3GPP TSG_CN WG 5 / ETSI SPAN 3

Tdoc

Vienna, Austria

17th –19th October 2000.

Source:
BT
richard.stretch@bt.com
Title:
Issues list for Parlay 2.1
Agenda item:

Document for:
Discussion

Issues list for Parlay 2.1.

All the issues below will be considered and where possible solutions will be agreed. These solutions will be fed back into the Specification. As a basis, the joint group will use the Parlay 2.1 specification to work from. The result will be a Parlay 2.2 Call Control and where appropriate Parlay 2.2 Mobility and User Interaction (both Generic and Call). This updated text will replace the existing text in ETSI draft Standard ES120070.

	No.
	Issue
	Company
	Date
	Cont. No
	Comments

	1
	Within the Generic Call State Transition Diagram (STD), it is not possible to reflect collected information and analyse info as in the IN BCSM.

- getMoreDialledDigits method in STD, this covers the scenario of one additional cycle of digit collection.
(in R00, since in CAMEL (R99) this method does not exist)

- use UI in order to have a multiple user input scenario (e.g. authentication before access)
	ETSI/3GPP
	4/10/00
	N/A
	Further study required from fixed network side where the overlap sending and receiving should be supported.

	2
	Below the incoming state of the Call Leg STD we should have a self transition, eventReportResult reflecting the analysed/collected information situation. A similar transition in GenericCall STD should be added for the getMoreDialledDigits result.
	ETSI/3GPP
	4/10/00
	N/A
	

	3
	In the text supporting the CallLeg STD there is an explanation of the Connected state. The second paragraph should read; ‘In case the request for the connection was made by routeReq() on the call object, the call party is also attached to the call’. The third paragraph, ‘In case the request was made by the route() on the call leg, the call party still needs to be attached to the call’.
	ETSI/3GPP
	4/10/00
	N/A
	Make sure that this is captured in restructured text in October. Keep record on it, await on procedural agreement with Parlay/3GPP/SPAN3.

	4
	MultipartyCallLeg STD. getCallLegs operation needs to be reflected in all states.
	ETSI/3GPP
	4/10/00
	N/A
	

	5
	MultipartyCall STD. In the Active state ‘1 party in call’, there should be a transition shown back to ‘routing to destination’, this will cater for the first party releasing from the call whilst other parties are in the routing to destination sub-state. This transition should also cater for the case where the application releases a leg. Text should be added to the explanation of the’1 party in call’ sub-state, saying that if you are in this state and there are no outstanding routeRequests and the application subsequently releases this leg, then the call transits to the Application Released call state.
	ETSI/3GPP
	4/10/00
	N/A
	

	6
	In the CallLeg STD. An extra arrow should be added from the Incoming state to the Connected Sub-state ‘Attached’, labelled attachMedia.
	ETSI/3GPP
	4/10/00
	N/A
	

	7
	It is suggested that all State Transitions Diagrams covering all call processing class diagrams are provided
	ETSI/3GPP
	4/10/00
	N/A
	

	8
	In the interface class “Call”, method “getMoreDialledDigitsReq()” Page 29 of 79, the case phrased as “Depending on the administered data, the network may indicate a new call to the gateway if a caller goes off-hook or dialled only a few digits” is unclear. It can even be asked whether this type of behaviour from the part of the network is appropriate.
	ETSI/3GPP
	4/10/00
	N/A
	

	9
	In the interface class “AppCall”, the method “routeRes()” reports on the status of the call after that call has already progressed quite far in the call establishment. This means that the application has no opportunity to take some actions at e.g. the point where the call comes in “alerting” phase.
	ETSI/3GPP
	4/10/00
	N/A
	

	10
	In the interface class “CallLeg”, method “route()” it seems to be a convention to suffix the asynchronous methods with Req/Res/Err. Why is this convention not followed for the method “route()”, which is clearly asynchronous?
	ETSI/3GPP
	4/10/00
	N/A
	

	11
	In the interface class “CallLeg”, method “getLastRedirectedAddress()” there is a naming inconsistency between the method name and the parameter name. The method mentions redirectedAddress, whereas the parameter mentions redirectingAddress. Is the “lastRedirectedAddress” equal to the “connectedAddress” ?

	ETSI/3GPP
	4/10/00
	N/A
	

	12
	In the Interface class “UIManager”, method “createUICall()” a reference is made to an “implementation”. Does this refer to an existing implementation? In our opinion, the Parlay specifications should not refer to any implementation.

	ETSI/3GPP
	4/10/00
	N/A
	

	13
	In the interface class “AppUI”, method “sendInfoRes()” for the explanatory text, the method “sendInfoCall_Req()” is mentioned (twice). This should be replaced by “sendInfoReq()”.
	ETSI/3GPP
	4/10/00
	N/A
	

	14
	It was proposed that for each application service logic instance different call state models and associated call leg state models are instantiated.
	ETSI/3GPP

	4/10/00
	N/A
	

	15
	For the multiple point of control it is proposed d that the supporting capability server for call control will implement the paradigm for resolving the conflicts between the various service application instances acting on the respective Parlay call state views (instantiated in the gateway). This will be documented e.g. for INAP in the mapping document TR 03075.
	ETSI/3GPP
	4/10/00
	N/A
	

	16
	The mapping of the various BCSM DP transitions to the Parlay Call state models have to be contributed to.
	ETSI/3GPP
	4/10/00
	N/A
	

	17
	The release() methods should be addressed to the interface responsible for creating the respective object, for it is natural to expect this object to release the child object it created that expect the child object to release itself, that is:

· IpCall::release() should be IpCallControlManager::releaseCall()

· IpCallLeg::release() should be IpMultiPartyCall::releaseCallLeg()

· IPUI::release() should be IpMultiPartyCall::releaseCallLeg()
	SS8
	4/10/00
	N/A
	

	18
	A new event on TpCallEventName to allow an application to be invoked when a call is about to be terminated without it having to monitor the call from the very beginning. This event should be symetrical of P_EVENTGCCS_OFFHOOK_EVENT on the terminating side of the call. Suggestion: P_EVENT_GCCS_TERMINATION_ATTEMPT
	SS8
	4/10/00
	N/A
	

	19
	Move the parameters of IpMultiPartyCall::createCallLeg() to the IpCallLeg::route() (similarly to IpCallControlManager::createCall() and IpCall::routeReq()) along with make the IpCallLeg::route() asynchronous (i.e. IpCallLeg::routeReq()) This would allow for applications to modify the destination of the call leg without having to create a new call leg (as in IpCall::routeReq()). Create also correspondant callback notifications: IpAppCallLeg::routeRes() and ::routeErr()

Modified APIs are:

IpMultiPartyCall::createCallLeg(

 callSessionID TpSessionID,

 appCallLeg: in IpAppCallLegRef,

 callLeg: out TpCallLegIdentifierRef

): TpResult

IpCallLeg::routeReq

 CallLegSessionID : in TpSessionID,

 ResponseRequested: in TpCallReportRequestSet,

 TargetAddress: in TpAddress

 OriginatingAddress :in TpAddress

 OriginalCalledAddress: in TpAddress

 RedirectingAddress: in TpAddress

 AppInfo: in TpCallAppInfoSet

): TpResult

IpAppCallLeg::routeRes

 CallLegSessionID: in TpSessionID

 EventReport: inTpCallReport

): TpResult

IPAppCallLeg::routeErr(

 CallLegSessionID: in TpSessionID,

 EventReport: in TpCallReport

) : TpResult
	SS8
	4/10/00
	N/A
	

	20
	TpSessionID

This defines a network unique sessionID. Parlay uses this Id to identify sessions, e.g. call or call leg sessions, within an object implementing an interface capable of handling multiple sessions. For the different parlay services, the session Ids are unique only in the context of a service manager instantiation (e.g. within the context of one generic call control manager). As such if an application creates two instances of the same service manager it shall use different instantiations of the call back objects which implement the call back interfaces.

IpcallLeg and IpAppCallLeg methods should also have a call session ID (of type TpSessionID) besides the callLegSessionID to allow for both applications and parlay call control service that are willing to use the CallSessionIDs and CallLegSessionIDs to index calls and call legs from within the object. Also, setCallbackWithSessionID (IparlayInterface *pAppInterface, TpSessionID sessionID) should have sessionID for both the call and call leg.
	SS8
	4/10/00
	N/A
	

	21
	IpUiManager::createUICall() should be an asynchronous method as it is not fair to assume that a media server resource can be allocated and connected to a call or call-leg in a single shot (it may take a few messages back and forth with the end points to accomplish this method.)

New APIs:

IpUiCall::connectReq

IpAppUICall::connectRes()/connectErr()
	SS8
	4/10/00
	N/A
	

	22
	There must be a way for the applications to specify a value of time to be associated with the event P_EVENT_GCCS_NO_ANSWER_FROM_CALL_PARTY in TpCallEventCriteria just like there is one in TpAdditionalReportCriteria) for the event P_CALL_REPORT_NO_ANSWER.
	SS8
	4/10/00
	N/A
	

	23
	Document

Generic Call Control Service Interfaces

Interface

IpCallControlManager

Method

disableCallNotification

Can notifications be re-enabled or is the assignmentID to be deleted?
	Lucent
	5/10/00
	Ref 12 Lucent
	<jsr> Deleted, I believe. Check with CC wg.

	24
	Document

Generic Call Control Service Interfaces

Interface

IpCall

Method

RouteReq

When a 3rd party call setup is performed, what should
	Lucent
	5/10/00
	Ref 33

Lucent
	

	25
	Document

Generic Call Control Service Data Definitions

The meaning of call event criteria seems unclear. Unsure how CallNotificationType and Dest/Org Addresses work together.
	Lucent
	5/10/00
	Ref 52

Lucent
	

	26
	Document

Generic Call Control Service Data Definitions

The purpose of P_CALL_MONITOR_MODE_DO_NOT_MONITOR is unclear.
	Lucent
	5/10/00
	Ref 53

Lucent

	

	27
	Document

GCCS Interfaces

Interface

IpCallControlManager

Method

GetCriteria

I believe method should have an assignmentID as an in parameter
	Lucent
	5/10/00
	Ref 54

Lucent
	

	28
	Document

GCCS Interfaces

Interface

IpCallLeg

Method

EventReportReq

Are event reports requested by eventReportReq independent of event notifications enabled via the Call Control Manager?
	Lucent
	5/10/00
	Ref 57

Lucent
	

	29
	Document

GCCS Interfaces

Interface

IpCallLeg

Method

Release

Mention is made of the controlling leg of a call. This concept doesn’t seem to be well developed in the spec. For example, there is no way for an application to determine which it is. Also, which leg is the controlling leg in a 3rd party call setup call?

	Lucent
	5/10/00
	Ref 58

Lucent
	

	30
	Document

GCCS Interfaces

Interface

IpCallLeg

Method

GetInfoReq

Is getInfoReq valid at all points in the lifetime of the call leg or must it be invoked before the call leg is routed?
	Lucent
	5/10/00
	Ref 59

Lucent
	

	31
	Document

GCCS Interfaces

Interface

IpCallControlManager

Method

EnableEventNotification

If the TpCallMonitorMode indicates notify I assume that the call reference sent in eventNotify should be null.
	Lucent
	5/10/00
	Ref 61

Lucent
	

	32
	Document

GCCS Interfaces

Interface

IpCallControlManager

Method

EnableEventNotification

Should Parlay check the existance of the address? If so then a way of indicating an invalid address would be needed.
	Lucent
	5/10/00
	Ref 62

Lucent
	

	33
	Deleted

	AePONA
	6/10/00
	
	

	34
	Call Processing – Sequence Diagrams

Section 3.1.3 Page 13

IpCall has no reference to IpAppCall to send the routeRes message – RouteReq does not include the interface reference

	AePONA
	6/10/00
	
	Erik Van Der Velden : Ref provided at createCall or at CEN.

AePONA update: Considering CEN message sequence: This suggests that the IpCallControlManager knows about the IpAppCall interface and not the IpCall interface. createCall is O.K

	35
	Deleted
	AePONA
	6/10/00
	
	

	36
	Deleted
	AePONA
	6/10/00
	
	

	37
	Deleted
	AePONA
	6/10/00
	
	

	38
	Deleted
	AePONA
	6/10/00
	
	

	39
	Deleted
	AePONA
	6/10/00
	
	

	40
	Deleted
	AePONA
	6/10/00
	
	

	41
	Generic Call Control – Service Interfaces

Section 6.1 Page 18

EnableCallNotification

Overlapping criteria request is refused. Does this mean that if an application wishes to update the EventNames with additional events that this will fail?

	AePONA
	6/10/00
	
	Erik Van Der Velden Use changeCallNotification.

AePONA update: Does this also mean that the criteria for applications cannot overlap per service instance, per service (if several parallel instances exist), per service type or for all services?

Can a network event result in possibly multiple parallel application invocations, and if so what protocol is used to control the continued execution of the call control logic?

	42
	Deleted
	AePONA
	6/10/00
	
	

	43
	Deleted
	AePONA
	6/10/00
	
	

	44
	Generic Call Control Query

Although the GCCS supports methods such

as setCallChargePlan which correlate to the INAP ASEs ApplyCharging / FurnishChargingInformation, the data types defined in the Parlay Spec do not correlate simply with the INAP information elements.

In particular there is no scope

to associate a charge plan with a call leg (originating/terminating).

We think that such 'Call' related charging information can be used to indicate the charged party within that call, and we don't want to add this functionality to the Call Leg model.
	AePONA
	6/10/00
	
	Erik Van Der Velden : Parlay 3.0

AePONA update: Can we agree to add this to the Parlay 3 issues list. If so this can also be deleted.

	45
	1. IpUICall: recordMessageReq()/recordMessageResp()

At the moment there is no way for the client to overwrite recorded

message nor to delete it.

This feature would be needed e.g. to change a user specific announcement

or to delete a voicemail.

Overwriting is impossible since the client has no influence on the

message ID when recording.

I see two possible solutions:

a) Move the MessageID parameter from recordMessageRes() to

recordMessageReq() so that the client is able to specify the ID instead

of receiving it from the Gateway. This would at least allow to overwrite

an existing message. The client only deals with logical message IDs

(e.g. in a range 1..1000) which are mapped by the gateway to the address

range of the respective message store.

b) Add a delete method method like:

deleteMessageReq (userInteractionSessionID: in TpSessionID, messageID:

in

TpInt32, assignmentID : out TpAssignmentIDRef): TpResult

deleteMessageResp (userInteractionSessionID: in TpSessionID,

assignmentID : in TpAssignmentID): TpResult

This way there was a clean, 'symmetrical' record - delete solution. Of

course, both proposals could also be combined. Both changes would

slightly affect OSA/R99: even though recording is not part of the

specification we had to align the IDL for compatibility reasons.

	Siemens
	20/10/00
	N/A
	

	46
	. IpUserLocation/IpTriggeredUserLocation

IpTriggeredUserLocation is an extension of IpUserLocation. It allows for

receiving user location reports which are triggered by location changes

and adds two methods to start and stop the reporting. In order to be

consistent with IpUserLocationCamel I suggest to include those two

methods already in IpUserLocation and delete IpTriggeredUserLocation. Of

course, the same applies to the respective

IpApp... interfaces.

	Siemens
	20/10/00
	N/A
	

	47
	
	
	
	
	

	48
	
	
	
	
	

	49
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

