has been sent"[not final request] ^sendInfoRes

"user input received"[not final request] ^sendInfoAndCollectRes

"request to send message unsuccessful"[not final request] ^sendInfoErr

"request to send info and collect a response unsuccessful"[not final request]

^sendInfoAndCollectErr

"fault detected in the user interaction" / report error on outstanding requests

^userInteractionFaultDetected

release / abort all ongoing user interaction

"requested message has been sent"[final request] ^sendInfoRes

"user input received"[final request] ^sendInfoAndCollectReq

"request to send message unsuccessful"[

final request] ^sendInfoErr

"request to send info and collect response

unsuccessful"[final request] ^sendInfoAndCollectErr

abortActionReq[final request is cancelled]

/ cancel the user interaction

"call terminated" / report error on all outstanding requests ^userInteractionFaultDetected

IpCall.deassignCall

"requested message has been sent" ^sendInfoRes

"user input received" ^sendInfoAndCollectRes

sendInfoReq[final request]

sendInfoAndCollectReq[final request]

"fault detected in the user interaction" / report error on all outstanding requests

^userInteractionFaultDetected

release / abort all ongoing user interaction

"call terminated" / report error on all outstanding requests ^userInteractionFaultDetected

IpCall.deassignCall

"request to send info and collect response unsuccessful"

 ^sendInfoAndCollectErr

"request to send message unsuccessful" ^sendInfoErr

Figure : Application view on the UICall object

9.3.1 Active State

In this state a UICall object is available for announcements to be played to an end-user or obtaining information from the end-user.
When the application de-assigns the related Call object, a transition is made to the Finished state. However, all requested announcements will continue, even when the application releases the UICall object.
When the related call is due to some reason terminated, a transition is made to the Finished state, the operation userInteractionFaultDetected() will be invoked on the application and an error will be reported on all outstanding requests.
In case a fault is detected on the user interaction (e.g. a link failure to the IVR system), userInteractionFaultDetected() will be invoked on the application and an error will be reported on all outstanding requests.
9.3.2 Release Pending State

A transition to this state is made when the Application has indicated that after a certain announcement no further announcements need to be played to the end-user. There are, however, still a number of announcements that are not yet completed. When the last announcement is played or when the last user interaction has been obtained, the UICall object is destroyed. In case the final request failed or the application requested to abort the final request, a transition is made back to the Active state.
When the application de-assigns the related Call object, a transition is made to the Finished state. However, all requested announcements will continue, even when the application releases the UICall object.
When the related call is due to some reason terminated, a transition is made to the Finished state, the operation userInteractionFaultDetected() will be invoked on the application and an error will be reported on all outstanding requests.
In case a fault is detected on the user interaction (e.g. a link failure to the IVR system), userInteractionFaultDetected() will be invoked on the application and an error will be reported on all outstanding requests.
9.3.3 Finished State

In this state the user interaction has ended. The application can only release the UICall object. Note that the application has to release the object itself as good OO practice requires that when an object is created on behalf of a certain entity, this entity is also responsible for destroying it when the object is no longer needed.

10 Data Definitions

10.1 TpUIFault

Defines the cause of the UI fault detected.

	Name
	Value
	Description

	P_UI_FAULT_UNDEFINED
	0
	Undefined

	P_UI_CALL_ENDED
	1
	The related Call object has been terminated. Therefore, the UICall object is also terminated. No further interaction is possible with this object.

10.2 IpUI

Defines the address of an IpUI Interface.

10.3 IpUIRef

Defines a Reference to type IpUI.

10.4 IpUIRefRef

Defines a Reference to type IpUIRef.

10.5 IpAppUI

Defines the address of an IpAppUI Interface.

10.6 IpAppUIRef

Defines a Reference to type IpAppUI.

10.7 IpAppUIRefRef

Defines a Reference to type IpAppUIRef.
10.8 IpAppUIManager

Defines the address of an IpAppUIManager Interface.

10.9 IpAppUIManagerRef

Defines a Reference to type IpAppUIManager.
10.10 TpUICallIdentifier

Defines the Sequence of Data Elements that unambiguously specify the UICall object

	Structure Element Name
	Structure Element Type
	Structure Element Description

	UICallRef
	IpUICallRef
	This element specifies the interface reference for the UICall object.

	UserInteractionSessionID
	TpSessionID
	This element specifies the user interaction session ID.

10.11 TpUICallIdentifierRef

Defines a reference to type TpUICallIdentifier.

TpUICollectCriteria

Defines the Sequence of Data Elements that specify the additional properties for the collection of information, such as the end character, first character timeout, inter-character timeout, and maximum interaction time.

	Structure Element Name
	Structure Element Type

	MinLength
	TpInt32

	MaxLength
	TpInt32

	EndSequence
	TpString

	StartTimeout
	TpDuration

	InterCharTimeout
	TpDuration

The structure elements specify the following criteria:

MinLength:
Defines the minimum number of characters (e.g. digits) to collect.

MaxLength:
Defines the maxmum number of characters (e.g. digits) to collect.

EndSequence:
Defines the character or characters which terminate an input of variable length, e.g. phonenumbers.

StartTimeout:
specifies the value for the first character time-out timer. The timer is started when the announcement has been completed or has been interrupted. The user should enter the start of the response (e.g. first digit) before the timer expires. If the start of the response is not entered before the timer expires, the input is regarded to be erroneous. After receipt of the start of the response, which may be valid or invalid, the timer is stopped.

InterCharTimeOut:
specifies the value for the inter-character time-out timer.The timer is started when a response (e.g. digit) is received, and is reset and restarted when a subsequent response is received. The responses may be valid or invalid. the announcement has been completed or has been interrupted.

 Input is considered successful if the following applies:

If the EndSequence is not present (i.e. NULL):

· when the InterCharTimeOut timer expires; or

· when the number of valid digits received equals the MaxLength.

If the EndSequence is present:

· when the InterCharTimeOut timer expires; or

· when the EndSequence is received; or

· when the number of valid digits received equals the MaxLength.

In the case the number of valid characters received is less than the MinLength when the InterCharTimeOut timer expires or when the EndSequence is received, the input is considered erroneous.

The collected characters (including the EndSequence) are sent to the client application when input has been successful.

TpUIError

Defines the UI call error codes.
	Name
	Value
	Description

	P_UI_ERROR_UNDEFINED
	0
	Undefined error

	P_UI_ERROR_ILLEGAL_ID
	1
	The information id specified is invalid

	P_UI_ERROR_ID_NOT_FOUND
	2
	A legal information id is not known to the the User Interaction service

	P_UI_ERROR_RESOURCE_UNAVAILABLE
	3
	The information resources used by the User Interaction service are unavailable, e.g. due to an overload situation.

	P_UI_ERROR_ILLEGAL_RANGE
	4
	The values for minimum and maximum collection length are out of range

	P_UI_ERROR_IMPROPER_CALLER_RESPONSE
	5
	Improper user response

	P_UI_ERROR_ABANDON
	6
	The specified leg is disconnected before the send information completed

	P_UI_ERROR_NO_OPERATION_ACTIVE
	7
	There is no active user interaction for the specified leg. Either the application did not start any user interaction or the user interaction was already finished when the abortAction_Req() was called.

	P_UI_ERROR_NO_SPACE_AVAILABLE
	8
	There is no more storage capacity to record the message when the recordMessage() operation was called

The call user interaction object will be automatically de-assigned if the error P_UI_ERROR_ABANDON is reported, as a corresponding call or call leg object no longer exists.

TpUIEventCriteria

Defines the Sequence of Data Elements that specify the additional criteria for receiving a UI notification

	Structure Element Name
	Structure Element Type
	Description

	OriginatingAddress
	TpAddressRange
	Defines the originating address for which the notification is requested.

	DestinationAddress
	TpAddressRange
	Defines the destination address or address range for which the notification is requested.

	ServiceCode
	TpString
	Defines a 2 digit code indicating the UI to be triggered. The value is operator specific.

TpUIEventInfo

Defines the Sequence of Data Elements that specify a UI notification
	Structure Element Name
	Structure Element Type
	

	OriginatingAddress
	TpAddress
	Defines the originating address.

	DestinationAddress
	TpAddress
	Defines the destination address.

	ServiceCode
	TpString
	Defines a 2 digit code indicating the UI to be triggered. The value is operator specific.

	DataTypeIndication
	TpUIEventInfoDataType
	Identifies the type of contents in the dataString.

	DataString
	TpString
	Freely defined data string with a limited length e.g. 160 bytes according to the network policy.

TpUIEventInfoDataType

Defines the type of the dataString parameter in the method userInteractionEventNotify.

	Name
	Value
	Description

	P_UI_EVENT_DATA_TYPE_UNDEFINED
	0
	Undefined (e.g. binary data)

	P_UI_EVENT_DATA_TYPE_UNSPECIFIED
	1
	Unspecified data

	P_UI_EVENT_DATA_TYPE_TEXT
	2
	Text

	P_UI_EVENT_DATA_TYPE_USSD_DATA
	3
	USSD data starting with coding scheme

TpUIIdentifier

Defines the Sequence of Data Elements that unambiguously specify the UI object

	Structure Element Name
	Structure Element Type
	Structure Element Description

	UIRef
	IpUIRef
	This element specifies the interface reference for the UI object.

	UserInteractionSessionID
	TpSessionID
	This element specifies the user interaction session ID.

TpUIIdentifierRef

Defines a reference to type TpUIIdentifier.

TpUIInfo

Defines the Tagged Choice of Data Elements that specify the information to send to the user.

	
	Tag Element Type
	

	
	TpUIInfoType
	

	Tag Element Value
	Choice Element Type
	Choice Element Name

	P_UI_INFO_ID
	TpInt32
	InfoId

	P_UI_INFO_DATA
	TpString
	InfoData

	P_UI_INFO_ADDRESS
	TpURL
	InfoAddress

The choice elements represents the following:

InfoID:
defines the ID of the user information script or stream to send to an end-user. The values of this data type are operator specific.

InfoData:
defines the data to be sent to an end-user’s terminal. The data is free-format and the encoding is depending on the resources being used..

InfoAddress:
defines the URL of the text or stream to be sent to an end-user’s terminal.

TpUIInfoType

Defines the type of the information to be send to the user.
	Name
	Value
	Description

	P_UI_INFO_ID
	1
	The information to be send to an end-user consists of an ID

	P_UI_INFO_DATA
	2
	The information to be send to an end-user consists of a data string

	P_UI_INFO_ADDRESS
	3
	The information to be send to an end-user consists of a URL.

TpUIMessageCriteria

Defines the Sequence of Data Elements that specify the additional properties for the recording of a message

	Structure Element Name
	Structure Element Type

	EndSequence
	TpString

	MaxMessageTime
	TpDuration

	MaxMessageSize
	TpInt32

The structure elements specify the following criteria:

EndSequence:
Defines the character or characters which terminate an input of variable length, e.g. phonenumbers.

MaxMessageTime:
specifies the maximum duration in seconds of the message that is to be recorded.

MaxMessageSize:
If this parameter is non-zero, it specifies the maximum size in bytes of the message that is to be recorded.

TpUIReport

Defines the UI call reports if a response was requested.
	Name
	Value
	Description

	P_UI_REPORT_UNDEFINED
	0
	Undefined report

	P_UI_REPORT_ANNOUNCEMENT_ENDED
	1
	Confirmation that the announcement has ended

	P_UI_REPORT_LEGAL_INPUT
	2
	Information collected., meeting the specified criteria.

	P_UI_REPORT_NO_INPUT
	3
	No information collected. The user immediately entered the delimiter character. No valid information has been returned

	P_UI_REPORT_TIMEOUT

	4
	No information collected. The user did not input any response before the input timeout expired

	P_UI_REPORT_MESSAGE_STORED
	5
	A message has been stored successfully

	P_UI_REPORT_MESSAGE_NOT_STORED
	6
	The message has not been stored successfully

	P_UI_REPORT_MESSAGE_DELETED
	7
	A message has been deleted successfully

	P_UI_REPORT_MESSAGE_NOT_DELETED
	8
	A message has not been deleted successfully

TpUIResponseRequest

Defines the situations for which a response is expected following the user interaction.
	Name
	Value
	Description

	P_UI_RESPONSE_REQUIRED
	1
	The User Interaction Call must send a response when the request has completed.

	P_UI_LAST_ANNOUNCEMENT_IN_A_ROW
	2
	This is the final announcement within a sequence. It might, however, be that additional announcements will be requested at a later moment. The User Interaction Call service may release any used resources in the network. The UI object will not be released.

	P_UI_FINAL_REQUEST
	4
	This is the final request. The UI object will be released after the information has been presented to the user.

This parameter represent a so-called bitmask, i.e. the values can be added to derived the final meaning.

TpUIVariableInfo

Defines the Tagged Choice of Data Elements that specify the variable parts in the information to send to the user.

	
	Tag Element Type
	

	
	TpUIVariableType
	

	Tag Element Value
	Choice Element Type
	Choice Element Name

	P_UI_VARIABLE_PART_INT
	TpInt32
	VariablePartInteger

	P_UI_VARIABLE_PART_ADDRESS
	TpString
	VariablePartAddress

	P_UI_VARIABLE_PART_TIME
	TpTime
	VariablePartTime

	P_UI_VARIABLE_PART_DATE
	TpDate
	VariablePartDate

	P_UI_VARIABLE_PART_PRICE
	TpPrice
	VariablePartPrice

TpUIVariableInfoSet

Defines a Numbered Set of Data Elements of TpUIVariableInfo.
TpUIVariablePartType

Defines the type of the variable parts in the information to send to the user.

	Name
	Value
	Description

	P_UI_VARIABLE_PART_INT
	0
	Variable part is of type integer

	P_UI_VARIABLE_PART_ADDRESS
	1
	Variable part is of type address

	P_UI_VARIABLE_PART_TIME
	2
	Variable part is of type time

	P_UI_VARIABLE_PART_DATE
	3
	Variable part is of type date

	P_UI_VARIABLE_PART_PRICE
	4
	Variable part is of type price

Annex A (normative):
OMG IDL Description of User Interaction SCF

The OMG IDL representation of this interface specification is contained in a text file (ui.idl contained in archive ??????.ZIP) which accompanies the present document.
Annex B (informative):
CN5 Documents Implemented in this draft

	Document
	Meeting

	N5-000118
	Retz July '00 CN5#4

	N5-000320
	Scottsdale Dec '00 CN5#8

	N5-000311
	Scottsdale Dec '00 CN5#8

	
	

Annex C (informative):
Differences between this draft and 3GPP 29.198 R99

C.1
Interface IpAppUIManager
userInteractionEventNotify(uiuserInteraction : in TpUIIdentifier , eventInfo : in TpUIEventInfo ,
assignmentID : in TpAssignmentID , appInterface : out IpAppUIRefRef) : TpResult
C.2
Interface IpAppUI

sendInfoAndCollectRes(userInteractionSessionID : in TpSessionID , assignmentID : in TpAssignmentID, response : in TpUIReport , infocollectedInfo : in TpString) : TpResult
C.3
Interface IpUICall

The following method was added:

deleteMessageReq(userInteractionSessionID : in TpSessionID , messageID : in TpInt32 , assignmentID : out TpAssignmentIDRef) : TpResult
C.4
Interface IpAppUICall

The following methods were added:

deleteMessageRes(userInteractionSessionID : in TpSessionID , response : in TpUIReport , assignmentID : in TpAssignmentID) : TpResult

deleteMessageErr(userInteractionSessionID : in TpSessionID , error : in TpUIError , assignmentID : in TpAssignmentID) : TpResult
C.5
Type TpUIReport

TpUIReport

Defines the UI call reports if a response was requested.
	Name
	Value
	Description

	P_UI_REPORT_UNDEFINED
	0
	Undefined report

	P_UI_REPORT_ANNOUNCEMENT_ENDED
	1
	Confirmation that the announcement has ended

	P_UI_REPORT_LEGAL_INPUT
	2
	Information collected., meeting the specified criteria.

	P_UI_REPORT_NO_INPUT
	3
	No information collected. The user immediately entered the delimiter character. No valid information has been returned

	P_UI_REPORT_TIMEOUT

	4
	No information collected. The user did not input any response before the input timeout expired

	P_UI_REPORT_MESSAGE_STORED
	5
	A message has been stored successfully

	P_UI_REPORT_MESSAGE_NOT_STORED
	6
	The message has not been stored successfully

	P_UI_REPORT_MESSAGE_DELETED
	7
	A message has been deleted successfully

	P_UI_REPORT_MESSAGE_NOT_DELETED
	8
	A message has not been deleted successfully

Annex D (informative):
Contents of 3GPP OSA R4 User Interaction
All of this document is relevent for 3GPP Release 4 of 29.198

Annex <zz> (informative):
Bibliography

The annex entitled "Bibliography" is optional.

Exception: Please use style"Heading 9" and no indication of (informative) or (normative) within a Technical Report.

Bibliography format

· <Publication>: "<Title>".

OR

<Publication>: "<Title>".

History

	Document history

	v.0.0.1
	November 2000
	Version produced following Sophia Antioplis Meeting, November 2000

	v.0.0.2
	February 2001
	All CRs and changes up to & including Scottsdale CN5#8 implemented

	
	
	

	
	
	

	
	
	

	
	
	

[image: image9.png]