56
42

SPAN- EN SPAN3 ? Part 1

 Draft V0.0.1 (2000-10)
APIs for Third Party Service Applications

Service Control Feature

Call Control

[image: image1.png]
Reproduction is only permitted for the purpose of standardization work undertaken within ETSI.
The copyright and the foregoing restrictions extend to reproduction in all media.
© European Telecommunications Standards Institute .

All rights reserved.

European Telecommunications Standards Institute

ETSI Secretariat

Postal address

F-06921 Sophia Antipolis Cedex - FRANCE

Office address

650 Route des Lucioles - Sophia Antipolis

Valbonne - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C

Association à but non lucratif enregistrée à la

Sous-Préfecture de Grasse (06) N° 7803/88

X.400

c= fr; a=atlas; p=etsi; s=secretariat

Internet

secretariat@etsi.fr

Reference

APIs for Third Party Service Applications

Keywords

APIs, Interface Classes, Framework, IDL

http://www.etsi.fr

Contents

51.
Scope

2.
References
5
2.1
Normative References
5
2.2
Informative References
5
3.
Definitions, Symbols and Abbreviations
5
3.1
Definitions
5
3.2
Symbols
5
3.3
Abbreviations
5
4.
Introduction
6
4.1
Generic Service Interfaces
6
4.2
Framework Interfaces
6
4.3
Generic Service Data Definitions
6
4.4
Framework Data Definitions
7
4.5
Common Data Definitions
7
4.6
Sequence Transition Diagrams (STDs)
7
4.7
OMG IDL
7
5.0
Call Control SCF
7
6.0
Service sequence diagrams
8
Generic Call Control Service
8
Alarm Call
8
Application Initiated Call
10
Number Translation1
12
Number Translation2
13
Number Translation3
15
Number Translation4
17
Call Barring1
19
Additional Callbacks
21
Pre-Paid with Advice of Charge (AoC)
23
Prepaid
26
7.0
Generic Call Control Service class diagrams
28
8.0
Interface Specifications
32
8.1
Architecture of the API specification
34
9.0
The Service Interface Specifications
34
Interface Class
34
Method descriptions
35
Parameter descriptions
35
State Model
35
6
Base Interface
35
Interface Class
35
7
Service Interfaces
35
Overview
35
8.
Generic Service Interface
36
Interface Class
36
9.
Generic Call Control Service
36
IpCallControlManager
37
Interface Class
37
IpAppCallControlManager
41
Interface Class
41
IpCall
43
Interface Class
43
IpAppCall
47
Interface Class
47
10.0
State Diagrams
52
10.1
Call Control State diagrams
52
States
53
10.2
Call Object State Diagram
53
States
54
11.0
Call Control Data Definition
55
Data Type
55
Description
55
Tabular Specification
55
Example
55
11.1
Generic Call Control Event Notification Data Definitions
55
11.2
Generic Call Control Data Definitions
57

1. Scope

The scope of this document is to consider the interface specification of an API for accessing Third Party Service Applications. UML techniques have been utilized for this purpose. This document specifies the Call Control aspects of the interface for ‘Access to Third Party Service provision. All aspects of Call Control are defined here, these being:

· Sequence Diagrams

· Class Diagrams

· Interface specification plus detailed method descriptions

· State Transition diagrams

· Data definitions

The process by which this task is accomplished is through the use of Object modeling techniques described by the Unified Modeling Language (UML). UML is a combined tools and methodology process which results in a comprehensive set of specifications representing, in this case, an interface between client and server applications. Further information can be found in the latest version of the ITU-T Recommendation Q.65.

The reader should note that this specification has been defined in co-operation with 3GPP CN5 and two industry consortiums, PARLAY and JAIN.

2. References

2. Normative References

2. Informative References

3. Definitions, Symbols and Abbreviations

3. Definitions

3. Symbols

3. Abbreviations

4. Introduction

This ETSI Standard uses the Unified Modelling Language (UML) to describe access to Third Party Service applications via an API. The API is divided into a number of separate parts, these being:

· Generic Service Interfaces

· Framework Interfaces

· Service Data Definitions

· Framework Data Definitions

· Common Data Definitions

· Sequence Transition Diagrams

· OMG IDL

The following text briefly describes each part:

4. Generic Service Interfaces

The API is split into two types of interface class descriptions, Service and Framework. Framework classes are those that are perceived to be applicable to the interface irrespective of the type of service that is being implemented at a specific moment in time e.g. Authentication. Whereas Service Interface classes are individual services that may be required by the client or network operator to enable the running of third party applications over the interface e.g. Messaging type service.

Editors Note: This next paragraph will need to be altered in light of new interface descriptions.
There are five parts here which represent the Generic Service Interface Classes, these being; Generic Call Control, Generic User Interaction, Generic Messaging, Mobility and Connectivity Management.

 Each of these parts defines the interfaces, parameters and state models that form part of the API specification. UML is used to specify the interface classes. As such it provides a UML interface class description of the methods (API calls) supported by that interface and the relevant parameters and types.

4. Framework Interfaces

The API is split into two types of interface class descriptions, Service and Framework. Framework classes are those that are perceived to be applicable to the interface irrespective of the type of service that is being implemented at a specific moment in time e.g. Authentication. Whereas Service Interface classes are individual services that may be required by the client of network operator to enable the running of third party applications over the interface e.g. Messaging type service.

Editors Note: This next paragraph may need altering in light of new interface descriptions
The Framework is split into two different sections, the first addressing the Client view representing interfaces ?????? in figure 2. The second addresses the relationship between the Service and Framework providers indicated by interface 3 in figure 2. The client to Framework section is split into 5 parts these being; Trust and Security Framework (which includes Authentication), Fault Management, Integrity Management, Service Subscription and Service Discovery. The Service to framework interface contains all of the same interfaces except for Service Subscription.

4. Generic Service Data Definitions

This section provides the Data Definitions necessary to support the Generic Service interface. For instance the Generic Call Control Service Data Definitions document describes each of the Data types that were shown in the detailed parameter descriptions made in the ‘Generic Call Control Service Interface’ part and so on.

4. Framework Data Definitions

This section once again provides the Data Definitions necessary to support the Framework interface.

4. Common Data Definitions

This section provides the Data definitions that are common to both the Framework and Generic Service API parameters.

4. Sequence Transition Diagrams (STDs)

This section contains the sequence transition diagrams from each service. They are used to enhance the understanding of each service in more detail.

4. OMG IDL

The section provides an OMG IDL version of the whole API. It was felt useful that a working version of the API be produced so that the API could be realisable in the Market place of today.

It was felt appropriate that this section be represented as an Appendix to the Recommendation.

The interface under consideration can be found represented by IF8 and IF9 in Figure 1:

[image: image2.wmf]SCF

SA-GF

Distributed

Service Logic

IF8

IF9

Figure 1

5.0 Call Control SCF

The following sections describe each aspect of the Call Control Service Capability Feature (SCF).

The order is as follows:

· The Sequence diagrams give the reader a practical idea of how each of the service capability feature is implemented.

· The Class relationships section show how each of the interfaces applicable to the SCF, relate to one another

· The Interface specification section describes in detail each of the interfaces shown within the Class diagram part.

· The State Transition Diagrams (STD) show the progression of internal processes either in the application, or Gateway.

· The Data definitions section show a detailed expansion of each of the data types associated with the methods within the classes. Note that some data types are used in other methods and classes and are therefore defined within the Common Data types part of this specification.

6.0 Service sequence diagrams

Generic Call Control Service

Alarm Call

The following sequence diagram shows a 'reminder message', in the form of an alarm, being delivered to a customer as a result of a trigger from an application. Typically, the application would be set to trigger at a certain time, however, the application could also trigger on events.

[image: image3.wmf] : IpCallControlManager

 : IpAppCall

 : IpCall

 : (IpUICall)

 :

(IpUIManager)

 :

(IpAppUICall)

 :

IpAppLogic

1: new()

2: createCall()

3: new()

4: routeReq ()

5: routeRes()

9: sendInfoReq()

6: 'forward event'

7: createUICall()

8: new()

10: sendInfoRes()

11: 'forward event'

12: release()

13: release()

1: This message is used to create an object implementing the IpAppCall interface.

2: This message requests the object implementing the IpCallControlManager interface to create an object implementing the IpCall interface.

3: Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load control values not exceeded) is met it is created.

4: This message instructs the object implementing the IpCall interface to route the call to the customer destined to receive the 'reminder message'

5: This message passes the result of the call being answered to its callback object.

6: This message is used to forward the previous message to the IpAppLogic.

7: The application requests a new IpUICall object that is associated with the call object.

8: Assuming all criteria are met, a new IpUICall object is created by the service.

9: This message instructs the object implementing the IpUICall interface to send the alarm to the customer's call.

10: When the announcement ends this is reported to the call back interface.

11: The event is forwarded to the application logic.

12: The application releases the IpUICall object, since no further announcements are required. Alternatively, the application could have indicated P_FINAL_REQUEST in the sendInfoReq in which case the IpUICall object would have been implicitly released after the announcement was played.

13: The application releases the call and all associated parties.

Application Initiated Call

The following sequence diagram shows an application creating a call between party A and party B. This sequence could be done after a customer has accessed a Web page and selected a name on the page of a person or organisation to talk to.

[image: image4.wmf] : IpCallControlManager

 : IpAppCall

 : IpCall

 :

IpAppLogic

5: routeRes()

1: new()

2: createCall()

3: new()

4: routeReq ()

7: routeReq ()

8: routeRes()

6: 'forward event'

9: 'forward event'

1: This message is used to create an object implementing the IpAppCall interface.

2: This message requests the object implementing the IpCallControlManager interface to create an object implementing the IpCall interface.

3: Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load control values not exceeded) is met, it is created.

4: This message is used to route the call to the A subscriber (origination). In the message the application request response when the A party answers.

5: This message indicates that the A party answered the call.

6: This message forwards the previous message to the application logic.

7: This message is used to route the call to the B-party. Also in this case a response is requested for call answer or failure.

8: This message indicates that the B-party answered the call. The call now has two parties and a speech connection is automatically established between them.

9: This message is used to forward the previous message to the IpAppLogic.
Number Translation1 (with callbacks)

The following sequence diagram shows a simple number translation service, initiated as a result of a prearranged event being received by the framework.

For illustation, in this sequence the callback references are set explictly. This is optional. All the callbacks references can also be passed in other methods. From an efficiency point of view that is also the preferred method. The rest of the sequences use that mechanism.
[image: image5.emf] :

IpCallControlManager

 : IpAppCall

 : IpCall :

IpAppCallControlManager

 : (Logical

View::IpApp

'translate number'

routeReq ()

routeRes ()

callEventNotify()

'forward event'

new()

'forward event'

new()

enableCallNotification()

deassignCall()

1: This message is used by the application to create an object implementing the IpAppCallControlManager interface.

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts a number translation service, it is likely that only new call events within a certain address range will be enabled.

When a new call, that matches the event criteria set in message 2, arrives a message (not shown) is directed to the object implementing the IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg object.

3: This message sets the reference of the IpAppCallControlManager object in the CallControlManager. The CallControlManager reports the callEventNotify to referenced object only for enableCallNotification's that do not have a explicit IpAppCallControlManager reference specified in the enableCallNotification.

4: This message is used to pass the new call event to the object implementing the IpAppCallControlManager interface.

5: This message is used to forward message 4 to the IpAppLogic.

6: This message is used by the application to create an object implementing the IpAppCall interface.

7: This message is used to set the reference to the IpAppCall for this call.

8: This message invokes the number translation function.

9: The returned translated number is used in message 7 to route the call towards the destination.

10: This message passes the result of the call being answered to its callback object

11: This message is used to forward the previous message to the IpAppLogic.

Number Translation1

The following sequence diagram shows a simple number translation service, initiated as a result of a prearranged event being received by the service.

[image: image6.wmf] : IpAppCallControlManager

 : IpCallControlManager

 : IpAppCall

 : IpCall

 :

IpAppLogic

6: 'translate number'

7: routeReq ()

8: routeRes ()

3: callEventNotify()

4: 'forward event'

5: new()

9: 'forward event'

1: new()

2: enableCallNotification()

1: This message is used by the application to create an object implementing the IpAppCallControlManager interface.

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts a number translation service, it is likely that only new call events within a certain address range will be enabled.

When a new call, that matches the event criteria set in message 2, arrives a message (not shown) is directed to the object implementing the IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg object.

3: This message is used to pass the new call event to the object implementing the IpAppCallControlManager interface.

4: This message is used to forward message 3 to the IpAppLogic.

5: This message is used by the application to create an object implementing the IpAppCall interface. The reference to this object is passed back to the object implementing the IpCallControlManager using the return parameter of message 3.

6: This message invokes the number translation function.

7: The returned translated number is used in message 7 to route the call towards the destination.

8: This message passes the result of the call being answered to its callback object

9: This message is used to forward the previous message to the IpAppLogic.

Number Translation2

The following sequence diagram shows a number translation service, initiated as a result of a prearranged event being received by the framework. If the translated number being routed to does not answer or is busy then the call is automatically released.

[image: image7.wmf] :

IpAppLogic

 : IpAppCallControlManager

 : IpAppCall

 : IpCallControlManager

 : IpCall

6: 'translate number'

9: 'forward event'

8: routeRes ()

7: routeReq ()

10: release ()

1: new()

3: callEventNotify()

4: 'forward event'

5: new()

2: enableCallNotification()

1: This message is used by the application to create an object implementing the IpAppCallControlManager interface.

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts a number translation service, it is likely that only new call events within a certain address range will be enabled.

When a new call, that matches the event criteria, arrives a message (not shown) is directed to the object implementing the IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create the call object.

3: This message is used to pass the new call event to the object implementing the IpAppCallControlManager interface.

4: This message is used to forward the previous message to the IpAppLogic.

5: This message is used by the application to create an object implementing the IpAppCall interface. The reference to this object is passed back to the object implementing the IpCallControlManager using the return parameter of the callEventNotify.

6: This message invokes the number translation function.

7: The returned translated number is used to route the call towards the destination.

8: Assuming the called party is busy or does not answer, the object implementing the IpCall interface sends a callback in this message, indicating the unavailability of the called party.

9: This message is used to forward the previous message to the IpAppLogic.

10: The application takes the decision to release the call.

Number Translation3

The following sequence diagram shows a number translation service, initiated as a result of a prearranged event being received by the framework. If the translated number being routed to does not answer or is busy then the call is automatically routed to a voice mailbox.

[image: image8.wmf] : IpCallControlManager

 : IpAppCall

 : IpCall

 : IpAppCallControlManager

 :

IpAppLogic

8: routeRes ()

6: 'translate number'

7: routeReq ()

9: 'forward event'

10: 'translate number'

11: routeReq ()

12: routeRes ()

13: 'forward event'

1: new()

3: callEventNotify()

4: 'forward event'

5: new()

2: enableCallNotification()

1: This message is used by the application to create an object implementing the IpAppCallControlManager interface.

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts a number translation service, it is likely that only new call events within a certain address range will be enabled.

When a new call, that matches the event criteria, arrives a message (not shown) is directed to the object implementing the IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg object.

3: This message is used to pass the new call event to the object implementing the IpAppCallControlManager interface.

4: This message is used to forward the previous message to the IpAppLogic.

5: This message is used by the application to create an object implementing the IpAppCall interface. The reference to this object is passed back to the object implementing the IpCallControlManager using the return parameter of the callEventNotify.

6: This message invokes the number translation function.

7: The returned translated number is used to route the call towards the destination.

8: Assuming the called party is busy or does not answer, the object implementing the IpCall interface sends a callback, indicating the unavailability of the called party.

9: This message is used to forward the previous message to the IpAppLogic.

10: The application takes the decision to translate the number, but this time the number is translated to a number belonging to a voice mailbox system.

11: This message routes the call towards the voice mailbox.

12: This message passes the result of the call being answered to its callback object.

13: This message is used to forward the previous message to the IpAppLogic.

Number Translation4

The following sequence diagram shows a number translation service, initiated as a result of a prearranged event being received by the framework. Before the call is routed to the translated number, the application requests for all call related information to be delivered back to the application on completion of the call.

[image: image9.wmf] : IpCallControlManager

 : IpAppCall

 : IpCall

 : IpAppCallControlManager

 :

IpAppLogic

6: 'translate number'

7: getCallInfoReq ()

8: routeReq ()

9: routeRes ()

13: getCallInfoRes ()

14: 'forward event'

10: 'forward event'

1: new()

3: callEventNotify()

4: 'forward event'

5: new()

11: routeRes ()

12: 'forward event'

2: enableCallNotification()

1: This message is used by the application to create an object implementing the IpAppCallControlManager interface.

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts a number translation service, it is likely that only new call events within a certain address range will be enabled.

When a new call, that matches the event criteria, arrives a message (not shown) is directed to the object implementing the IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg object.

3: This message is used to pass the new call event to the object implementing the IpAppCallControlManager interface.

4: This message is used to forward the previous message to the IpAppLogic.

5: This message is used by the application to create an object implementing the IpAppCall interface. The reference to this object is passed back to the object implementing the IpCallControlManager using the return parameter of the callEventNotify.

6: This message invokes the number translation function.

7: The application instructs the object implementing the IpCall interface to return all call related information once the call has been released.

8: The returned translated number is used to route the call towards the destination.

9: This message passes the result of the call being answered to its callback object.

10: This message is used to forward the previous message to the IpAppLogic.

11: Towards the end of the call, when one of the parties disconnects, a message (not shown) is directed to the object implementing the IpCall. This causes an event, to be passed to the object implementing the IpAppCall object.

12: This message is used to forward the previous message to the IpAppLogic.

13: The application now waits for the call information to be sent. Now that the call has completed, the object implementing the IpCall interface passes the call information to its callback object.

14: This message is used to forward the previous message to the IpAppLogic

Call Barring1

The following sequence diagram shows a call barring service, initiated as a result of a prearranged event being received by the framework. Before the call is routed to the destination number, the calling party is asked for a PIN code. The code is accepted and the call is routed to the original called party.

[image: image10.wmf] :

IpAppLogic

 : IpAppCallControlManager

 : IpAppCall

 : IpCall

 : (IpUICall)

 :

(IpUIManager)

 : IpCallControlManager

 :

(IpAppUICall)

13: routeRes ()

12: routeReq ()

8: sendInfoAndCollectReq()

9: sendInfoAndCollectRes()

3: callEventNotify()

4: 'forward event'

5: new()

1: new()

14: 'forward event'

10: 'forward event'

2: enableCallNotification()

6: createUICall()

7: new()

11: release()

1: This message is used by the application to create an object implementing the IpAppCallControlManager interface.

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts a call barring service, it is likely that all new call events destined for a particular address or address range are prompted for a password before the call is allowed to progress.

When a new call, that matches the event criteria set, arrives a message (not shown) is directed to the object implementing the IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg object.

3: This message is used to pass the new call event to the object implementing the IpAppCallControlManager interface.

4: This message is used to forward the previous message to the IpAppLogic.

5: This message is used by the application to create an object implementing the IpAppCall interface. The reference to this object is passed back to the object implementing the IpCallControlManager using the return parameter of the callEventNotify.

6: This message is used to create a new UICall object. The reference to the call object is given when creating the UICall.

7: Provided all the criteria are fulfilled, a new UICall object is created.

8: The call barring service dialogue is invoked.

9: The result of the dialogue, which in this case is the PIN code, is returned to its callback object.

10: This message is used to forward the previous message to the IpAppLogic.

11: This message releases the UICall object.

12: Assuming the correct PIN is entered, the call is forward routed to the destination party.

13: This message passes the result of the call being answered to its callback object.

14: This message is used to forward the previous message to the IpAppLogic

Additional Callbacks

The following sequence diagram shows how an application can register two call back interfaces for the same set of events. If one of the call backs can not be used, e.g., because the application crashed, the other call back interface is used instead.

[image: image11.wmf]first instance :

IpAppLogic

second instance :

IpAppLogic

 : IpAppCallControlManager

 : IpAppCallControlManager

 : IpCallControlManager

1: new()

2: enableCallNotification()

3: new()

4: enableCallNotification()

8: callEventNotify()

9: "forward event"

5: callEventNotify()

7: "call Notify result: failure"

6: 'forward event'

1: The first instance of the application is started on node 1. The application creates a new IpAppCallControlManager to handle callbacks for this first instance of the logic.

2: The enableCallNotfication is associated with an applicationID. The call control manager uses the applicationID to decide whether this is the same application.

3: The second instance of the application is started on node 2. The application creates a new IpAppCallControlManager to handle callbacks for this second instance of the logic.

4: The same enableCallNotification request is sent as for the first instance of the logic.

Because both requests are associated with the same application, the second request is not rejected, but the specified callback object is stored as an additional callback.

5: When the trigger occurs one of the first instance of the application is notified.

The gateway may have different policies on how to handle additional callbacks, e.g., always first try the first registered or use some kind of round robin scheme.

6: The event is forwarded to the first instance of the logic.

7: When the first instance of the application is overloaded or unavailable this is communicated with an exception to the call control manager.

8: Based on this exception the call control manager will notify another instance of the application (if available).

9: The event is forwarded to the second instance of the logic.

Pre-Paid with Advice of Charge (AoC)

This sequence shows a Pre-paid application that uses the Advice of Charge feature.

The application will send the charging information before the actual call setup and when during the call the charging changes new information is sent in order to update the end-user. Note: the Advice of Charge feature requires an application in the end-user terminal to display the charges for the call, depending on the information received from the application.

[image: image12.wmf]Prepaid :

IpAppLogic

 : IpAppCallControlManager

 : IpCallControlManager

 : IpCall

 : (Logical

View::org.par...

 : (Logical

View::org.par...

 : (Logical

View::org.par...

 : IpAppCall

1: new()

2: enableCallNotification()

3: callEventNotify()

4: "forward event"

8: routeReq ()

11: superviseCallReq ()

15: superviseCallReq ()

7: superviseCallReq()

24: superviseCallReq ()

27: release()

21: sendInfoReq()

18: new()

22: sendInfoRes()

23: "forward event"

5: new()

9: superviseCallRes()

10: "forward event"

12: superviseCallRes()

13: "forward event"

14: setAdviceOfCharge()

16: superviseCallRes()

17: "forward event"

25: superviseCallRes(TpSessionID, TpSuperviseReport, TpDuration)

26: "forward event:

6: setAdviceOfCharge()

19: createUICall()

20: new()

1: This message is used by the application to create an object implementing the IpAppCallControlManager interface.

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts a pre-paid service, it is likely that only new call events within a certain address range will be enabled.

When a new call, that matches the event criteria, arrives a message (not shown) is directed to the object implementing the IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg object.

3: The incoming call triggers the Pre-Paid Application (PPA).

4: The message is forwarded to the application.

5: A new object on the application side for the Call object is created

6: The Pre-Paid Application (PPA) sends the AoC information (e.g the tariff switch time). (it shall be noted the PPA contains ALL the tariff information and knows how to charge the user).

During this call sequence 2 tariff changes take place. The call starts with tariff 1, and at the tariff switch time (e.g., 18:00 hours) switches to tariff 2. The application is not informed about this (but the end-user is!)

7: The Pre-Paid Application (PPA) requests to supervise the call. The application will be informed after the period indicated in the message. This period is related to the credits left on the account of the pre-paid subscriber.

8: The application requests to route the call to the destination address.

9: At the end of each supervision period the application is informed and a new period is started.

10: The message is forwarded to the application.

11: The Pre-Paid Application (PPA) requests to supervise the call for another call duration.

12: At the end of each supervision period the application is informed and a new period is started.

13: The message is forwarded to the application.

14: Before the next tariff switch (e.g., 19:00 hours) the application sends a new AOC with the tariff switch time. Again, at the tariff switch time, the network will send AoC information to the end-user.

15: The Pre-Paid Application (PPA) requests to supervise the call for another call duration.

16: When the user is almost out of credit an announcement is played to inform about this (19-21). The announcement is played only to the leg of the A-party, the B-party will not hear the announcement.

17: The message is forwarded to the application.

18: The application creates a new call back interface for the User interaction messages.

19: A new UI Call object that will handle playing of the announcement needs to be created

20: The Gateway creates a new UI call object that will handle playing of the announcement.

21: With this message the announcement is played to the calling party.

22: The user indicates that the call should continue.

23: The message is forwarded to the application.

24: The user does not terminate so the application terminates the call after the next supervision period.

25: The user is out of credit and the application is informed.

26: The message is forwarded to the application.

27: With this message the application requests to release the call.

Prepaid

This sequence shows a Pre-paid application.

The subscriber is using a pre-paid card or credit card to pay for the call. The application each time allows a certain timeslice for the call. After the timeslice, a new timeslice can be started or the application can terminate the call. In the following sequence the end-user will received an announcement before his final timeslice.

[image: image13.wmf]Prepaid :

IpAppLogic

 : IpAppCallControlManager

 : IpCallControlManager

 : IpCall

 : (IpUICall)

 :

(IpUIManager)

 : (IpAppUICall)

 : IpAppCall

1: new()

2: enableCallNotification()

3: callEventNotify()

4: "forward event"

5: new()

7: routeReq ()

8: superviseCallRes()

9: "forward event"

10: superviseCallReq ()

11: superviseCallRes()

12: "forward event"

13: superviseCallReq ()

14: superviseCallRes()

15: "forward event"

6: superviseCallReq ()

17: sendInfoReq()

18: sendInfoRes()

19: "forward event"

21: superviseCallReq()

22: superviseCallRes()

23: "forward event:

24: release()

16: createUICall()

20: release()

1: This message is used by the application to create an object implementing the IpAppGenericCallControlManager interface.

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts a pre-paid service, it is likely that only new call events within a certain address range will be enabled.

When a new call, that matches the event criteria, arrives a message (not shown) is directed to the object implementing the IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg object.

3: The incoming call triggers the Pre-Paid Application (PPA).

4: The message is forwarded to the application.

5: A new object on the application side for the Generic Call object is created

6: The Pre-Paid Application (PPA) requests to supervise the call. The application will be informed after the period indicated in the message. This period is related to the credits left on the account of the pre-paid subscriber.

7: Before continuation of the call, PPA sends all charging information, a possible tariff switch time and the call duration supervision period, towards the GW which forwards it to the network.

8: At the end of each supervision period the application is informed and a new period is started.

9: The message is forwarded to the application.

10: The Pre-Paid Application (PPA) requests to supervise the call for another call duration.

11: At the end of each supervision period the application is informed and a new period is started.

12: The message is forwarded to the application.

13: The Pre-Paid Application (PPA) requests to supervise the call for another call duration.

14: When the user is almost out of credit an announcement is played to inform about this. The announcement is played only to the leg of the A-party, the B-party will not hear the announcement.

15: The message is forwarded to the application.

16: The application requests the controlling leg, in order to be able to play announcements to the associated party.

17: A new UICall object is created and associated with the controlling leg.

18: An announcement is played to the controlling leg informing the user about the near-expiration of his credit limit. The B-subscriber will not hear the announcement.

19: When the announcement is completed the applicaiton is informed.

20: The message is forwarded to the application.

21: The application releases the UICall object.

22: The user does not terminate so the application terminates the call after the next supervision period.

23: The supervision period ends

24: The event is forwarded to the logic.

25: The application terminates the call.

7.0 Generic Call Control Service class diagrams

The Generic Call Control Service (GCCS) provides the basic call control service for the APIs. It is based around a third party model, which allows calls to be instantiated from the network and routed through the network.

The GCCS supports enough functionality to allow call routing and call management for today's Intelligent Network (IN) services in the case of a switched telephony network, or equivalent for packet based networks.

It is the intention of the GCCS that it could be readily specialised into call control specifications, for example, ITU-T recommendations H.323, ISUP, Q.931 and Q.2931, ATM Forum specification UNI3.1 and the IETF Session Initiation Protocol, or any other call control technology.

The call model adopted has the following entities. Note that not all of these concepts are used in the generic call.

* a call object. A call is a relation between a number of parties. The call object relates to the entire call view from the application; e.g., the entire call will be released when a release is called on the call. Note that different applications can have different views of the same physical call, e.g., one application for the originating side and another application for the terminating side. The applications will not be aware of each other, all 'communication' between the applications will be by means of network signalling. This specification currently does not specify any feature interaction mechanisms.

* a call leg object. The leg object represents a logical association between a call and an address. The relationship includes at least the signalling relation with the party. The relation with the address is only made when the leg is routed. Before that the leg object is IDLE and not yet associated with the address.

* an address. The address logically represents a party in the call.

* a terminal. A terminal is the end-point of the signalling and/or media for a party. This object type is currently not addressed.

The call object is used to establish a relation between a number of parties by creating a leg for each party within the call.

Associated with the signalling relationship represented by the call leg, there may also be a bearer connection (e.g., in the traditional voice only networks) or a number (zero or more) media channels (in multi-media networks).

A leg can be attached to the call or detached from the call. When the leg is attached, this means that media or bearer channels related to the legs are connected to the media or bearer channels of the other legs that are attached to the same call. I.e., only legs that are attached can 'speak' to each other. A leg can have a number of states, depending on the signalling received from or sent to the party associated with the leg. Usually there is a limit to the number of legs that are in being routed (i.e., the connection is being established) or connected to the call (i.e., the connection is established). Also, there usually is a limit to the number of legs that can be simultaneously attached to the same call.

Some networks distinguish between controlling and passive legs. By definition the call will be released when the controlling leg is released. All other legs are called passive legs. There can be at most one controlling leg per call. However, in this specification there is currently no way the application can influence whether a Leg is controlling or not.

There are two ways for an application to get the control of a call. The application can request to be notified of calls that meet certain criteria. When a call occurs in the network that meets these criteria, the application is notified and can control the call. Some legs will already be associated with the call in this case. Another way is to create a new call from the application.

For the generic call control service, only a subset of the model is used; the APIs for generic call control do not give explicit access to the legs and the media channels. This is provided by the Multi-Party Call Control Service. Furthermore, the generic call is restricted to two party calls, i.e., only two legs are active at any given time. Active is defined here as 'being routed' or connected.

The GCCS is represented by the IpCallManager and IpCall interfaces that interface to services provided by the network. Some methods are asynchronous, in that they do not lock a thread into waiting whilst a transaction performs. In this way, the client machine can handle many more calls, than one that uses synchronous message calls. To handle responses and reports, the developer must implement IpAppCallManager and IpAppCall to provide the callback mechanism.

[image: image14.emf]PappGenericCall

PGenericCall

<<uses>>

Figure 1 Generic Call Control overview

The generic call control service consists of two packages, one for the interfaces on the application side (PAppGenericCall) and one for interfaces on the service side (PGenericCall).

The class diagrams in the following figures show the interfaces that make up the generic call control application package and the generic call control service package. Communication between these packages is indicated with the <<uses>> associations; e.g., the IpCallControlManager interface uses the IpAppGenericCallControlManager , by means of calling callback methods.

[image: image16.emf]IpAppCallControlManager

callAborted()

callEventNotify()

callNotificationInterrupted()

callNotificationContinued()

callOverloadEncountered()

callOverloadCeased()

(from gccs)

<<Interface>>

IpAppCall

routeRes()

routeErr()

getCallInfoRes()

getCallInfoErr()

superviseCallRes()

superviseCallErr()

callFaultDetected()

getMoreDialledDigitsRes()

getMoreDialledDigitsErr()

callEnded()

(from gccs)

<<Interface>>

IpCall

(from gccs)

<<Interface>>

IpCallControlManager

(from gccs)

<<Interface>>

<<uses>>

<<uses>>

10..n

1..10..n

IpInterface

Figure 2: Generic Call Control - Application Interfaces

This class diagram shows the interfaces of the generic call control application package and their relations to the interfaces of the generic call control service package.

[image: image18.wmf]IpCall

routeReq()

release()

deassignCall()

getCallInfoReq()

setCallChargePlan()

setAdviceOfCharge()

getMoreDialledDigitsReq()

superviseCallReq()

<<Interface>>

IpCallControlManage

r

createCall()

enableCallNotification()

disableCallNotification()

setCallLoadControl()

changeCallNotification()

getCriteria()

<<Interface>>

IpService

setCallback()

setCallbackWithSessionID()

(

from services)

<<Interface>>

1

0

..n

Figure 3 Generic Call Control - Service Interfaces

This class diagram shows the interfaces of the generic call control service package.

8.0 Interface Specifications

The general format of an interface specification is described below:

· Interface Class

This is a UML interface class description of the methods supported by that interface, and the relevant parameters and types. The Service and Framework interfaces to capabilities within the network are denoted by classes with name I<name>. The callback interfaces to the applications are denoted by classes with name IApp<name>.

· Method descriptions

Each method (API method “call”) is described. All methods in the API return a value of type TResult, indicating, amongst other things, if the method invocation was sucessfully executed or not.
Both synchronous and asynchronous methods are used in the API. Asynchronous methods are identified by a 'Req' suffix for a method request, and, if applicable, are served by asynchronous methods identified by either a 'Res' or 'Err' suffix for method results and errors, respectively. To handle responses and reports, the developer must implement the relevant IApp<name> interfaces to provide the callback mechanism.

· Parameter descriptions

Each method parameter and its possible values are described. Parameters described as 'in' represent those which must have a value when the method is called. Those described as 'out' are those which contain the return result of the method when the method returns.

· State Model

If relevant, a state model is shown to illustrate the states of the objects which implement the described interface.

8.1 Architecture of the API specification

The API is object-oriented and consists of several categories of interfaces as shown in Figure 2. Phase 1 addressed public interfaces between enterprise-based client applications and services (interface 2) and the Framework (interface 1), where:

· Service Interfaces offer applications access to a range of network capabilities.

· Framework Interfaces provide 'surround' capabilities necessary for the Service Interfaces to be open, secure, resilient and manageable.

In Phase 2, additional public interfaces are introduced to support administrative functions within the enterprise (interfaces 4 & 6) and to permit the supply of services by third party vendors (interfaces 3 & 5).

The Call Control service interface is represented by interface 2.

[image: image19.wmf]Framework

operator

admin

Enterprise

operator

admin tool

Service

supplier

admin tool

1

1

4

4

3

3

5

5

Not in scope of

this version of

the API

Not in scope of

this version of

the API

Telecom Network

Not in scope of

this version of

the API

Not in scope of

this version of

the API

2

2

6

6

Client

Application

Not in

 scope

of this

API

version

Figure 2 Interfaces

In order to realise the Service and Framework interfaces, it is recognised that categories of resource interfaces are required to facilitate integration of network equipment. The definition of the resource interfaces is not in the scope of the group at this time.

9.0 The Service Interface Specifications

This section defines the interfaces, methods and parameters that form a part of the API specification. The Unified Modelling Language (UML) is used to specify the interface classes. The general format of an interface specification is described below.

Interface Class

This shows a UML interface class description of the methods supported by that interface, and the relevant parameters and types. The Service and Framework interfaces for enterprise-based client applications are denoted by classes with name Ip<name>. The callback interfaces to the applications are denoted by classes with name IpApp<name>. For the interfaces between a Service and the Framework, the Service interfaces are typically denoted by classes with name IpSvc<name>, while the Framework interfaces are denoted by classes with name IpFw<name>

Method descriptions

Each method (API method “call”) is described. All methods in the API return a value of type TpResult, indicating, amongst other things, if the method invocation was sucessfully executed or not.
Both synchronous and asynchronous methods are used in the API. Asynchronous methods are identified by a 'Req' suffix for a method request, and, if applicable, are served by asynchronous methods identified by either a 'Res' or 'Err' suffix for method results and errors, respectively. To handle responses and reports, the application or service developer must implement the relevant IpApp<name> or IpSvc<name> interfaces to provide the callback mechanism.

Parameter descriptions

Each method parameter and its possible values are described. Parameters described as 'in' represent those that must have a value when the method is called. Those described as 'out' are those that contain the return result of the method when the method returns.

State Model

If relevant, a state model is shown to illustrate the states of the objects that implement the described interface.

6 Base Interface

All application, framework and service interfaces inherit from the following interface. This API Base Interface does not provide any additional methods.

Interface Class

<<Interface>>

IpInterface

7 Service Interfaces

Overview

The Service Interfaces provide the interfaces into the capabilities of the underlying network - such as call control, user interaction, messaging, mobility and connectivity management.

The interfaces that are implemented by the services are denoted as 'Service Interface'. The corresponding interfaces that must be implemented by the application (e.g. for API callbacks) are denoted as 'Application Interface'.

8. Generic Service Interface

Inherits from the base interface.

All service interfaces inherit from the following interface.

Interface Class

<<Interface>>

IpService

setCallback(appInterface : in IpInterfaceRef) : TpResult

setCallbackWithSessionID(appInterface : in IpInterfaceRef , sessionID : in TpSessionID) : TpResult

Method

setCallback()

This method specifies the reference address of the callback interface that a service uses to invoke methods on the application.

Parameters

appInterface : in IpInterfaceRef

Specifies a reference to the application interface, which is used for callbacks.

Method

setCallbackWithSessionID()

This method specifies the reference address of the application’s callback interface that a service uses for interactions associated with a specific session ID: e.g. a specific call, or call leg.

Parameters

appInterface : in IpInterfaceRef

Specifies a reference to the application interface, which is used for callbacks.

sessionID : in TpSessionID

Specifies the session for which the service can invoke the application’s callback interface.

9. Generic Call Control Service

The Generic Call Control Service (GCCS) provides the basic call control service for the API. It is based around a third party model, which allows calls to be instantiated from the network and routed through the network.

The GCCS supports enough functionality to allow call routing and call management for today's Intelligent Network (IN) services in the case of a switched telephony network, or equivalent for packet based networks.

It is the intention of the GCCS that it could be readily specialised into call control specifications, for example, ITU-T recommendations H.323, ISUP, Q.931 and Q.2931, ATM Forum specification UNI3.1 and the IETF Session Initiation Protocol, or any other call control technology.

The call model adopted by has the following objects. Note that not all of these concepts are used in the generic call.

* a call object. A call is a relation between a number of parties. The call object relates to the entire call view from the application. E.g., the entire call will be released when a release is called on the call. Note that different applications can have different views on the same physical call, e.g., one application for the originating side and another application for the terminating side. The applications will not be aware of each other, all 'communication' between the applications will be by means of network signalling. The API currently does not specify any feature interaction mechanisms.

* a call leg object. The leg object represents a logical association between a call and an address. The relationship includes at least the signalling relation with the party. The relation with the address is only made when the leg is routed. Before that the leg object is IDLE and not yet associated with the address.

* an address. The address logically represents a party in the call.

* a terminal. A terminal is the end-point of the signalling and/or media for a party. This object type is currently not addressed.

The call object is used to establish a relation between a number of parties by creating a leg for each party within the call.

Associated with the signalling relationship represented by the call leg, there may also be a bearer connection (e.g., in the traditional voice only networks) or a number (zero or more) media channels (in multi-media networks).

A leg can be attached to the call or detached from the call. When the leg is attached, this means that media or bearer channels related to the legs are connected to the media or bearer channels of the other legs that are attached to the same call. I.e., only legs that are attached can 'speak' to each other. A leg can have a number of states, depending on the signalling received from or sent to the party associated with the leg. Usually there is a limit to the number of legs that are in being routed (i.e., the connection is being established) or connected to the call (i.e., the connection is established). Also, there usually is a limit to the number of legs that can be simultaneously attached to the same call.

Some networks distinguish between controlling and passive legs. By definition the call will be released when the controlling leg is released. All other legs are called passive legs. There can be at most one controlling leg per call. However, there is currently no way the application can influence whether a Leg is controlling or not.

There are two ways for an application to get the control of a call. The application can request to be notified of calls that meet certain criteria. When a call occurs in the network that meets these criteria, the application is notified and can control the call. Some legs will already be associated with the call in this case. Another way is to create a new call from the application.

For the generic call control service, only a subset of the model is used; the API for generic call control does not give explicit access to the legs and the media channels. This is provided by the Multi-Party Call Control Service. Furthermore, the generic call is restricted to two party calls, i.e., only two legs are active at any given time. Active is defined here as'being routed' or connected.

The GCCS is represented by the IpCallManager and IpCall interfaces that interface to services provided by the network. Some methods are asynchronous, in that they do not lock a thread into waiting whilst a transaction performs. In this way, the client machine can handle many more calls, than one that uses synchronous message calls. To handle responses and reports, the developer must implement IpAppCallManager and IpAppCall to provide the callback mechanism.

IpCallControlManager

Inherits from: IpService

This interface is the 'service manager' interface for the Generic Call Control Service.

The generic call control manager interface provides the management functions to the generic call control service. The application programmer can use this interface to provide overload control functionality, create call objects and to enable or disable call-related event notifications.

 Interface Class

<<Interface>>

IpCallControlManager

createCall(appCall : in IpAppCallRef , callReference : out TpCallIdentifierRef) : TpResult

enableCallNotification(appInterface : in IpAppCallControlManagerRef , eventCriteria : in TpCallEventCriteria , assignmentID : out TpAssignmentIDRef) : TpResult

disableCallNotification(assignmentID : in TpAssignmentID) : TpResult

setCallLoadControl(duration : in TpDuration , mechanism : in TpCallLoadControlMechanism , treatment : in TpCallTreatment , addressRange : in TpAddressRange , assignmentID : out TpAssignmentIDRef ,) : TpResult

changeCallNotification(assignmentID : in TpAssignmentID , eventCriteria : in TpCallEventCriteria) : TpResult

getCriteria(eventCriteria : out TpCallEventCriteriaResultSetRef) : TpResult

Method

createCall ()

This method is used to create a new call object.

Parameters

appCall : in IpAppCallRef

Specifies the application interface for callbacks from the call created.

callReference : out TpCallIdentifierRef

Specifies the interface reference and sessionID of the call created.

Method

enableCallNotification ()

This method is used to enable call notifications so that events can be sent to the application. If some application already requested notifications with criteria that overlap the specified criteria, the request is refused with P_GCCS_INVALID_CRITERIA.
The criteria are said to overlap if both originating and terminating ranges overlap and the same number plan is used and the same CallNotificationType is used.
If the same application requests two notifications with exactly the same criteria but different callback references, the second callback will be treated as an additional callback. This means that the callback will only be used in case when the first callback specified by the application is unable to handle the callEventNotify (e.g., due to overload or failure).
Parameters

appInterface : in IpAppCallControlManagerRef

If this parameter is set (i.e. not NULL) it specifies a reference to the application interface, which is used for callbacks. If set to NULL, the application interface defaults to the interface specified via the setCallback() method.

eventCriteria : in TpCallEventCriteria

Specifies the event specific criteria used by the application to define the event required. Only events that meet these criteria are reported. Examples of events are "incoming call attempt reported by network", "answer", "no answer", "busy". Individual addresses or address ranges may be specified for destination and/or origination.

assignmentID : out TpAssignmentIDRef

Specifies the ID assigned by the generic call control manager interface for this newly-enabled event notification.

Method

disableCallNotification ()

This method is used by the application to disable call notifications.

Parameters

assignmentID : in TpAssignmentID

Specifies the assignment ID given by the generic call control manager interface when the previous enableNotification() was called. If the assignment ID does not correspond to one of the valid assignment IDs, the framework will return the error code P_INVALID_ASSIGNMENTID.

Method

setCallLoadControl ()

This method imposes or removes load control on calls made to a particular address range within the generic call control service. The address matching mechanism is similar as defined for TpCallEventCriteria.

Parameters

duration : in TpDuration

Specifies the duration for which the load control should be set.

A duration of 0 indicates that the load control should be removed.

A duration of -1 indicates an infinite duration (i.e., until disabled by the application)

A duration of -2 indicates the network default duration.

mechanism : in TpCallLoadControlMechanism

Specifies the load control mechanism to use (for example, admit one call per interval), and any necessary parameters, such as the call admission rate. The contents of this parameter are ignored if the load control duration is set to zero.

treatment : in TpCallTreatment

Specifies the treatment of calls that are not admitted. The contents of this parameter are ignored if the load control duration is set to zero.

addressRange : in TpAddressRange

Specifies the address or address range to which the overload control should be applied or removed.

assignmentID : out TpAssignmentIDRef

Specifies the assignmentID assigned by the gateway to this request. This assignementID can be used to correlate the callOverlloadEncountered and callOverloadCeised methods with the request.

Method

changeCallNotification ()

This method is used by the application to change the event criteria introduced with enableCallNotification. Any stored criteria associated with the specified assignementID will be replaced with the specified criteria.

Parameters

assignmentID : in TpAssignmentID

Specifies the ID assigned by the generic call control manager interface for the event notification.

eventCriteria : in TpCallEventCriteria

Specifies the new set of event specific criteria used by the application to define the event required. Only events that meet these criteria are reported.

Method

getCriteria ()

This method is used by the application to query the event criteria set with enableCallNotification or changeCallNotification.

Parameters

eventCriteria : out TpCallEventCriteriaResultSetRef

Specifies the event specific criteria used by the application to define the event required. Only events that meet these criteria are reported.

IpAppCallControlManager

Inherits from: IpInterface

The generic call control manager application interface provides the application call control management functions to the generic call control service.

 Interface Class

<<Interface>>

IpAppCallControlManager

callAborted(callReference : in TpSessionID) : TpResult

callEventNotify(callReference : in TpCallIdentifier , eventInfo : in TpCallEventInfo , assignmentID : in TpAssignmentID , appInterface : out IpAppCallRefRef) : TpResult

callNotificationInterrupted() : TpResult

callNotificationContinued() : TpResult

callOverloadEncountered(assignmentID : in TpAssignmentID) : TpResult

callOverloadCeased(assignmentID : in TpAssignmentID) : TpResult

Method

callAborted ()

This method indicates to the application that the call object (at the gateway) has aborted or terminated abnormally. No further communication will be possible between the call and application.
Parameters

callReference : in TpSessionID

Specifies the sessionID of call that has aborted or terminated abnormally.

Method

callEventNotify ()

This method notifies the application of the arrival of a call-related event.

Parameters

callReference : in TpCallIdentifier

Specifies the reference to the call interface to which the notification relates.

eventInfo : in TpCallEventInfo

Specifies data associated with this event.

assignmentID : in TpAssignmentID

Specifies the assignment id which was returned by the enableNotification() method. The application can use assignment id to associate events with event specific criteria and to act accordingly.

appInterface : out IpAppCallRefRef

Specifies a reference to the application interface which implements the callback interface for the new call.

Method

callNotificationInterrupted ()

This method indicates to the application that all event notifications have been temporary interrupted (for example, due to faults detected).
Note that more permanent failures are reported via the Framework (integrity management).

Parameters

Method

callNotificationContinued ()

This method indicates to the application that event notifications will again be possible.

Parameters

Method

callOverloadEncountered ()

This method indicates that the network has detected overload and may have automatically imposed load control on calls requested to a particular address range or calls made to a particular destination within the call control service.
Parameters

assignmentID : in TpAssignmentID

pecifies the assignmentID corresponding to the associated setCallLoadControl. This implies the addressrange for within which the overload has been encountered.

Method

callOverloadCeased ()

This method indicates that the network has detected that the overload has ceased and has automatically removed any load controls on calls requested to a particular address range or calls made to a particular destination within the call control service.
Parameters

assignmentID : in TpAssignmentID

Specifies the assignmentID corresponding to the associated setCallLoadControl. This implies the addressrange for within which the overload has been ceased

IpCall

Inherits from: IpService

The generic Call provides the possibility to control the call routing, to request information from the call, control the charging of the call, to release the call and to supervise the call.

It does not give the possibility to control the legs directly and it does not allow control over the media. The first capability is provided by the multi-party call and the latter as well by the multi-media call.

The call is limited to two party calls, although it is possible to provide 'follow-on' calls, meaning that the call can be rerouted after the terminating party has disconnected or routing to the terminating party has failed. Basically, this means that at most two legs can be in connected or routing state at any time.

 Interface Class

<<Interface>>

IpCall

routeReq(callSessionID : in TpSessionID , responseRequested : in TpCallReportRequestSet , targetAddress : in TpAddress , originatingAddress : in TpAddress , originalDestinationAddress : in TpAddress , redirectingAddress : in TpAddress , appInfo : in TpCallAppInfoSet , callLegSessionID : out TpSessionIDRef) : TpResult

release(callSessionID : in TpSessionID , cause : in TpCallReleaseCause) : TpResult

deassignCall(callSessionID : in TpSessionID) : TpResult

getCallInfoReq(callSessionID : in TpSessionID , callInfoRequested : in TpCallInfoType) : TpResult

setCallChargePlan(callSessionID : in TpSessionID , callChargePlan : in TpCallChargePlan) : TpResult

setAdviceOfCharge(callSessionID : in TpSessionID , aOCInfo : in TpAoCInfo , tariffSwitch : in TpDuration) : TpResult

getMoreDialledDigitsReq(callSessionID : in TpSessionID , length : in TpInt32) : TpResult

superviseCallReq(callSessionID : in TpSessionID , time : in TpDuration , treatment : in TpCallSuperviseTreatment) : TpResult

Method

routeReq ()

This asynchronous method requests routing of the call (and inherently attached parties) to the destination party, via a new call leg (which is implicitly created).
The extra addressinformation (i.e., originalDestinationAddress, redirectingAddress, originatingAddress) is optional. If not present (i.e., the plan is set to P_ADDRESS_PLAN_NOT_PRESENT), the information provided in corresponding addresses from the route is used, otherwise the network or gateway provided numbers will be used.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

responseRequested : in TpCallReportRequestSet

Specifies the set of observed events that will result in zero or more routeRes() being generated.

E.g., when both answer and disconnect is monitored the result can be received two times.

If the application wants to control the call (in whatever sense) it shall enable event reports

targetAddress : in TpAddress

Specifies the destination party to which the call should be routed.

originatingAddress : in TpAddress

Specifies the address of the originating (calling) party.

originalDestinationAddress : in TpAddress

Specifies the original destination address of the call.

redirectingAddress : in TpAddress

Specifies the address from which the call was last redirected."

appInfo : in TpCallAppInfoSet

Specifies application-related information pertinent to the call (such as alerting method, tele-service type, service identities and interaction indicators).

callLegSessionID : out TpSessionIDRef

Specifies the sessionID assigned by the gatway. This is the sessionID of the implicitly created call leg. The same ID will be returned in the routeRes or Err. This allows the application to correlate the request and the result.

This parameter is only relevant when multiple routeReq() calls are executed in parallel, e.g., in the multi-party call control service.

Method

release ()

This method requests the release of the call object and associated objects. The call will also be terminated in the network. If the application requested reports to be sent at the end of the call (e.g., by means of getCallInfoReq) these reports will still be sent to the application.
The application should always either release or deassign the call when it is finished with the call, unless a callFaultDetected is received by the application
Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

cause : in TpCallReleaseCause

Specifies the cause of the release.

Method

deassignCall ()

This method requests that the relationship between the application and the call and associated objects be de-assigned. It leaves the call in progress, however, it purges the specified call object so that the application has no further control of call processing. If a call is de-assigned that has event reports, call information reports or call Leg information reports requested, then these reports will be disabled and any related information discarded.
The application should always either release or deassign the call when it is finished with the call, unless callFaultDetected is received by the application.
Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

Method

getCallInfoReq ()

This asynchronous method requests information associated with the call to be provided at the appropriate time (for example, to calculate charging). This method must be invoked before the call is routed to a target address. Two types of reports can be requested; a final report or intermediate reports.
A final call report is sent when the call is ended. The call object will exist after the call is ended if information is required to be sent to the application at the end of the call. The call information will be sent after any call event reports.
Intermediate reports are received when the destination leg or party terminates or when the call ends. In case the originating party is still available the application can still initiate a follow-on call using routeReq.
Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

callInfoRequested : in TpCallInfoType

Specifies the call information that is requested.

Method

setCallChargePlan ()

Set an operator specific charge plan for the call. The charge plan must be set before the call is routed to a target address. Depending on the operator the method can also be used to change the charge plan for ongoing calls.
Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

callChargePlan : in TpCallChargePlan

Specifies the charge plan to use.

Method

setAdviceOfCharge ()

This method allows for advice of charge (AOC) information to be sent to terminals that are capable of receiving this information.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

aOCInfo : in TpAoCInfo

Specifies two sets of Advice of Charge parameter.

tariffSwitch : in TpDuration

Specifies the tariff switch interval that signifies when the second set of AoC parameters becomes valid.

Method

getMoreDialledDigitsReq ()

This asynchronous method requests the call control service to collect further digits and return them to the application. Depending on the administered data, the network may indicate a new call to the gateway if a caller goes off-hook or dialled only a few digits. The application then gets a new call event which contains no digits or only the few dialled digits in the event data.
The application should use this method if it requires more dialled digits, e.g. to perform screening.
Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

length : in TpInt32

Specifies the maximum number of digits to collect.

Method

superviseCallReq ()

The application calls this method to supervise a call. The application can set a granted connection time for this call. If an application calls this function before it calls a routeReq() or a user interaction function the time measurement will start as soon as the call is answered by the B-party or the user interaction system.
Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

time : in TpDuration

Specifies the granted time in milliseconds for the connection.

treatment : in TpCallSuperviseTreatment

Specifies how the network should react after the granted connection time expired.

IpAppCall

Inherits from: IpInterface

The generic call application interface is implemented by the client application developer and is used to handle call request responses and state reports.

 Interface Class

<<Interface>>

IpAppCall

routeRes(callSessionID : in TpSessionID , eventReport : in TpCallReport , callLegSessionID : in TpSessionID) : TpResult

routeErr(callSessionID : in TpSessionID , errorIndication : in TpCallError , callLegSessionID : in TpSessionID) : TpResult

getCallInfoRes(callSessionID : in TpSessionID , callInfoReport : in TpCallInfoReport) : TpResult

getCallInfoErr(callSessionID : in TpSessionID , errorIndication : in TpCallError) : TpResult

superviseCallRes(callSessionID : in TpSessionID , report : in TpCallSuperviseReport , usedTime : in TpDuration) : TpResult

superviseCallErr(callSessionID : in TpSessionID , errorIndication : in TpCallError) : TpResult

callFaultDetected(callSessionID : in TpSessionID , fault : in TpCallFault) : TpResult

getMoreDialledDigitsRes(callSessionID : in TpSessionID , digits : in TpString) : TpResult

getMoreDialledDigitsErr(callSessionID : in TpSessionID , errorIndication : in TpCallError) : TpResult

callEnded(callSessionID : in TpSessionID , report : in TpCallEndedReport) : TpResult

Method

routeRes ()

This asynchronous method indicates that the request to route the call to the destination was successful, and indicates the response of the destination party (for example, the call was answered, not answered, refused due to busy, etc.).

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

eventReport : in TpCallReport

Specifies the result of the request to route the call to the destination party. It also includes the network event, date and time, monitoring mode and event specific information such as release cause.

callLegSessionID : in TpSessionID

Specifies the sessionID of the associated call leg. This corresponds to the sesion ID returned at the routeReq() and can be used to correlate the response with the request.

Method

routeErr ()

This asynchronous method indicates that the request to route the call to the destination party was unsuccessful - the call could not be routed to the destination party (for example, the network was unable to route the call, the parameters were incorrect, the request was refused, etc.).
Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call..

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

callLegSessionID : in TpSessionID

Specifies the sessionID of the associated call leg. This corresponds to the sessionID returned at the routeReq() and can be used to correlate the error with the request.

Method

getCallInfoRes ()

This asynchronous method reports time information of the finished call or call attempt as well as release cause depending on which information has been requested by getCallInfoReq. This information may be used e.g. for charging purposes. The call information will possibly be sent after routeRes in all cases where the call or a leg of the call has been disconnected or a routing failure has been encountered.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

callInfoReport : in TpCallInfoReport

Specifies the call information requested.

Method

getCallInfoErr ()

This asynchronous method reports that the original request was erroneous, or resulted in an error condition.
Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

Method

superviseCallRes ()

This asynchronous method reports a call supervision event to the application when it has indicated it's interest in these kind of events.
It is also called when the connection is terminated before the supervision event occurs. Furthermore, this method is invoked as a response to the request also when a tariff
switch happens in the network during an active call.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call

report : in TpCallSuperviseReport

Specifies the situation which triggered the sending of the call supervision response.

usedTime : in TpDuration

Specifies the used time for the call supervision (in milliseconds).

Method

superviseCallErr ()

This asynchronous method reports a call supervision error to the application.
Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

Method

callFaultDetected ()

This method indicates to the application that a fault in the network has been detected. The call may or may not have been terminated.
The system deletes the call object. Therefore, the application has no further control of call processing. No report will be forwarded to the application.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call in which the fault has been detected.

fault : in TpCallFault

Specifies the fault that has been detected.

Method

getMoreDialledDigitsRes ()

This asynchronous method returns the collected digits to the application.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

digits : in TpString

Specifies the additional dialled digits if the string length is greater than zero.

Method

getMoreDialledDigitsErr ()

This asynchronous method reports an error in collecting digits to the application.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

Method

callEnded ()

This method indicates to the application that the call has terminated in the network. However, the application may still receive some results (e.g., getCallInfoRes) related to the call. The application is expected to deassign the call object after having received the callEnded.
Note that the event that caused the call to end might also be received separately if the application was monitoring for it..

Parameters

callSessionID : in TpSessionID

Specifies the call sessionID.

report : in TpCallEndedReport

Specifies the reason the call is terminated.

10.0 State Diagrams

10.1 Call Control State diagrams

The state transition diagram shows the application view on the Call Control Manager object.

[image: image20.wmf]Active

Creation of

CallControlManager

by Service Factory

Notification terminated

"new"

enableCallNotification

disableCallNotification

"a call object has terminated abnormally" ^IpAppCallControlManager.callAborted

"arrival of call related event"[notification active for this call event] /

create a Call object ^IpAppCallControlManager.callEventNotify

disableCallNotification

"a call object has terminated abnormally"

^IpAppCallControlManager.callAborted

IpAccess.terminateServiceAgreement

"notifications possible again"

 ^IpAppCallControlManager.callNotificationContinued

IpAccess.terminateServiceAgreement

"notifications not possible"

 IpAppCallControlManager.callNotificationInterrupted

createCall / create a Call object

 Figure 4 Application view on the Call Control Manager
 States

Active

In this state a relation between the Application and the Generic Call Control Service has been established. The state allows the applicatoin to indicate that it is interested in call related events. In case such an event occurs, the Call Control Manager will create a Call object and inform the application by invoking the operation callEventNotify() on the IpAppCallControlManager interface. The application can also indicate it is no longer interested in certain call related events by calling disableCallNotification().

Notification terminated

When the Call Control Manager is in the Notification terminated state, events requested with enableCallNotification() will not be forwarded to the application. There can be multiple reasons for this: for instance it might be that the application receives more notifications from the network than defined in the Service Level Agreement. Another example is that the Service has detected it receives no notifications from the network due to e.g. a link failure. In this state no requests for new notifications will be accepted.

10.2 Call Object State Diagram

The state transition diagram shows the application view on the Call object.

[image: image21.wmf]Network Released

Finished

Application

Released

Active

1 Party in

Call

2 Parties in

Call

Routing to

Destination(s)

In state Finshed and No Parties a timer

mechanism should prevent that the object

keeps occupying resources. In case the

timer expires, the object should be

destroyed and callFaultDetected should be

reported to the application.

1 Party in

Call

2 Parties in

Call

deassignCall

release

deassignCall

timeout ^callFaultDetected("timeout on release")

[no reports requested with getCallInfoReq AND

superviseCallReq]

"requested information ready" ^getCallInfoRes,

superviseCallRes

release

setCallChargePlan

getCallInfoReq

superviseCallReq

setAdviceOfCharge

routeReq[number of routing requests < 2]

No Parties

setCallChargePlan

superviseCallReq

getCallInfoReq

setAdviceOfCharge

Routing to

Destination(s)

routeReq[only 1 outstanding routeReq]

"disconnect from called party"[monitor mode = interrupt]

^routeRes, getCallInfoRes, superviseCallRes

"requested information

ready" ^getCallInfoRes,

superviseCallRes

[no reports requested with

getCallInfoReq AND

superviseCallReq]

"connection to called party unsuccessful"[

monitor mode = interrupt] ^routeRes

"routing aborted or invalid address" ^routeErr

"answer"

release

routeReq

deassign

"answer from called party"

"requests failed"[no more outstanding

routeReq operations] ^routeErr

"connection to called party unsuccessful"[no more

outstanding routeReq operations] ^routeRes

IpAppCallControlManager.callEventNotify

createCall

IpAppCallControlManager.callEventNotify(Answer from call party)

"fault detected" ^callFaultDetected

release

"call ends" ^callEnded

"call supervision event" ^superviseCallRes

"network event received for which

was monitored[routeRes]

deassignCall

Figure 5 Application view on the IpCall object
 States

No Parties

In this state the Call object has been created. The application can request the gateway for a certain type of charging of the call by calling setCallChargePlan(). The application can request for charging related information by calling getCallInfoReq(). Furthermore the application can request supervision of the call by calling superviseCallReq().

Active

In this state a call between two parties is being setup or present. Refer to the substates for more details
The application can request the gateway for a certain type of charging of the call by calling setCallChargePlan(). The application can request for charging related information by calling getCallInfoReq(). Furthermore the application can request supervision of the call by calling superviseCallReq(). It is also allowed to send Advice of Charge information by calling setAdviceOfCharge().

1 Party in Call

In this state there is one party in the call.
In case the call originated from the network the application can now request a connection to a called party be established by calling the operation routeReq(). When the calling party abandons the call before the application has invoked the routeReq() operation, the application is informed with callFaultDetected() and also callEnded() will be invoked. When the calling party abandons the call after the application has invoked routeReq() but before the call has actually been established, the gateway informs the application by invoking callEnded().
In case the called party was reached by issueing a routeReq() the application can request a connection to a second call party by calling the operation routeReq() again.
Otherwise, it depends on the actual number of invoked (and still outstanding or successful) routing requests whether the application can still call the routeReq() operation in order to setup a connection to a called party.
When the second party answers the call, a transition will be made to the 2 Parties in Call state.
In this state user interaction is possible

2 Parties in Call

In this state a successful connection between two parties is established.
In this state user interaction is possible, depending on the underlying network.

Routing to Destination(s)

In this state there is at least one outstanding routeReq.

Network Released

In this state the call has ended and the Gateway collects the possible call information requested with getCallInfoReq() and / or superviseCallReq(). In case the application has not requested additional call related information a transition to the Finished state is made immediately.

Finished

In this state the call has ended and no call related information is to be send to the application. The application can only release the call object. Calling the deassignCall() operation has the same effect. Note that the application has to release the object itself as good OO practice requires that when an object was created on behalf of a certain entity, this entity is also responsible for destroying it when the object is no longer needed.

Application Released

In this state the application has requested to release the Call object and the Gateway collects the possilbe call information requested with getCallInfoReq() and / or superviseCallReq(). In case the application has not requested additional call related information the Call object is destroyed immediately.
10.3 3GPP Call Object State Diagram

[image: image22.wmf]Network Released

Finished

Application

Released

release

deassignCall

timeout ^callFaultDetected("timeout on release")

Active

1 Party in

Call

2 Parties in

Call

1 Party in

Call

IpAppCallControlManager.callEventNotify

2 Parties in

Call

setCallChargePlan

getCallInfoReq

superviseCallReq

setAdviceOfCharge

routeReq[number of routing requests < 2]

"disconnect from called party"[monitor mode = interrupt] ^routeRes,

getCallInfoRes, superviseCallRes

"answer"

"connection to called party unsuccessful"[monitor mode = interrupt] ^routeRes

"routing aborted or invalid address" ^routeErr

deassignCall

[no reports requested with getCallInfoReq AND

superviseCallReq]

"requested information ready" ^getCallInfoRes,

superviseCallRes

release

"requested information ready"

^getCallInfoRes, superviseCallRes

[no reports requested with

getCallInfoReq AND

superviseCallReq]

In state Idle a timer mechanism should

prevent that the object keeps occupying

resources. In case the timer expires, the

object should be destroyed and

callFaultDetected should be reported to

the application.

deassignCall

release

"call ends : calling party abandoned" ^callEnded

"call ends : called party disconnects"[monitor for this event] ^callEnded, routeRes(party disconnect)

"call supervision event" ^superviseCallRes

"network event received for which was monitored ^routeRes

"call ends : calling party disconnects" ^callEnded

"fault detected"[fault cannot be communicated with network event] ^callFaultDetected

"call ends: called party disconnects"[no monitor for this event] ^callEnded

Figure 7-12: State Transition Diagram for Call

States
Active state

In this state a call between two parties is being setup or present. Refer to the substates for more details

The application can request the gateway for a certain type of charging of the call by calling setCallChargePlan(). The application can request for charging related information by calling getCallInfoReq(). Furthermore the application can request supervision of the call by calling superviseCallReq(). It is also allowed to send Advice Of Charge information by calling setAdviceOfCharge().

1 Party in Call state

When the Call is in this state a calling party is present. The application can now request that a connection to a called party be established by calling the method routeReq(). When the calling party abandons the call before the application has invoked the routeReq() operation, the gateway informs the application by invoking callFaultDetected() and also the operation callEnded() will be invoked. When the calling party abandons the call after the application has invoked routeReq() but before the call has actually been established, the gateway informs the application by invoking callEnded().

When the calling party answers the call, a transition will be made to the 2 Parties in Call state. In case the call can not be established because the application supplied an invalid address or the connection to the called party was unsuccessful while the application was monitoring for the latter in interrupt mode, the Call object will stay in this state

In this state user interaction is possible unless there is an outstanding routing request.

2 Parties in Call state

A connection between two parties has been established.

In case the calling party disconnects, the gateway informs the application by invoking callEnded().

When the called party disconnects different situations apply:

1. the application is monitoring for this event in interrupt mode: a transition is made to the 1 Party in Call state, the application is informed with routeRes with indication that the called party has disconnected and all requested reports are sent to the application. The application now again has control of the call.

2. the application is monitoring for this event but not in interrupt mode. In this case a transition is made to the Network Released state and the gateway informs the application by invoking the operation routeRes() and callEnded().

3. the application is not monitoring for this event. In this case the application is informed by the gateway invoking the callEnded() operation and a transition is made to the Network Released state.

Network released state

In this state the call has ended and the Gateway collects the possible call information requested with getCallInfoReq() and / or superviseCallReq(). The information will be returned to the application by invoking the methods getCallInfoRes() and / or superviseCallRes() on the application. Also when a call was unsuccessful these methods are used.In case the application has not requested additional call related information immediately a transition is made to state Idle.

Finished state

In this state the call has ended and no call related information is to be send to the application. The application can only release the Call object. Calling the deassingCall() method has the same effect. Note that the application has to release the object itself as good OO practice requires that when an object was created on behalf of a certain entity, this entity is also responsible for destroying it when the object is no longer needed.

Application released state.

In this state the application has requested to release the Call object and the Gateway collects the possible call information requested with getCallInfoReq(). In case the application has not requested additional call related information immediately the Call object is destroyed.

11.0 Call Control Data Definition

This document provides the generic call control data definitions necessary to support the API specification.

This document is written using Hypertext link, to aid navigation through the data structures. Underlined text represents Hypertext links.

The general format of a data definition specification is described below.

Data Type

This shows the name of the data type.

Description

This describes the data type.

Tabular Specification

This specifies the data types and values of the data type.

Example

If relevant, an example is shown to illustrate the data type.

11.1 Generic Call Control Event Notification Data Definitions

TpCallEventName

Defines the names of event being notified. The following events are supported. The values may be combined by a logical 'OR' function when requesting the notifications. Additional events that can be requested / received during the call process are found in the TpCallReportType data-type.

Name
Value
Description

P_EVENT_NAME_UNDEFINED
0
Undefined

P_EVENT_GCCS_OFFHOOK_EVENT
1
GCCS – Offhook event
This can be used for hot-line features. In case this event is set in the TpCallEventCriteria, only the originating address(es) may be specified in the criteria.

P_EVENT_GCCS_ADDRESS_COLLECTED_EVENT
2
GCCS – Address information collected
The network has collected the information from the A-party, but not yet analysed the information. The number can still be incomplete. Applications might set notifications for this event when part of the number analysis needs to be done in the application (see also the getMoreDialledDigits method on the call class).

P_EVENT_GCCS_ADDRESS_ANALYSED_EVENT
4
GCCS – Address information is analysed
The dialled number is a valid and complete number in the network.

P_EVENT_GCCS_CALLED_PARTY_BUSY
8
GCCS – Called party is busy

P_EVENT_GCCS_CALLED_PARTY_UNREACHABLE
16
GCCS – Called party is unreachable (e.g., the called party has a mobile telephone that is currently switched off).

P_EVENT_GCCS_NO_ANSWER_FROM_CALLED_PARTY
32
GCCS – No answer from called party

P_EVENT_GCCS_ROUTE_SELECT_FAILURE
64
GCCS – Failure in routing the call

P_EVENT_GCCS_ANSWER_FROM_CALL_PARTY
128
GCCS – Party answered call.

TpCallNotificationType

Defines the type of notification. Indicates whether it is related to the originating of the terminating user in the call.

Name
Value
Description

P_ORIGINATING
1
Indicates that the notification is related to the originating user in the call.

P_TERMINATING
2
Indicates that the notification is related to the terminating user in the call.

TpCallMonitorMode

Defines the mode that the call will monitor for events, or the mode that the call is in following a detected event.

Name
Value
Description

P_CALL_MONITOR_MODE_INTERRUPT
0
The call event is intercepted by the call control service and call processing is interrupted. The application is notified of the event and call processing resumes following an appropriate API call or network event (such as a call release)

P_CALL_MONITOR_MODE_NOTIFY
1
The call event is detected by the call control service but not intercepted. The application is notified of the event and call processing continues

P_CALL_MONITOR_MODE_DO_NOT_MONITOR
2
Do not monitor for the event

TpCallEventCriteria

Defines the Sequence of Data Elements that specify the criteria for a event notification.

Of the addresses only the Plan and the AddrString are used for the purpose of matching the notifications against the criteria.

Sequence Element Name
Sequence Element Type
Description

DestinationAddress
TpAddressRange
Defines the destination address or address range for which the notification is requested.

OriginatingAddress
TpAddressRange
Defines the origination address or a address range for which the notification is requested.

CallEventName
TpCallEventName
Name of the event(s)

CallNotificationType
TpCallNotificationType
Indicates whether it is related to the originating or the terminating user in the call.

MonitorMode
TpCallMonitorMode
Defines the mode that the call is in following the notification.
Monitor mode P_CALL_MONITOR_MODE_DO_NOT_MONITOR is not a legal value here.

TpCallEventInfo

Defines the Sequence of Data Elements that specify the information returned to the application in a Call event notification.

Sequence Element Name
Sequence Element Type

DestinationAddress
TpAddress

OriginatingAddress
TpAddress

OriginalDestinationAddress
TpAddress

RedirectingAddress
TpAddress

CallAppInfo
TpCallAppInfoSet

CallEventName
TpCallEventName

CallNotificationType
TpCallNotificationType

MonitorMode
TpCallMonitorMode

11.2 Generic Call Control Data Definitions

IpCall

Defines the address of an IpCall Interface.

IpCallRef

Defines a Reference to type IpCall.

IpAppCall

Defines the address of an IpAppCall Interface.

IpAppCallRef

Defines a Reference to type IpAppCall

IpAppCallRefRef

Defines a Reference to type IpAppCallRef.

TpCallIdentifierRef

Defines a Reference to type TpCallIdentifier.

TpCallIdentifier

Defines the Sequence of Data Elements that unambiguously specify the Generic Call object

Sequence Element Name
Sequence Element Type
Sequence Element Description

CallReference
IpCallRef
This element specifies the interface reference for the call object.

CallSessionID
TpSessionID
This element specifies the call session ID of the call.

IpAppCallControlManager

Defines the address of an IpAppCallControlManager Interface.

IpAppCallControlManagerRef

Defines a Reference to type IpAppCallControlManager.

IpCallControlManager

Defines the address of an IpCallControlManager Interface.

IpCallControlManagerRef

Defines a Reference to type IpCallControlManager.
TpAoCInfo

Defines the Sequence of Data Elements that specify the Advice Of Charge information to be sent to the terminal.

Sequence Element Name
Sequence Element Type
Description

ChargeOrder
TpAoCOrder
Charge order

Currency
TpString

Currency unit according to ISO-4217:1995

TpAoCOrder

Defines the Tagged Choice of Data Elements that specify the charge plan for the call.

Tag Element Type

TpAoCOrderCategory

Tag Element Value
Choice Element Type
Choice Element Name

P_CHARGE_ADVICE_INFO
TpChargeAdviceInfo
ChargeAdviceInfo

P_CHARGE_PER_TIME
TpChargePerTime
ChargePerTime

P_CHARGE_NETWORK
TpString
NetworkCharge

TpCallAoCOrderCategory

Defines the type of AoC data.

Name
Value
Description

P_CHARGE_ADVICE_INFO
0
Set of GSM Charge Advice Information elements according to 3G TS 22.024

P_CHARGE_PER_TIME
1
Charge per time

P_CHARGE_NETWORK
2
Operator specific charge plan specification, e.g. charging table name / charging table entry

TpChargeAdviceInfo

Defines the Sequence of Data Elements that specify the two sets of Advice of Charge parameters. The first set defines the current tariff. The second set may be used in case of a tariff switch in the network.

Sequence Element Name
Sequence Element Type
Description

CurrentCAI
TpCAIElements
Current tariff

NextCAI
TpCAIElements
Next tariff after tariff switch

TpCAIElements

Defines the Sequence of Data Elements that specify theCharging Advice Information elements according to 3G TS 22.024.

Sequence Element Name
Sequence Element Type
Description

UnitsPerInterval
TpInt32
Units per interval

SecondsPerTimeInterval
TpInt32
Seconds per time interval

ScalingFactor
TpInt32
Scaling factor

UnitIncrement
TpInt32
Unit increment

UnitsPerDataInterval
TpInt32
Units per data interval

SegmentsPerDataInterval
TpInt32
Segments per data interval

InitialSecsPerTimeInterval
TpInt32
Initial secs per time interval

TpChargePerTime
Defines the Sequence of Data Elements that specify the time based charging information.
Sequence Element Name
Sequence Element Type
Description

InitialCharge
TpInt32
Initial charge amount (in currency units * 0.0001)

CurrentChargePerMinute
TpInt32
Current tariff (in currency units * 0.0001)

NextChargePerMinute
TpInt32
Next tariff (in currency units * 0.0001) after tariff switch

Only used in setAdviceOfCharge()

TpCallAlertingMechanism

This data type is identical to a TpInt32, and defines the mechanism that will be used to alert a call party. The values of this data type are operator specific.

TpCallAppInfo

Defines the Tagged Choice of Data Elements that specify application-related call information.

Tag Element Type

TpCallAppInfoType

Tag Element Value
Choice Element Type
Choice Element Name

P_CALL_APP_ALERTING_MECHANISM
TPCallAlertingMechanism
CallAppAlertingMechanism

P_CALL_APP_NETWORK_ACCESS_TYPE
TpCallNetworkAccessType
CallAppNetworkAccessType

P_CALL_APP_TELE_SERVICE
TpCallTeleService
CallAppTeleService

P_CALL_APP_BEARER_SERVICE
TpCallBearerService
CallAppBearerService

P_CALL_APP_PARTY_CATEGORY
TpCallPartyCategory
CallAppPartyCategory

P_CALL_APP_PRESENTATION_ADDRESS
TpAddress
CallAppPresentationAddress

P_CALL_APP_GENERIC_INFO
TpString
CallAppGenericInfo

P_CALL_APP_ADDITIONAL_ADDRESS
TpAddress
CallAppAdditionalAddress

TpCallAppInfoType

Defines the type of call application-related specific information.

Name
Value
Description

P_CALL_APP_UNDEFINED
0
Undefined

P_CALL_APP_ALERTING_MECHANISM
1
The alerting mechanism or pattern to use

P_CALL_APP_NETWORK_ACCESS_TYPE
2
The network access type (e.g. ISDN)

P_CALL_APP_TELE_SERVICE
3
Indicates the tele-service (e.g. telephony)

P_CALL_APP_BEARER_SERVICE
4
Indicates the bearer service (e.g. 64kb/s unrestricted data).

P_CALL_APP_PARTY_CATEGORY
5
The category of the calling party

P_CALL_APP_PRESENTATION_ADDRESS
6
The address to be presented to other call parties

P_CALL_APP_GENERIC_INFO
7
Carries unspecified service-service information

P_CALL_APP_ADDITIONAL_ADDRESS
8
Indicates an additional address

TpCallAppInfoSet

Defines a Numbered Set of Data Elements of TpCallAppInfo.

TpCallBearerService

This data type defines the type of call application-related specific information (Q.931: Information Transfer Capability, and 3G TS 22.002)
Name
Value
Description

P_CALL_BEARER_SERVICE_UNKNOWN
0
Bearer capability information unknown at this time

P_CALL_BEARER_SERVICE_SPEECH
1
Speech

P_CALL_BEARER_SERVICE_DIGITALUNRESTRICTED
2
Unrestricted digital information

P_CALL_BEARER_SERVICE_DIGITALRESTRICTED
3
Restricted digital information

P_CALL_BEARER_SERVICE_AUDIO
4
3.1 kHz audio

P_CALL_BEARER_SERVICE_ DIGITALUNRESTRICTEDTONES
5
Unrestricted digital information with tomes/announcements

P_CALL_BEARER_SERVICE_VIDEO
6
Video

TpCallChargePlan

Defines the Sequence of Data Elements that specify the charge plan for the call.

Sequence Element Name
Sequence Element Type
Description

ChargeOrderType
TpCallChargeOrder
Charge order

Currency
TpString

Currency unit according to ISO-4217:1995

AdditionalInfo
TpString
Descriptive string which is sent to the billing system without prior evaluation. Could be included in the ticket.

Valid Currencies are:

ADP, AED, AFA, ALL, AMD, ANG, AON, AOR, ARS, ATS, AUD, AWG, AZM, BAM,

BBD, BDT, BEF, BGL, BGN, BHD, BIF, BMD, BND, BOB, BOV, BRL, BSD, BTN,

BWP, BYB, BZD, CAD, CDF, CHF, CLF, CLP, CNY, COP, CRC, CUP, CVE, CYP,

CZK, DEM, DJF, DKK, DOP, DZD, ECS, ECV, EEK, EGP, ERN, ESP, ETB, EUR,

FIM, FJD, FKP, FRF, GBP, GEL, GHC, GIP, GMD, GNF, GRD, GTQ, GWP, GYD,

HKD, HNL, HRK, HTG, HUF, IDR, IEP, ILS, INR, IQD, IRR, ISK, ITL, JMD,

JOD, JPY, KES, KGS, KHR, KMF, KPW, KRW, KWD, KYD, KZT, LAK, LBP, LKR,

LRD, LSL, LTL, LUF, LVL, LYD, MAD, MDL, MGF, MKD, MMK, MNT, MOP, MRO,

MTL, MUR, MVR, MWK, MXN, MXV, MYR, MZM, NAD, NGN, NIO, NLG, NOK, NPR,

NZD, OMR, PAB, PEN, PGK, PHP, PKR, PLN, PTE, PYG, QAR, ROL, RUB, RUR,

RWF, SAR, SBD, SCR, SDD, SEK, SGD, SHP, SIT, SKK, SLL, SOS, SRG, STD,

SVC, SYP, SZL, THB, TJR, TMM, TND, TOP, TPE, TRL, TTD, TWD, TZS, UAH,

UGX, USD, USN, USS, UYU, UZS, VEB, VND, VUV, WST, XAF, XAG, XAU, XBA,

XBB, XBC, XBD, XCD, XDR, XFO, XFU, XOF, XPD, XPF, XPT, XTS, XXX, YER,

YUM, ZAL, ZAR, ZMK, ZRN, ZWD.

XXX is used for transactions where no currency is involved.

TpCallChargeOrder

Defines the Tagged Choice of Data Elements that specify the charge plan for the call.

Tag Element Type

TpCallChargeOrderCategory

Tag Element Value
Choice Element Type
Choice Element Name

P_CALL_CHARGE_PER_TIME
TpChargePerTime
ChargePerTime

P_CALL_CHARGE_NETWORK
TpString
NetworkCharge

TpCallChargeOrderCategory

Defines the type of charging to be applied

Name
Value
Description

P_CALL_CHARGE_PER_TIME
0
Charge per time

P_CALL_CHARGE_NETWORK
1
Operator specific charge plan specification, e.g. charging table name / charging table entry

TpCallError

Defines the Sequence of Data Elements that specify the additional information relating to acall error.

Sequence Element Name
Sequence Element Type

ErrorTime
TpDateAndTime

ErrorType
TpCallErrorType

AdditionalErrorInfo
TpCallAdditionalErrorInfo

TpCallAdditionalErrorInfo

Defines the Tagged Choice of Data Elements that specify additional call error and call error specific information. This is also used to specify call leg errors and information errors.

Tag Element Type

TpCallErrorType

Tag Element Value
Choice Element Type
Choice Element Name

P_CALL_ERROR_UNDEFINED
NULL
Undefined

P_CALL_ERROR_INVALID_ADDRESS
TpAddressError
CallErrorInvalidAddress

P_CALL_ERROR_INVALID_STATE
NULL
Undefined

TpCallErrorType

Defines a specific call error.

Name
Value
Description

P_CALL_ERROR_UNDEFINED
0
Undefined; the method failed or was refused, but no specific reason can be given.

P_CALL_ERROR_INVALID_ADDRESS
1
The operation failed because an invalid address was given

P_CALL_ERROR_INVALID_STATE
2
The call was not in a valid state for the requested operation

TpCallFault

Defines the cause of the call fault detected.

Name
Value
Description

P_CALL_FAULT_UNDEFINED
0
Undefined

P_CALL_TIMEOUT_ON_RELEASE
1
This fault occurs when the final report has been sent to the application, but the application did not explicitly release or deassign the call object, within a specified time.

The timer value is operator specific.

P_CALL_TIMEOUT_ON_INTERRUPT
2
This fault occurs when the application did not instruct the gateway how to handle the call within a specified time, after the gateway reported an event that was requested by the application in interrupt mode.

The timer value is operator specific.

TpCallEndedReport

Defines the Sequence of Data Elements that specify the reason for the call ending.
Sequence Element Name
Sequence Element Type

CallLegSessionID
TpSessionID
The leg that initiated the release of the call.

If the call release was not initiated by the leg, then this value is set to –1.

Cause
TpCallReleaseCause
The cause of the call ending.

TpCallInfoReport

Defines the Sequence of Data Elements that specify the call information requested. Information that was not requested is invalid.
Sequence Element Name
Sequence Element Type
Description

CallInfoType
TpCallInfoType
The type of call report.

CallInitiationStartTime
TpDateAndTime
The time and date when the call, or follow-on call, was started.

CallConnectedToResourceTime
TpDateAndTime
The date and time when the call was connected to the resource.

This data element is only valid when information on user interaction is reported.

CallConnectedToDestinationTime
TpDateAndTime
The date and time when the call was connected to the destination (i.e., when the destination answered the call). If the destination did not answer, the time is set to an empty string.

This data element is invalid when information on user interaction is reported with an intermediate report.

CallEndTime
TpDateAndTime
The date and time when the call or follow-on call or user interaction was terminated.

Cause
TpCallReleaseCause
The cause of the termination.

A callInfoReport will be generated at the end of user interaction and at the end of the connection with the associated address. This means that either the destination related information is present or the resource related information, but not both.
TpCallInfoType

Defines the type of call information requested and reported. The values may be combined by a logical 'OR' function.

Name
Value
Description

P_CALL_INFO_UNDEFINED
00h
Undefined

P_CALL_INFO_TIMES
01h
Relevant call times

P_CALL_INFO_RELEASE_CAUSE
02h
Call release cause

P_CALL_INFO_INTERMEDIATE
04h
Send only intermediate reports. When this is not specified the information report will only be sent when the call has ended. When intermediate reports are requested a report will be generated between follow-on calls, i.e., when a party leaves the call.

TpCallNetworkAccessType

This data defines the bearer capabilities associated with the call. (3G TS 24.002) This information is network operator specific and may not always be available because there is no standard protocol to retrieve the information.
Name
Value
Description

P_CALL_NETWORK_ACCESS_TYPE_UNKNOWN
0
Network type information unknown at this time

P_CALL_NETWORK_ACCESS_TYPE_POT
1
POTS

P_CALL_NETWORK_ACCESS_TYPE_ISDN
2
ISDN

P_CALL_NETWORK_ACCESS_TYPE_DIALUPINTERNET
3
Dial-up Internet

P_CALL_NETWORK_ACCESS_TYPE_XDSL
4
xDLS

P_CALL_NETWORK_ACCESS_TYPE_WIRELESS
5
Wireless

TpCallPartyCategory

This data type defines the category of a calling party. (Q.763: Calling Party Category / Called Party Category)
Name
Value
Description

P_CALL_PARTY_CATEGORY_UNKNOWN
0
calling party's category unknown at this time

P_CALL_PARTY_CATEGORY_OPERATOR_F
1
operator, language French

P_CALL_PARTY_CATEGORY_OPERATOR_E
2
operator, language English

P_CALL_PARTY_CATEGORY_OPERATOR_G
3
operator, language German

P_CALL_PARTY_CATEGORY_OPERATOR_R
4
operator, language Russian

P_CALL_PARTY_CATEGORY_OPERATOR_S
5
operator, language Spanish

P_CALL_PARTY_CATEGORY_ORDINARY_SUB
6
ordinary calling subscriber

P_CALL_PARTY_CATEGORY_PRIORITY_SUB
7
calling subscriber with priority

P_CALL_PARTY_CATEGORY_DATA_CALL
8
data call (voice band data)

P_CALL_PARTY_CATEGORY_TEST_CALL
9
test call

P_CALL_PARTY_CATEGORY_PAYPHONE
10
payphone

TpCallReleaseCause

Defines the Sequence of Data Elements that specify the cause of the release of a call.

Sequence Element Name
Sequence Element Type

Value
TpInt32

Location
TpInt32

Note: the Value and Location are specified as in ITU-T recommendation Q.850.

TpCallServiceCode

Defines the Sequence of Data Elements that specify the service code and type of service code received during a call. The service code type defines how the value string should be interpreted.

Sequence Element Name
Sequence Element Type

CallServiceCodeType
TpCallServiceCodeType

ServiceCodeValue
TpString

TpCallServiceCodeType

Defines the different types of service codes that can be received during the call.

Name
Value
Description

P_CALL_SERVICE_CODE_UNDEFINED
0
The type of service code is unknown. The corresponding string is operator specific.

P_CALL_SERVICE_CODE_DIGITS
1
The user entered a digit sequence during the call. The corresponding string is an ascii representation of the received digits.

P_CALL_SERVICE_CODE_FACILITY
2
A facility information element is received. The corresponding string contains the facility information element as defined in ITU Q.932

P_CALL_SERVICE_CODE_U2U
3
A user-to-user message was received. The associated string contains the content of the user-to-user information element.

P_CALL_SERVICE_CODE_HOOKFLASH
4
The user performed a hookflash, optionally followed by some digits. The corresponding string is an ascii representation of the entered digits.

P_CALL_SERVICE_CODE_RECALL
5
The user pressed the register recall button, optionally followed by some digits. The corresponding string is an ascii representation of the entered digits.

TpCallTeleService

This data type defines the tele-service associated with the call. (Q.763: User Teleservice Information, Q.931: High Layer Compatitibility Information, and 3G TS 22.003)
Name
Value
Description

P_CALL_TELE_SERVICE_UNKNOWN
0
Teleservice information unknown at this time

P_CALL_TELE_SERVICE_TELEPHONY
1
Telephony

P_CALL_TELE_SERVICE_FAX_2_3
2
Facsimile Group 2/3

P_CALL_TELE_SERVICE_FAX_4_I
3
Facsimile Group 4, Class I

P_CALL_TELE_SERVICE_FAX_4_II_III
4
Facsimile Group 4, Classes II and III

P_CALL_TELE_SERVICE_VIDEOTEX_SYN
5
Syntax based Videotex

P_CALL_TELE_SERVICE_VIDEOTEX_INT
6
International Videotex interworking via gateways or interworking units

P_CALL_TELE_SERVICE_TELEX
7
Telex service

P_CALL_TELE_SERVICE_MHS
8
Message Handling Systems

P_CALL_TELE_SERVICE_OSI
9
OSI application

P_CALL_TELE_SERVICE_FTAM
10
FTAM application

P_CALL_TELE_SERVICE_VIDEO
11
Videotelephony

P_CALL_TELE_SERVICE_VIDEO_CONF
12
Videoconferencing

P_CALL_TELE_SERVICE_AUDIOGRAPH_CONF
13
Audiographic conferencing

P_CALL_TELE_SERVICE_MULTIMEDIA
14
Multimedia services

P_CALL_TELE_SERVICE_CS_INI_H221
15
Capability set of initial channel of H.221

P_CALL_TELE_SERVICE_CS_SUB_H221
16
Capability set of subsequent channel of H.221

P_CALL_TELE_SERVICE_CS_INI_CALL
17
Capability set of initial channel associated with an active 3.1 kHz audio or speech call.

P_CALL_TELE_SERVICE_DATATRAFFIC
18
Data traffic.

P_CALL_TELE_SERVICE_EMERGENCY_CALLS
19
Emergency Calls

P_CALL_TELE_SERVICE_SMS_MT_PP
20
Short message MT/PP

P_CALL_TELE_SERVICE_SMS_MO_PP
21
Short message MO/PP

P_CALL_TELE_SERVICE_CELL_BROADCAST
22
Cell Broadcast Service

P_CALL_TELE_SERVICE_ALT_SPEECH_FAX_3
23
Alternate speech and facsimile group 3

P_CALL_TELE_SERVICE_AUTOMATIC_FAX_3
24
Automatic Facsimile group 3

P_CALL_TELE_SERVICE_VOICE_GROUP_CALL
25
Voice Group Call Service

P_CALL_TELE_SERVICE_VOICE_BROADCAST
26
Voice Broadcast Service

TpCallSuperviseReport

Defines the responses from the call control service for calls that are supervised. The values may be combined by a logical 'OR' function.

Name
Value
Description

P_CALL_SUPERVISE_TIMEOUT
01h
The call supervision timer has expired

P_CALL_SUPERVISE_CALL_ENDED
02h
The call has ended, either due to timer expiry or call party release. In case the called party disconnects but a follow-on call can still be made also this indication is used.

P_CALL_SUPERVISE_TONE_APPLIED
04h
A warning tone has been applied. This is only sent in combination with P_CALL_SUPERVISE_TIMEOUT

P_CALL_SUPERVISE_UI_FINISHED
08h
The user interaction has finished.

TpCallSuperviseTreatment

Defines the treatment of the call by the call control service when the call supervision timer expires. The values may be combined by a logical 'OR' function.

Name
Value
Description

P_CALL_SUPERVISE_RELEASE
01h
Release the call when the call supervision timer expires

P_CALL_SUPERVISE_RESPOND
02h
Notify the application when the call supervision timer expires

P_CALL_SUPERVISE_APPLY_TONE
04h
Send a warning tone to the originating party when the call supervision timer expires. If call release is requested, then the call will be released following the tone after an administered time period

TpCallReport

Defines the Sequence of Data Elements that specify the call report and call leg report specific information.
Sequence Element Name
Sequence Element Type

MonitorMode
TpCallMonitorMode

CallEventTime
TpDateAndTime

CallReportType
TpCallReportType

AdditionalReportInfo
TpCallAdditionalReportInfo

TpCallAdditionalReportInfo

Defines the Tagged Choice of Data Elements that specify additional call report information for certain types of reports..

Tag Element Type

TpCallReportType

Tag Element Value
Choice Element Type
Choice Element Name

P_CALL_REPORT_UNDEFINED
NULL
Undefined

P_CALL_REPORT_PROGRESS
NULL
Undefined

P_CALL_REPORT_ALERTING
NULL
Undefined

P_CALL_REPORT_ANSWER
NULL
Undefined

P_CALL_REPORT_BUSY
TpCallReleaseCause
Busy

P_CALL_REPORT_NO_ANSWER
NULL
Undefined

P_CALL_REPORT_DISCONNECT
TpCallReleaseCause
CallDisconnect

P_CALL_REPORT_REDIRECTED
TpAddress
ForwardAddress

P_CALL_REPORT_SERVICE_CODE
TpCallServiceCode
ServiceCode

P_CALL_REPORT_ROUTING_FAILURE
TpCallReleaseCause
RoutingFailure

TpCallReportRequest

Defines the Sequence of Data Elements that specify the criteria relating to call report requests.

Sequence Element Name
Sequence Element Type

MonitorMode
TpCallMonitorMode

CallReportType
TpCallReportType

AdditionalReportCriteria
TpCallAdditionalReportCriteria

TpCallAdditionalReportCriteria

Defines the Tagged Choice of Data Elements that specify specific criteria.

Tag Element Type

TpCallReportType

Tag Element Value
Choice Element Type
Choice Element Name

P_CALL_REPORT_UNDEFINED
NULL
Undefined

P_CALL_REPORT_PROGRESS
NULL
Undefined

P_CALL_REPORT_ALERTING
NULL
Undefined

P_CALL_REPORT_ANSWER
NULL
Undefined

P_CALL_REPORT_BUSY
NULL
Undefined

P_CALL_REPORT_NO_ANSWER
TpDuration
NoAnswerDuration

P_CALL_REPORT_DISCONNECT
NULL
Undefined

P_CALL_REPORT_REDIRECTED
NULL
Undefined

P_CALL_REPORT_SERVICE_CODE
TpCallServiceCode
ServiceCode

P_CALL_REPORT_ROUTING_FAILURE
NULL
Undefined

TpCallReportRequestSet

Defines a Numbered Set of Data Elements of TpCallReportRequest.

TpCallReportType

Defines a specific call event report type.

Name
Value
Description

P_CALL_REPORT_UNDEFINED
0
Undefined

P_CALL_REPORT_PROGRESS
1
Call routing progress event:an indication from the network that progress has been made in routing the call to the requested call party.

P_CALL_REPORT_ALERTING
2
Call is alerting at the call party

P_CALL_REPORT_ANSWER
3
Call answered at address

P_CALL_REPORT_BUSY
4
Called address refused call due to busy

P_CALL_REPORT_NO_ANSWER
5
No answer at called address

P_CALL_REPORT_DISCONNECT
6
The call party has disconnected.

P_CALL_REPORT_REDIRECTED
7
Call redirected to new address: an indication from the network that the call has been redirected to a new address.

P_CALL_REPORT_SERVICE_CODE
8
Mid-call service code received

P_CALL_REPORT_ROUTING_FAILURE
9
Call routing failed - re-routing is possible

TpCallLoadControlMechanism

Defines the Tagged Choice of Data Elements that specify the applied mechanism and associated parameters.

Tag Element Type

TpCallLoadControlMechanismType

Tag Element Value
Choice Element Type
Choice Element Name

P_CALL_LOAD_CONTROL_PER_INTERVAL
TpCallLoadControlIntervalRate
CallLoadControlPerInterval

TpCallLoadControlIntervalRate

Defines the call admission rate of the call load control mechanism used. This data type indicates the interval (in milliseconds) between calls that are admitted.
Name
Value
Description

P_CALL_LOAD_CONTROL_ADMIT_NO_CALLS
0
Infinite interval

(do not admit any calls)

1 - 60000
Duration in milliseconds

TpCallLoadControlMechanismType

Defines the type of call load control mechanism to use.

Name
Value
Description

P_CALL_LOAD_CONTROL_PER_INTERVAL
1
admit one call per interval

TpCallTreatment

Defines the Sequence of Data Elements that specify the the treatment for calls that will be handled only by the network (for example, call which are not admitted by the call load control mechanism).
Sequence Element Name
Sequence Element Type

ReleaseCause
TpCallReleaseCause

AdditionalTreatmentInfo
TpCallAdditionalTreatmentInfo

TpCallAdditionalTreatmentInfo

Defines the Tagged Choice of Data Elements that specify the information to be sent to a call party.

Tag Element Type

TpCallTreatmentType

Tag Element Value
Choice Element Type
Choice Element Name

P_CALL_TREATMENT_DEFAULT
NULL
Undefined

P_CALL_TREATMENT_RELEASE
NULL
Undefined

P_CALL_TREATMENT_SIAR
TpUICallInfoID
InformationToSend

TpCallTreatmentType

Defines the treatment for calls that will be handled only by the network.
Name
Value
Description

P_CALL_TREATMENT_DEFAULT
0
Default treatment

P_CALL_TREATMENT_RELEASE
1
Release the call

P_CALL_TREATMENT_SIAR
2
Send information to the user, and release the call (Send Info & Release)

TpCallEventCriteriaResultSetRef

Defines a refernce to TpCallEventCriteriaResultSet.

TpCallEventCriteriaResultSet

Defines a set of TpCallEventCriteriaResult.

TpCallEventCriteriaResult

Defines a sequence of data elements that specify a requested call event notification criteria with the associated assignmentID.

Sequence Element Name
Sequence Element Type
Sequence Element Description

EventCriteria
TpCallEventCriteria
The event criteria that were specified by the application.

AssignmentID
TpInt32
The associated assignmentID. This can be used to disable the notification.

�Rose:CClassDiagram:MDLFilename=C\x3A\x5Cdata\x5CStandardisatie\x5CParlay\x5CParlay\x202.1\x5Cmodel_docs_2_1_pre3\x5Cparlay21pre2.mdl,DiagramID=38FEF72301F4

�Rose:CClassDiagram:MDLFilename=C\x3A\x5Cdata\x5CStandardisatie\x5CParlay\x5CParlay\x202.1\x5Cmodel_docs_2_1_pre3\x5Cparlay21pre2.mdl,DiagramID=38AC5DE80180

�Rose:CClassDiagram:MDLFilename=C\x3A\x5Cdata\x5CStandardisatie\x5CParlay\x5CParlay\x202.1\x5Cmodel_docs_2_1_pre3\x5Cparlay21pre2.mdl,DiagramID=38AC5D5E036C

PAGE
42

_1006924015.ppt

SCF

SA-GF

Distributed

Service Logic

IF8

IF9

Figure 1

_1014809645.ppt

Framework

operator

admin

Enterprise

operator

admin tool

Service

supplier

admin tool

1

4

3

5

Not in scope of this version of the API

Telecom Network

Not in scope of this version of the API

2

6

Client

Application

Not in

 scope

of this API version

