[image: image2.png]

N5-010029
DTS/SPAN-120070-12 V0.0.1 (2001-02)
Open Service Access;

Application Programming Interface;

Part 12: Messaging;

Reference

DTS/SPAN-120070-11

Keywords

API, OSA, IDL, CS, Charging

ETSI

650 Route des Lucioles

F-06921 Sophia Antipolis Cedex - FRANCE
Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C

Association à but non lucratif enregistrée à la

Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org
The present document may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at http://www.etsi.org/tb/status/
If you find errors in the present document, send your comment to:
editor@etsi.fr
Copyright Notification

Reproduction is only permitted for the purpose of standardization work undertaken within ETSI.
The copyright and the foregoing restrictions extend to reproduction in all media.
© European Telecommunications Standards Institute 2000.

All rights reserved.

Contents

4Intellectual Property Rights

Foreword
4
Introduction
4
1
Scope
5
2
References
5
3
Definitions, symbols and abbreviations
5
3.1
Definitions
5
3.2
Symbols
5
3.3
Abbreviations
5
4
Messaging SCF
6
5
Sequence Diagrams
7
6
Class Diagrams
8
7
The Service Interface Specifications
9
7.1
Interface Specification Format
9
7.1.1
Interface Class
9
7.1.2
Parameter descriptions
9
7.1.3
State Model
9
7.2
Base Interface
9
7.2.1
Interface Class IpInterface
9
7.3
Service Interfaces
9
7.3.1
Overview
9
7.4
Generic Service Interface
10
7.4.1
Interface Class IpService
10
8
Messaging SCF Interface Classes
11
8.1
Interface Class IpMessageManager
11
8.2
Interface Class IpAppMessageManager
13
8.3
Interface Class IpMessaging
15
8.4
Interface Class IpAppMessaging
18
9
Messaging SCF State Transition Diagrams
20
10
Messaging Data Definitions
21

Intellectual Property Rights

Foreword

Introduction

1
Scope

The scope of this document is to consider the interface specification of an API for accessing Service Applications. UML techniques have been utilized for this purpose. This document specifies the Messaging aspects of the interface. All aspects of Messaging are defined here, these being:

· Sequence Diagrams

· Class Diagrams

· Interface specification plus detailed method descriptions

· State Transition diagrams

· Data definitions

The process by which this task is accomplished is through the use of Object modeling techniques described by the Unified Modeling Language (UML). UML is a combined tools and methodology process which results in a comprehensive set of specifications representing, in this case, an interface between client and server applications. Further information can be found in the latest version of the ITU-T Recommendation Q.65.

2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

[1]

3GPP TS 29.078: "Customised Applications for Mobile network Enhanced Logic (CAMEL) phase 3 – stage 3"

[2]

3GPP TS 23.040: "Technical realization of the Short Message Service (SMS)"

3
Definitions, symbols and abbreviations

3.1
Definitions

For the purposes of the present document, the following terms and definitions apply:

<defined term>: <definition>

example: text serving as an example

3.2
Symbols

For the purposes of the present document, the following symbols apply:

<symbol>
<Explanation>

<2nd symbol>
<2nd Explanation>

3.3
Abbreviations

For the purposes of the present document, the following abbreviations apply:

SMS
Short Message Service
4 Messaging SCF

The following sections describe each aspect of the Messaging Service Capability Feature (SCF).

The order is as follows:

· The Sequence diagrams give the reader a practical idea of how each of the service capability feature is implemented.

· The Class relationships section show how each of the interfaces applicable to the SCF, relate to one another

· The Interface specification section describes in detail each of the interfaces shown within the Class diagram part.

· The State Transition Diagrams (STD) show the progression of internal processes either in the application, or Gateway.

· The Data definitions section show a detailed expansion of each of the data types associated with the methods within the classes. Note that some data types are used in other methods and classes and are therefore defined within the Common Data types part of this specification.

5 Sequence Diagrams

There are no sequence diagrams specified yet.

[image: image2.png]
Figure 1. Successful message sending.

6 Class Diagrams

The messaging SCF consists of two packages, one for the interfaces on the application side and one for interfaces on the service side.
The class diagrams in the following figure show the interfaces that make up the messaging application and server side packages. Communication between these packages is indicated with the <<use>> associations; e.g., the IpMessageManager interface uses the IpAppMessageManager , by means of calling callback methods. The application side package consists of one IpAppMessageManager interface and zero or more IpAppMessaging interfaces. The network side package consists of one IpMessageManager interface and zero or more IpMessaging interfaces.

[image: image1.wmf]DOCUMENTTYPE

1

 (

1

)

TypeUnitOrDepartmentHere

TypeYourNameHere

TypeDateHere

IpOSA

<<Interface>>

IpService

setCallback()

setCallbackWithSessionID()

<<Interface>>

IpAppMessageManager

messagingAborted()

messagingEventNotify()

messagingNotificationInterrupted()

messagingNotificationContinued()

<<Interface>>

IpMessageManager

createMessagingNotification()

destroyMessagingNotificationl()

changeMessagingNotification()

getCriteria()

<<Interface>>

1

1

1

1

<<use>>

IpAppMessaging

deliverRes()

<<Interface>>

IpMessaging

deliverReq()

stopMessage()

deleteMessage()

<<Interface>>

1

1

1

1

<<use>>

deassignMessaging()

setMessagingCharge()

deliverErr()

messagingFaultDetected()

IpOSA

<<Interface>>

Figure 2: Package Overview

7 The Service Interface Specifications

7.1 Interface Specification Format

This section defines the interfaces, methods and parameters that form a part of the API specification. The Unified Modelling Language (UML) is used to specify the interface classes. The general format of an interface specification is described below.

7.1.1 Interface Class

This shows a UML interface class description of the methods supported by that interface, and the relevant parameters and types. The Service and Framework interfaces for enterprise-based client applications are denoted by classes with name Ip<name>. The callback interfaces to the applications are denoted by classes with name IpApp<name>. Method descriptions

Each method (API method “call”) is described. All methods in the API return a value of type TpResult, indicating, amongst other things, if the method invocation was sucessfully executed or not.
Both synchronous and asynchronous methods are used in the API. Asynchronous methods are identified by a 'Req' suffix for a method request, and, if applicable, are served by asynchronous methods identified by either a 'Res' or 'Err' suffix for method results and errors, respectively.

7.1.2 Parameter descriptions

Each method parameter and its possible values are described. Parameters described as 'in' represent those that must have a value when the method is called. Those described as 'out' are those that contain the return result of the method when the method returns.

7.1.3 State Model

If relevant, a state model is shown to illustrate the states of the objects that implement the described interface.

7.2 Base Interface

7.2.1 Interface Class IpInterface

All application, framework and service interfaces inherit from the following interface. This API Base Interface does not provide any additional methods.

<<Interface>>

IpInterface

7.3 Service Interfaces

7.3.1 Overview

The Service Interfaces provide the interfaces into the capabilities of the underlying network - such as call control, user interaction, messaging, mobility and connectivity management.

The interfaces that are implemented by the services are denoted as 'Service Interface'. The corresponding interfaces that must be implemented by the application (e.g. for API callbacks) are denoted as 'Application Interface'.

7.4 Generic Service Interface

7.4.1 Interface Class IpService
Inherits from: IpInterface
All service interfaces inherit from the following interface.

<<Interface>>

IpService

setCallback (appInterface : in IpInterfaceRef) : TpResult

setCallbackWithSessionID (appInterface : in IpInterfaceRef, sessionID : in TpSessionID) : TpResult

Method

setCallback()

This method specifies the reference address of the callback interface that a service uses to invoke methods on the application.

Parameters

appInterface : in IpInterfaceRef

Specifies a reference to the application interface, which is used for callbacks
Raises

TpGeneralException

Method

setCallbackWithSessionID()

This method specifies the reference address of the application's callback interface that a service uses for interactions associated with a specific session ID: e.g. a specific call, or call leg.

Parameters

appInterface : in IpInterfaceRef

Specifies a reference to the application interface, which is used for callbacks
sessionID : in TpSessionID

Specifies the session for which the service can invoke the application's callback interface.
Raises

TpGeneralException

8 Messaging SCF Interface Classes

The Messaging SCF is used to notify applications about messages sent in the mobile network. The applications are able to redirect, stop or delete the message as well as affect the charging in the network side. Short Message Service (SMS) is an example of messaging that can be controlled via this API.

8.1 Interface Class IpMessageManager

Inherits from: IpService
This interface is the 'service manager' interface for the Messaging SCF. The message manager interfaces provide the management functions to the Messaging SCF. The application programmer can use this interface to request message notifications.
<<Interface>>

IpMessageManager

createMessagingNotification (appInterface : in IpAppMessageManagerRef, eventCriteria : in TpMessagingEventCriteria, assignmentID : out TpAssignmentIDRef) : TpResult

destroyMessagingNotification (assignmentID : in TpAssignmentID) : TpResult

changeMessagingNotification (assignmentID : in TpAssignmentID, eventCriteria : in TpMessagingEventCriteria) : TpResult

getCriteria (appInterface : in IpAppMessageManagerRef, address : in TpAddress, eventCriteria : out TpMessagingEventCriteriaSetRef) : TpResult

Method

createMessageNotification()

This method is used by applications to request message notifications about messages being sent or received. The eventCriteria parameter defines in detail which events are to be notified and what is the monitor mode for the notification (interrupt or notify).

If some application already requested notifications with criteria that overlap the specified criteria, the request is refused with P_MESSAGING_INVALID_CRITERIA. The criteria are said to overlap if:

· the event names are the same and

· both the destination and originating address ranges with the same number plan overlap and

· the same notification type is used (terminating/originating).

However requests with monitor mode value P_MESSAGING_MONITOR_MODE_NOTIFY may overlap and those will be reported prior to the notifications with the monitor mode interrupt
Parameters

appInterface : in IpAppMessageManagerRef

If this parameter is set (i.e. not NULL) it specifies a reference to the application interface, which is used for callbacks. If set to NULL, the application interface defaults to the interface specified via the setCallback() method.
eventCriteria : in TpMessagingEventCriteria

Specifies the event specific criteria used by the application to define the event requested. Only events that meet these criteria are reported. Example of events is an originating SMS being issued by a subscriber. The criteria includes:

· name of the event

· individual addresses or address ranges for the destination
· individual addresses or address ranges for the origination
· notification type (originating or terminating)
· monitor mode
assignmentID : out TpAssignmentIDRef

Specifies the ID assigned by the message manager interface for this newly-created event notification subscription.
Raises

TpGeneralException
Method

destroyMessagingNotification()

This method is used by the application to withdraw the messaging notification request issued earlier.

Parameters

assignmentID : in TpAssignmentID

Specifies the assignment ID given by the message manager interface when the previous createMessagingNotification() was called. If the assignment ID does not correspond to one of the valid assignment IDs, the framework will return the error code P_INVALID_ASSIGNMENTID.
Raises

TpGeneralException
Method

changeMessagingNotification()

This method is used by the application to change the event criteria introduced with createMessagingNotification. Any stored criteria associated with the specified assignmentID will be replaced with the specified criteria.

Parameters

assignmentID : in TpAssignmentID

Specifies the ID assigned by the message manager interface for the event notification.
eventCriteria : in TpMessagingEventCriteria

Specifies the new set of event specific criteria used by the application to define the event required. Only events that meet these criteria are reported.
Raises

TpGeneralException
Method

getCriteria()

This method is used by the application to query the event criteria which have been set with createMessagingNotification or changeMessagingNotification.

Parameters

appInterface : in IpAppMessageManagerRef

If this parameter is set (i.e. not NULL) it specifies a reference to the application interface. This reference is used to indicate the application whose subscriptions are to be reported.
address : in TpAddress

Specifies the address for which all the related notification criteria are to be listed. If this parameter is left unspecified, all the notification subscriptions are listed. If the notification type equals P_MESSAGE_SENDING, this parameter indicates the originating address or in case that is unspecified iy indicates the destination address. If the notification type equals P_MESSAGE_RECEIVING, this parameter indicates the terminating address in the stored notification criteria.
eventCriteria : out TpMessagingEventCriteriaSetRef

Specifies the currently valid event specific criteria for this application or for all applications if the authorisation functions allow it.
Raises

TpGeneralException
8.2 Interface Class IpAppMessageManager
Inherits from: IpInterface
The message manager application interface provides the application messaging management functions to the Messaging SCF.
<<Interface>>

IpAppMessageManager

messagingAborted (messagingReference : in TpSessionID) : TpResult

messagingEventNotify (messagingReference : in TpMessagingIdentifier, eventInfo : in TpMessagingEventNotifyInfo, assignmentID : in TpAssignmentID, appInterface : out IpAppMessagingRefRef) : TpResult

messagingNotificationInterrupted () : TpResult

messagingNotificationContinued () : TpResult

Method

messagingAborted()

This method indicates to the application that the messaging object has aborted or terminated abnormally. No further communication will be possible between these objects.

Parameters

messagingReference : in TpSessionID

Specifies the sessionID of messaging instance that has aborted or terminated abnormally.
Raises

TpGeneralException
Method

messagingEventNotify()

This method notifies the application of the messaging event. Depending on the monitor mode the application may or may not influence the messaging as a reply to the invocation of this method.

Parameters

messagingReference : in TpMessagingIdentifier

Specifies the reference to the messaging interface to which the notification relates.
eventInfo : in TpMessagingEventNotifyInfo

Specifies data associated with this event:

· name of the event

· destination address
· originating address
· notification type (originating or terminating)
· monitor mode
· date, time and time zone
· service centre address
assignmentID : in TpAssignmentID

Specifies the assignment id which was returned by the createMessagingNotification() method. The application can use assignment id to associate events with event specific criteria and to act accordingly.
appInterface : out IpAppMessagingRefRef

Specifies a reference to the application interface which implements the callback interface.
Raises

TpGeneralException
Method

messagingNotificationInterrupted()

This method indicates to the application that all event notifications have been temporarily interrupted (for example, due to faults detected).

Note that more permanent failures are reported via the Framework (integrity management).

Parameters

There are no parameters identified for this method

Raises

TpGeneralException
Method

messagingNotificationContinued()

This method indicates to the application that event notifications will again be possible.

Parameters

There are no parameters identified for this method.

8.3 Interface Class IpMessaging
Inherits from: IpService
The messaging interface provides the possibility to control messaging in the network. Messages may be stopped, deleted, redirected or let be delivered. Also the charging may be influenced by the applications.
<<Interface>>

IpMessaging

deliverReq (sessionID : in TpSessionID, responseRequested : in TpMessagingReportRequestSet, targetAddress : in TpAddress, originatingAddress : in TpAddress, messageCentreAddress : in TpAddress) : TpResult

stopMessage (sessionID : in TpSessionID, cause : in TpMessagingCause) : TpResult

deleteMessage (sessionID : in TpSessionID, cause : in TpMessagingCause) : TpResult

deassignMessaging (sessionID : in TpSessionID) : TpResult

setMessagingCharge (sessionID : in TpSessionID, messagingCharge : in TpMessagingCharge) : TpResult

Method

deliverReq ()

This asynchronous method requests delivery of the message to the destination party.

Parameters

sessionID : in TpSessionID

Specifies the messaging session ID.
responseRequested : in TpMessagingReportRequestSet

Specifies the set of observed events that will cause deliverRes and deliverErr to be invoked.
targetAddress : in TpAddress

Specifies the destination party to which the message should be sent.
originatingAddress : in TpAddress

Specifies the address of the party that sent the message.

messageCentreAddress : in TpAddress

Specifies the messaging service centre through which the message is wished to be delivered.

Raises

TpGeneralException
Method

stopMessage()

This method requests the message delivery to be stopped, but the message is not deleted if stored already in the network entity. The messaging object in the network side is deleted after the invocation of this method.

Parameters

sessionID : in TpSessionID

Specifies the messaging session ID.
cause : in TpMessagingCause

Specifies the cause of the release.
Raises

TpGeneralException
Method

deleteMessage()

This method requests the message to be deleted if possible. If deletion can not be carried out, the message is stopped as with stopMessage method. The messaging object in the network side is deleted after the invocation of this method.

Parameters

sessionID : in TpSessionID

Specifies the messaging session ID.
cause : in TpMessagingCause

Specifies the cause of the release.
Raises

TpGeneralException
Method

deassignMessaging()

This method requests that the relationship between the application and the messaging object be de-assigned. It does not affect the messaging in any way. The actions that have been taken earlier will not be cancelled.

Parameters

sessionID : in TpSessionID

Specifies the messaging session ID.
Raises

TpGeneralException
Method

setMessagingCharge ()

This method is used to specify the charge for the message delivery. This information is applied in the network operator's accounting systems.

Parameters

sessionID : in TpSessionID

Specifies the messaging session ID.
messagingCharge : in TpMessagingCharge

Specifies the charge to apply for the message. The contents are:

· basic one time charge for the message
· charge defined by the size of the message
· operator specific reference to define the charge indirectly
· currency unit
· descriptive, opaque text string
Raises

TpGeneralException
8.4 Interface Class IpAppMessaging
Inherits from: IpOSA
The messaging application interface is implemented by the client application developer and is used to handle messaging request responses and state reports.
<<Interface>>

IpAppMessaging

deliverRes(sessionID : in TpSessionID, eventReport : in TpMessagingReport) : TpResult

deliverErr (sessionID : in TpSessionID, errorIndication : in TpMessagingError) : TpResult

messagingFaultDetected (sessionID : in TpSessionID, errorIndication : in TpMessagingFault) : TpResult

Method

deliverRes()

This asynchronous method reports the successful messaging event that has taken place as requested by deliverReq. The event may be either indicating a successful sending of the message, successful delivery to the destination or message left pending for later delivery. When originating messages are concerned, it may be possible (depending on the implementation) to indicate only the successful sending of the message to the messaging centre, but not the further delivery to the destination. When terminating messages are being monitored, only the successful delivery or pending status is indicated with this method. Indication of pending messages depends on the implementation.

Parameters

sessionID : in TpSessionID

Specifies the messaging session ID.
eventReport : in TpMessagingReport

Specifies the result of the request to deliver the message to the destination party. The data contains the event name, date and time of the event as well as the monitor mode for the event.
Raises

TpGeneralException
Method

deliverErr()

This method indicates that the request to send the message to the destination party was unsuccessful. This may be caused e.g. by an error in the connection to the messaging centre. If this event was not requested by deliverReq with the monitor mode value interrupt, the interface objects are released after the invocation of this method.

Parameters

sessionID : in TpSessionID

Specifies the messaging session ID.
errorIndication : in TpMessagingError

Specifies the error which led to the original request failing.
Raises

TpGeneralException
Method

messagingFaultDetected()

This method indicates that an error has happened in the message handling. messagingFaultDetected is applied when deliverErr is not yet possible or when the failure is such that it is not possible to continue the message handling any more. This method is invoked also if the application does not answer (monitor mode "interrupt") to deliverRes or deliverErr within the operator specific time limit. The interface objects are released after the invocation of this method.

Parameters

sessionID : in TpSessionID

Specifies the messaging session ID.
errorIndication : in TpMessagingFault

Specifies the error which led to the original request failing.
Raises

TpGeneralException
9 Messaging SCF State Transition Diagrams

In the figure below the state transition diagram of the messaging interface IpMessaging shows the network side view towards the application.

[image: image3.emf]Message

Received

Sending

Message

Message

Sent

Delivering

Message

Message

Delivered

Messaging

Failed

deassignMessaging

setMessagingCharge

setMessagingCharge

deliverReq

[terminating]

deliverReq

[originating]

 ^messagingFaultDetected

deassignMessaging

deliverReq

stopMessage

deleteMessage

IpAppMessageManager.messagingEventNotify(

P_EVENT_MESSAGE_RECEIVED)

IpAppMessageManager.messagingEventNotify(

P_EVENT_MESSAGE_SENDING_FAILED)

IpAppMessageManager.messagingEventNoti

fy(P_EVENT_MESSAGE_DELIVERED)

IpAppMessageManager.messagingEventNo

tify(P_EVENT_MESSAGE_SENT)

setMessagingCharge

setMessagingChargedeliverReq

deassignMessaging

deassignMessaging

"message sent" ^deliverRes

[monitor mode =

interrupt]

^deliverErr

^deliverErr

"message pending" ^deliverRes

deliverReq[no monitoring]

[monitor mode =

interrupt]

^deliverErr

"message delivered" ^deliverRes

 ^deliverErr

 ^messagingFaultDetected

 ^messagingFaultDetected

 ^messagingFaultDetected

 ^messagingFaultDetected

 ^messagingFaultDetected

Figure 3. Messaging STD

It is noted that rerouting of e.g. a message that failed to be delivered is not possible, but it is possible to change the destination address in the earlier phase of the message processing.

10 Messaging Data Definitions

This document provides the messaging data definitions necessary to support the API specification.

This document is written using Hypertext link, to aid navigation through the data structures. Underlined text represents Hypertext links.

The general format of a data definition specification is described below.

· Data Type

This shows the name of the data type.

· Description

This describes the data type.

· Tabular Specification

This specifies the data types and values of the data type.

· Example

If relevant, an example is shown to illustrate the data type.

TpMessagingEventName

Defines the names of event being notified. The following events are supported. The values may be combined by a logical 'OR' function when requesting the notifications.

Name
Value
Description

P_EVENT_NAME_UNDEFINED
0
Undefined

P_EVENT_MESSAGE_RECEIVED
1
A message was received. This means in the case of message sending that a message has been sent by the subsciber, but not passed on yet. In the message receiving side the message is being delivered to the subscriber, but may still be blocked or rerouted if desired.

P_EVENT_MESSAGE_SENDING_FAILED
2
Message sending failed.

P_EVENT_MESSAGE_SENT
4
Message was successfully sent to the messaging system.

P_EVENT_MESSAGE_PENDING
8
Message could not yet be delivered e.g. if the destination party was unreachable. This event is used only in deliverReq and deliverRes.

P_EVENT_MESSAGE_DELIVERED
16
Message was successfully delivered to the destination. It is not always possible to report this event for originating messages.

TpMessagingNotificationType

Defines the type of notification. Indicates whether it is related to the sending or receiving of the message.

Name
Value
Description

P_MESSAGE_SENDING
1
Indicates that the notification is related to sending of the message.

P_MESSAGE_RECEIVING
2
Indicates that the notification is related to reception of the message.

TpMessagingMonitorMode

Defines the mode that the messaging will monitor for events, or the mode that the messaging is in following a detected event.

Name
Value
Description

P_MESSAGING_MONITOR_MODE_INTERRUPT
0
The messaging event is detected and the application is notified of the event. The message processing is suspended until the application lets it to resume e.g. by invoking deliverReq.

P_MESSAGING_MONITOR_MODE_NOTIFY
1
The messaging event is detected and the application is notified of the event, but no response is waited from the application.

P_MESSAGING_MONITOR_MODE_DO_NOT_MONITOR
2
Do not monitor for the event

TpResultInfo

Defines further information relating to the result of the method, such as error codes. Only the messaging related errors are presented here.

Name
Value
Description

.....
...
......

.....
...
......

P_MESSAGING_SERVICE_INFO_MISSING
0600h
Information relating to the Messaging SCF could not be found

P_MESSAGING_SERVICE_FAULT_ENCOUNTERED
0601h
Fault detected in the Messaging SCF

P_MESSAGING_UNEXPECTED_SEQUENCE
0602h
Unexpected sequence of methods, i.e., the sequence does not match the specified state diagrams for the messaging.

P_MESSAGING_INVALID_ADDDRESS
0603h
Invalid address specified

P_MESSAGING_INVALID_STATE
0604h
Invalid state specified

P_MESSAGING_INVALID_CRITERIA
0605h
Invalid criteria specified

P_MESSAGING_INVALID_NETWORK_STATE
0606h
Although the sequence of method calls is allowed by the OSA gateway, the underlying protocol can not support it.

TpMessagingError

Defines the Tagged Choice of Data Elements that specify additional Messaging error and Messaging error specific information.

Tag Element Type

TpMessagingErrorType

Tag Element Value
Choice Element Type
Choice Element Name

P_MESSAGING_ERROR_UNDEFINED
NULL
Undefined

P_MESSAGING_ERROR_INVALID_ADDRESS
TpAddressError
InvalidAddress

P_MESSAGING_ERROR_INVALID_STATE
NULL
Undefined

P_MESSAGING_ERROR_INVALID_ORIGINATION
NULL
Undefined

P_MESSAGING_ERROR_CONNECTION_FAULT
NULL
Undefined

P_MESSAGING_ERROR_REMOTE
NULL
Undefined

P_MESSAGING_ERROR_MESSAGE_REJECTED
NULL
Undefined

TpMessagingErrorType

Defines a specific Messaging error.

Name
Value
Description

P_MESSAGING_ERROR_UNDEFINED
0
Undefined; the method failed or was refused, but no specific reason can be given.

P_MESSAGING_ERROR_INVALID_ADDRESS
1
The operation failed because the destination address was found invalid.

P_MESSAGING_ERROR_INVALID_STATE
2
The messaging was not in a valid state for the requested operation

P_MESSAGING_ERROR_INVALID_ORIGINATION
4
The modified originating address caused a failure.

P_MESSAGING_ERROR_CONNECTION_FAULT
8
A failure noticed when trying to pass the message to another network element.

P_MESSAGING_ERROR_REMOTE
16
An error occurred in the external network element or terminal.

P_MESSAGING_ERROR_MESSAGE_REJECTED
32
Message delivery was rejected for an unspecified reason e.g. by another service.

TpMessagingFault

Defines the cause of the messaging fault detected.

Name
Value
Description

P_MESSAGING_FAULT_UNDEFINED
0
Undefined

P_MESSAGING_TIMEOUT_ON_INTERRUPT
1
This fault occurs when the application did not give any instruction how to handle the message within a specified time, after the network side reported an event that was requested by the application in interrupt mode.

The timer value is operator specific.

P_MESSAGING_FAULT_INTERNAL
2
An internal system error caused the messaging to fail.

P_MESSAGING_FAULT_EXTERNAL
4
An error in the external system caused the messaging to fail.

TpMessagingCause

Defines the cause of the messaging fault detected.

Name
Value
Description

P_MESSAGING_CAUSE_UNDEFINED
0
Undefined

P_MESSAGING_CAUSE_SENDING_BARRED
1
The application bars the message for some reason.

P_MESSAGING_CAUSE_DELETE_UNSPECIFIED
2
The application wishes that the message would not be stored.

P_MESSAGING_CAUSE_ACCESS_DENIED
4
The receiving side restricts the message delivery.

P_MESSAGING_CAUSE_OVERLOAD
8
The message is not delivered because of overload.

TpMessagingAppInfo

Defines the Tagged Choice of Data Elements that specify the additional messaging information to be delivered to applications.

Tag Element Type

TpMessagingAppInfoType

Tag Element Value
Choice Element Type
Choice Element Name

P_MESSAGING_APP_TIME_AND_TIME_ZONE
TpString
TimeAndTimeZone

P_MESSAGING_APP_SERVICE_CENTRE
TpAddress
ServiceCentre

timeAndTimeZone is coded in the same way as in CAMEL. See 3G TS 29.078.

TpMessagingAppInfoType
Defines the type of additional messaging information.

Name
Value
Description

P_MESSAGING_APP_UNDEFINED
0
Undefined

P_MESSAGING_APP_TIME_AND_TIME_ZONE
1
Indicates the time and time zone information

P_MESSAGING_APP_SERVICE_CENTRE
2
Indicates the service centre address

TpMessagingAppInfoSet

Defines a Numbered Set of Data Elements of TpMessagingAppInfo type.

TpMessagingEventCriteria

Defines the Sequence of Data Elements that specify the criteria for an event notification.

Of the addresses only the Plan and the AddrString are used for the purpose of matching the notifications against the criteria.

Sequence Element Name
Sequence Element Type
Description

DestinationAddress
TpAddressRange
Defines the destination address or address range for which the notification is requested.

OriginatingAddress
TpAddressRange
Defines the originating address or an address range for which the notification is requested.

EventName
TpMessagingEventName
Name of the event(s)

NotificationType
TpMessagingNotificationType
Indicates whether the notification is related to the sending or receiving of the message.

MonitorMode
TpMessagingMonitorMode
Defines whether the message handling is suspended until a response is received from the application. Monitor mode P_MESSAGING_MONITOR_MODE_DO_NOT_MONITOR is not a legal value in createMessagingNotification.

TpMessagingEventNotifyInfo

Defines the Sequence of Data Elements that specify the information returned to the application in messagingEventNotify.

Sequence Element Name
Sequence Element Type

DestinationAddress
TpAddress

OriginatingAddress
TpAddress

EventName
TpMessagingEventName

NotificationType
TpMessagingNotificationType

MonitorMode
TpMessagingMonitorMode

AppInfo
TpMessagingAppInfoSet

TpMessagingReportRequest

Defines the Sequence of Data Elements that specify the criteria relating to messaging report requests.

Sequence Element Name
Sequence Element Type

EventName
TpMessagingEventName

MonitorMode
TpMessagingMonitorMode

TpMessagingReportRequestSet

Defines a Numbered Set of Data Elements of TpMessagingReportRequest type.

TpMessagingReport

Defines the Sequence of Data Elements that specify the information returned to the application in deliverRes.

Sequence Element Name
Sequence Element Type
Description

EventName
TpMessagingEventName
The messaging event name.

EventTime
TpDateAndTime
The date and time when the event happened.

MonitorMode
TpMessagingMonitorMode
Indicates the monitoring mode.

TpMessagingCharge

Defines the Sequence of Data Elements that specify the charge for the message delivery.

Sequence Element Name
Sequence Element Type
Description

BasicCharge
TpInt32
Basic one time charge for the message.The amount is expressed in currency units * 0.0001.

ChargePerVolume
TpInt32
The charge defined by the size of the message e.g. per kbyte. The actual use is operator specific. The amount is expressed in currency units * 0.0001.

ChargeReference
TpString
An operator specific reference to define the charge indirectly by a reference to the network operator charge plans or by defining e.g. a discount percentage.

Currency
TpString

Currency unit according to ISO-4217:1995. See the list below.

AdditionalInfo
TpString
Descriptive string which is stored into the data records without prior evaluation. These data are applied by the accounting systems.

Valid Currencies are:

ADP, AED, AFA, ALL, AMD, ANG, AON, AOR, ARS, ATS, AUD, AWG, AZM, BAM,

BBD, BDT, BEF, BGL, BGN, BHD, BIF, BMD, BND, BOB, BOV, BRL, BSD, BTN,

BWP, BYB, BZD, CAD, CDF, CHF, CLF, CLP, CNY, COP, CRC, CUP, CVE, CYP,

CZK, DEM, DJF, DKK, DOP, DZD, ECS, ECV, EEK, EGP, ERN, ESP, ETB, EUR,

FIM, FJD, FKP, FRF, GBP, GEL, GHC, GIP, GMD, GNF, GRD, GTQ, GWP, GYD,

HKD, HNL, HRK, HTG, HUF, IDR, IEP, ILS, INR, IQD, IRR, ISK, ITL, JMD,

JOD, JPY, KES, KGS, KHR, KMF, KPW, KRW, KWD, KYD, KZT, LAK, LBP, LKR,

LRD, LSL, LTL, LUF, LVL, LYD, MAD, MDL, MGF, MKD, MMK, MNT, MOP, MRO,

MTL, MUR, MVR, MWK, MXN, MXV, MYR, MZM, NAD, NGN, NIO, NLG, NOK, NPR,

NZD, OMR, PAB, PEN, PGK, PHP, PKR, PLN, PTE, PYG, QAR, ROL, RUB, RUR,

RWF, SAR, SBD, SCR, SDD, SEK, SGD, SHP, SIT, SKK, SLL, SOS, SRG, STD,

SVC, SYP, SZL, THB, TJR, TMM, TND, TOP, TPE, TRL, TTD, TWD, TZS, UAH,

UGX, USD, USN, USS, UYU, UZS, VEB, VND, VUV, WST, XAF, XAG, XAU, XBA,

XBB, XBC, XBD, XCD, XDR, XFO, XFU, XOF, XPD, XPF, XPT, XTS, XXX, YER,

YUM, ZAL, ZAR, ZMK, ZRN, ZWD.

XXX is used for transactions where no currency is involved.

TpMessagingIdentifier

Defines the Sequence of Data Elements that unambiguously specify the Messaging object

Sequence Element Name
Sequence Element Type
Sequence Element Description

MessagingReference
IpMessagingRef
This element specifies the interface reference for the Messaging object.

MessagingID
TpSessionID
This element specifies the messaging ID.

IpMessaging

Defines the address of an IpMessaging Interface.

IpMessagingRef

Defines a Reference to type IpMessaging

IpAppMessaging

Defines the address of an IpAppMessaging Interface.

IpAppMessagingRef

Defines a Reference to type IpAppMessaging

IpAppMessagingRefRef

Defines a Reference to type IpAppMessagingRef.

TpMessagingIdentifierRef

Defines a Reference to type TpMessagingIdentifier.

IpAppMessageManager

Defines the address of an IpAppMessageManager Interface.

IpAppMessageManagerRef

Defines a Reference to type IpAppMessageManager.

IpMessageManager

Defines the address of an IpMessageManager Interface.

IpMessageManagerRef

Defines a Reference to type IpMessageManager.

[image: image4.emf]IpAppMessagin

g

IpMessageMan

ager

IpMessagingIpAppMessage

Manager

1: createMessagingNotification()

3: messagingEventNotify()

4: new()

2: new()

5: setMessagingCharge()

6: deliverReq()

7: deliverRes()

8:deassignMessaging()

_1042563660.doc

DOCUMENTTYPE

1 (1)

TypeUnitOrDepartmentHere

TypeYourNameHere

TypeDateHere

IpOSA

<<Interface>>

IpService

setCallback()

setCallbackWithSessionID()

<<Interface>>

IpAppMessageManager

messagingAborted()

messagingEventNotify()

messagingNotificationInterrupted()

messagingNotificationContinued()

<<Interface>>

IpMessageManager

createMessagingNotification()

destroyMessagingNotificationl()

changeMessagingNotification()

getCriteria()

<<Interface>>

1

1

1

1

<<use>>

IpAppMessaging

deliverRes()

deliverErr()

<<Interface>>

messagingFaultDetected()

IpOSA

<<Interface>>

IpMessaging

deliverReq()

stopMessage()

deleteMessage()

<<Interface>>

1

1

1

1

<<use>>

setMessagingCharge()

deassignMessaging()

_935227290.doc

