3GPP TSG_CN WG5#8

Tdoc N5-000xxx

Scottsdale, Arizona, USA

18th – 20th December, 2000

Source:
Siemens AG

Title:
Comments on Lucent’s Discussion Paper for OSA Charging API 

Agenda item:
 

Document for:
DISCUSSION
Introduction

Lucent presented a discussion paper for OSA Charging API targeted for Release 4 to the CN5 meeting. The paper gives a good idea of how OSA charging could possibly work, and is worked out in high quality and detail. We would like to present some comments on this paper.

There are four major issues we would like to address, which are discussed in more detail in the following sections.

· The proposal mixes things which we consider independent from each other. One thing is to inform an OSA application about charging events generated by the network while the network is serving a user. The other thing is to inform the network about charging events generated outside the network by an OSA application, while this application is serving a user. A third thing is to provide access to a subscriber’s account balance. The OSA applications using either functionality will typically be different, so we propose to group the operations into different APIs (or at least different objects).

· The functionality provided by the updateBalanceReq operation seems insufficient for certain applications. The paper presented does not allow to reserve money before serving a user. So, the service provider may end up with not getting any revenue for serving the user. Further, it does not allow to specify the account to which the charged amount is to be credited (double entry booking).

· The functionality provided by the chargingEventNotify operation and its relatives could be enhanced. Currently, event notifications may be requested only for charging and recharging events on a given account. An (OSA client) application that allows to monitor a subscriber’s account may also wish to monitor thresholds. We propose to define additional event types but possibly mark them optional. So, it is left to the implementor to really implement the additional event types or not.

· The operations affect a subscriber’s privacy. Access to any of the operation should be restricted. Implementation guidelines should be given to specify which operations shall accessible to whom.

Separate Account Management from Charging

Lucent’s current proposal mixes three groups of functionality: First, an OSA client application may wish to be notified of events generated by the network. This is currently supported by the enableChargingNotification, disableChargingNotification and chargingEventNotify operations. Second, an OSA client may wish to apply its own charge to a subscriber’s account or to credit money to a subscriber’s account. This is currently supported by the updateBalanceReq/ updateBalanceRes/ updateBalanceErr operations. Third, an OSA client may wish to access the current account balance (as with the queryBalanceReq/ queryBalanceRes methods).

We propose to split the proposed API into two: an Account Management API that comprises the first and the third group of functionality, and a Charging API that covers only charging.

Account Management

The Account Managment API would address OSA client applications that allow subscribers to keep track of their account balance. These OSA applications may directly ask for the account balance, but also may require notification in case the account balance changes. These applications typically act on behalf of a subscriber (the account owner). They will typically not be authorized to apply any changes to the account.

The Account Managment API would comprise the following operations:

Account Managment

enableChargingNotification

disableChargingNotification

chargingEventNotify

queryBalanceReq

queryBalanceRes

queryBalanceErr

This API partly covers the following requirements from stage 1, given under the term general operations:

· Query the current account balance and current reservations

· Monitor account access (send notifications if charges or recharges are applied to a subscriber’s account)

Charging

The Charging API, as proposed here, would exclusively allow to modify accounts. It addresses OSA client applications that provide some service to the user, such high-value content, access to WAP applications (that is, a WAP gateway), or to Web applications (that is, a portal). These OSA client applications may wish to employ OSA to charge subscribers for service usage. The OSA client applications typically act on behalf of a service provider, which may be identical to the network operator. Under certain conditions, the service provider is authorized to charge a subscriber. He may also be authorized to pass money to a subscriber’s credit. He should not generally be allowed to query a subscriber’s current account balance, since this affects the subscriber’s privacy.

These considerations suggest to put the following operations into the Charging API:

Charging

updateBalanceReq

updateBalanceRes

updateBalanceErr

This API covers the following requirements from stage 1, given under the term service usage:

· Enable the operator to add charges to a subscriber’s account for any service.

· Enable the operator to provide charging/billing as a service to 3rd parties.

· Enable the operator to provide charge reversal capabilities to 3rd parties.

Enhance Charging Mechanism

Lucent has proposed the updateBalanceReq/ updateBalanceRes methods to charge subscribers for service usage immediately. This method is well suited as long as the amount to be charged is small. This applies in particular to continuous services like streaming multimedia or WAP sessions. For services like “local weather forecast” or “fancy ringing tones”, the method lacks a reservation mechanism that allows first to reserve the amount the service will cost, then provide the service, and after successful service delivery charge the subscriber.

The method in its current form is also suited well as long as the network operator itself acts as service provider. If a 3rd party acts as service provider, the method should support what is generally known as double entry booking. This may be required for legal as well as business reasons. Business reasons means that the operator does not only need information who needs to pay for the service, but also needs information who receives the paid amount.

Immediate Payment

Immediate payment is supported by the methods updateBalanceRes and updateBalanceRes as described in Lucent’s paper. We agree that this functionality should be available, since it is simple and allows a high-performance implementation of charging.

The term immediate payment means that the service provider charges the subscriber immediately when receiving the service request. The service provider does so by calling the updateBalanceReq method, and starts the service concurrently. The service provider assumes that the request will proceed successfully. If the updateBalanceRes indicates a failure later on, the service provider typically disrupts the service. The subscriber may have been served for a short period of time without being charged, but usually will not be able to complete any task.

Payment with Deferred Delivery (Reservation Mechanism)

We suggest that there is another set of methods that allow to make a reservation before delivering the service, but to charge later on, after successful delivery of the service. These methods should also go into the Charging API proposed above.

Reservation is necessary if the subscriber is charged for individual items reather than a continuous service. The service provider needs to know in advance if charging will be successful, because once the item has been delivered, it cannot be taken away from the subscriber. On the other hand, the subscriber will not accept to pay in advance, since the delivery may fail. The way out of this dilemma is a three-stage approach comprising reservation, delivery and capturing.

We propose the following additional operations for the Charging API:

Charging

updateBalanceReq

updateBalanceRes

updateBalanceErr

reserveAmountReq (new)

reserveAmountRes (new)

reserveAmountErr (new)

cancelAmountReq (new)

cancelAmountRes (new)

captureAmountReq (new)

captureAmountRes (new)

captureAmountErr (new)

The proposed message sequence is as follows:

1. The OSA client application indicates, by calling reserveAmountReq, that it is about to deliver value to the subscriber. The call returns a reservationId that allows to correllate the response with the request.

2. The Charging service reserves the specified amount. The amount is no longer available to other services. The successful reservation is indicated to the OSA client by calling its reserveAmountRes method, passing the reservationId to the method call.

By calling reserveAmountRes, the Charging service accepts liability for success of a later captureAmountReq method call.

3. After receiving the positive response, the service delivers the requested information item(s).

4. After successful delivery, the OSA client calls captureAmountReq to really receive the money from the subscriber. Along with other data, the OSA client passes the reservationId received by the previous reserveAmountReq to allow the Charging service to link together the reservation with the capture call.

5. The Charging service processes the method and indicates successful completion by calling the OSA client’s captureAmountRes, passing the same reservationId to it.

6. Should the delivery fail, the OSA client should invoke the cancelAmountReq operation to release the reservation. Since one cannot rely on correct implementation of a client, the Charging service shall automatically release a reservation in case there is no capture within a reasonable, adjustable time interval.

Payment in Parts

In addition to the reservation mechanism as introduced above, we suggest that a service provider captures a reserved amount in stages.

Consider the following: There may be a virtual jukebox providing top ten songs as mp3 files, ready for download into a compound mobile phone/mp3 player. The songs are € 1.00 each. The service provider uses OSA Charging to charge the subscribers. Subscribers could be clever and download a song, but cutting the connection shortly before transmission completes. This way, they do not need to pay for the song although they received to most of it.

To avoid this, we propose that captureAmountReq does not need to capture the complete amount as reserved, but can be repeated instead. This way, the service provider could reserve a whole € 1.00 before the download starts. After half of the song, € 0.50 are captured. After download completion, another € 0.50 are captured.

Double Entry Booking

The current proposal allows to update a subscriber’s account. That is either incrementing or decrementing the account balance. We propose to support only transfer of money between amounts. To achieve this, an additional parameter is introduced for all operations of the charging API.

There are to reasons why double entry booking shall be supported:

· Stage 1 requires to “enable the operator to provide charging/illing as a service to 3rd parties, typically service providers. In this case, the operator will charge subscribers for service usage on behalf of the service provider. ...” This requires to transfer money from the subscriber’s account to an account associated with the service provider, rather than just decrementing the subscriber’s account.

· In bookkeeping, no account balance may be incremented without decrementing another account’s balance by the same amount. Further, the service provider that requests to charge a subscriber finally wants to receive the charged amount, or at least part of it. The other way round, in case a service provider wants to credit a subscriber’s account, the money needs to be taken from the service provider.

Generally, the network operator may charge a fee to the service provider for doing the charging on behalf of him, but this does not need to be reflected at the API.

Example: Considering the above, the updateBalanceReq could look like this:

Method
updateBalanceReq()
This method is used by the application to update the balance of an account for one or several users.

Direction
Application to network

Parameters
debitedUser

Specifies the user who shall be debited with the specified amount.

creditedUser

Specifies the user who shall be credited with the specified amount.

updateOperation

Specifies the specific update operation that is to be performed. Examples for operations are “increment” and “decrement”.

Note: This parameter is not needed any longer since we do not distinguish between increase and decrease. The debitedUser’s account is always decreased, the creditedUser’s account is always increased.

updateRequest

Specifies the specific amount for the update operation is requested. The amount consists of a value and a currency.

Returns
updateId

Specifies the ID of the update-balance request.

Enhance Notification Mechanism

The current proposal does not specify exactly when charging events may occur. We assume from the IDL specification that charging event notification may be requested for charging and recharging. Unfortunately, no scenario and message sequence diagram are given to illustrate the use of this functionality. We propose that such a scenario is added. Possible scenarios include: 1. Send an SMS to the subscriber in case the account balance drops below a low water mark, 2. Send an SMS in case of a successful recharge operation. 3. Automatically initiate a recharge operation in case the account balance drops to zero.

Thus, we propose the following additional event types to the TpChargingEventName data type:

Name
Value
Description

P_CS_Charging
0
End user’s account has been charged by an application

P_CS_Recharging
1
End user has recharged the account

P_CS_AccountLow
2
Account balance is below the low watermark level (new)

P_CS_AccountZero
3
Account balance is at zero (new)

P_CS_AccountDisabled
4
Account has been disabled (new)

Ensure Subscriber’s Privacy

We think that operations like queryBalanceReq shall be accessible only to trusted parties. For instance, a service provider may be authorized to use the Charging API, but nevertheless he should not gain access to a subscriber’s current account balance. All he needs to know is if the account covers the amount that is currently charged.

Generally, there shall be guidelines that specify which methods shall be available to which parties.





� Karsten Lüttge, karsten.luettge@bln1.siemens.de




Page 2

