3GPP TSG_CN WG5#7

Tdoc N5-000267

Sophia Antipolis, France

7th – 8th November, 2000

Source:
Ericsson
Title:
New STDs for Call Control based on discussion N5-000156 from Bristol

Agenda item:

Document for:
Approval

1. Introduction

During the Bristol meeting document TD156 was discussed. Based on the agreements in this document the some of the STDs for Call Control have been revised. This contribution shows the new STDs.

2 Generic Call Control.

Impact resulting from the discussion around TD 156 on the IpCall is basically addition of getMoreDialledDigits() operation and a transition back to „Routing to Destinations“ in case the first party in the call disconnects before other parties answer.

Call Object State Diagram

The state transition diagram shows the application view on the Call object.

[image: image1.wmf]Network Released

Finished

Application

Released

In state Finshed and No Parties a timer

mechanism should prevent that the object

keeps occupying resources. In case the

timer expires, the object should be

destroyed and callFaultDetected should be

reported to the application.

deassignCall

release

deassignCall

timeout ^callFaultDetected("timeout on release")

[no reports requested with getCallInfoReq AND

superviseCallReq]

"requested information ready" ^getCallInfoRes,

superviseCallRes

release

No Parties

setCallChargePlan

superviseCallReq

getCallInfoReq

setAdviceOfCharge

"requested information

ready" ^getCallInfoRes,

superviseCallRes

[no reports requested with

getCallInfoReq AND

superviseCallReq]

release

deassign

createCall

Active

Routing to

Destination(s)

2 Parties in

Call

1 Party in

Call

Routing to

Destination(s)

2 Parties in

Call

1 Party in

Call

"network event received for which

was monitored[routeRes]

"call supervision event" ^superviseCallRes

setAdviceOfCharge

superviseCallReq

getCallInfoReq

setCallChargePlan

"fault detected" ^callFaultDetected

release

"call ends" ^callEnded

deassignCall

routeReq[number of routing requests < 2]

"disconnect from called party"[monitor mode = interrupt]

^routeRes, getCallInfoRes, superviseCallRes

IpAppCallControlManager.callEventNotify

IpAppCallControlManager.callEventNotify(Answer from call party)

routeReq[only 1 outstanding routeReq]

routeReq

getMoreDialledDigitsReq[no routeReq outstanding]

"connection to called party unsuccessful"[

monitor mode = interrupt] ^routeRes

"routing aborted or invalid address" ^routeErr

"answer"

"Digits collected" ^getMoreDialledDigitsRes

"Error in collecting digits" ^getMoreDialledDigitsErr

"party released"[release does not terminate the call]

"answer from called party"

"requests failed"[no more outstanding

routeReq operations] ^routeErr

"connection to called party unsuccessful"[no more

outstanding routeReq operations] ^routeRes

Figure 1 Application view on the IpCall object
 States

No Parties

In this state the Call object has been created. The application can request the gateway for a certain type of charging of the call by calling setCallChargePlan(). The application can request for charging related information by calling getCallInfoReq(). Furthermore the application can request supervision of the call by calling superviseCallReq().

Active

In this state a call between two parties is being setup or present. Refer to the substates for more details
The application can request the gateway for a certain type of charging of the call by calling setCallChargePlan(). The application can request for charging related information by calling getCallInfoReq(). Furthermore the application can request supervision of the call by calling superviseCallReq(). It is also allowed to send Advice of Charge information by calling setAdviceOfCharge().

1 Party in Call

In this state there is one party in the call.
In case the call originated from the network the application can now request for more digits in case more digits are needed or the application can request a connection to a called party be established by calling the operation routeReq(). When the calling party abandons the call before the application has invoked the routeReq() operation, the application is informed with callFaultDetected() and also callEnded() will be invoked. When the calling party abandons the call after the application has invoked routeReq() but before the call has actually been established, the gateway informs the application by invoking callEnded().
In case the called party was reached by issueing a routeReq() the application can request a connection to a second call party by calling the operation routeReq() again.
Otherwise, it depends on the actual number of invoked (and still outstanding or successful) routing requests whether the application can still call the routeReq() operation in order to setup a connection to a called party. Also in this case the called party can disconnect before another party is reached. In this case depending on the actual configuration, the call is ended or a transition is made back to the Routing to Destinations substate.
When the second party answers the call, a transition will be made to the 2 Parties in Call state.
In this state user interaction is possible

2 Parties in Call

In this state a successful connection between two parties is established.
In this state user interaction is possible, depending on the underlying network.

Routing to Destination(s)

In this state there is at least one outstanding routeReq.

Network Released

In this state the call has ended and the Gateway collects the possible call information requested with getCallInfoReq() and / or superviseCallReq(). In case the application has not requested additional call related information a transition to the Finished state is made immediately.

Finished

In this state the call has ended and no call related information is to be send to the application. The application can only release the call object. Calling the deassignCall() operation has the same effect. Note that the application has to release the object itself as good OO practice requires that when an object was created on behalf of a certain entity, this entity is also responsible for destroying it when the object is no longer needed.

Application Released

In this state the application has requested to release the Call object and the Gateway collects the possilbe call information requested with getCallInfoReq() and / or superviseCallReq(). In case the application has not requested additional call related information the Call object is destroyed immediately.

3. Multi-party call control

Impact resulting from the discussion around TD 156 on the IpMultiPartyCall is basically addition of getMoreDialledDigits() operation, a transition back to „Routing to Destinations“ in case the first party in the call disconnects before other parties answer and showing that getCallLegs is possible in all states.

The impact on the IpCallLeg is still under discussion on the issues list and is therefore not captured in this contribution.

5.1 Multi-Party Call State diagrams

The state transition diagram shows the application view on the MultiParty Call object. The diagram is an extension to the state diagram of the Call object in the sense that more than 2 parties are allowed to participate in a call.

[image: image3.wmf]Active

2 .. n Parties in Call

1 Party in

Call

Routing to

Destination(s)

routeReq[number active + requested parties < max allowed number

parties in call] / increase number of active + requested parties

Network

Released

setCallChargePlan

superviseCallReq

getCallInfoReq

setAdviceOfCharge

No Parties

Application

Released

Finished

release

deassignCall

setCallChargePlan

superviseCallReq

getCallInfoReq

setAdviceOfCharge

2 .. n Parties in Call

1 Party in

Call

Routing to

Destination(s)

"disconnect from call party"

[monitor mode = interrupt && 2 parties in call]

In states:

- No Parties,

- Finished

a timer mechanism should prevent that

the object keeps occupying resources. In

case the timer expires, the object should

be destroyed and callFaultDetected

should be reported to the application.

"requested information ready" ^getCallInfoRes,

superviseCallRes

deassignCall

[no reports requested with getCallInfoReq AND

superviseCallReq]

release

"requested information ready" ^getCallInfoRes, superviseCallRes

[no reports requested with getCallInfoReq AND superviseCallReq]

[no reports requested with getCallInfoReq AND superviseCallReq]

ALL

STATES

getCallLegs

"answer from called party"

"requests failed"[no more outstanding

routeReq operations] ^routeErr

"routing unsuccessfull[not more

outstanding routeReq operations]

^routeRes

"answer from called party"

"party released"["release does not terminate call"]

release

routeReq

deassign

getMoreDialledDigits[no outstanding routeReqs]

IpMultiPartyCallControlManager.createCall

IpAppMultiPartyCallControlManager.callEventNotify

IpAppMultiPartyCallControlManager.callEventNotify(answer

from called party)

"call ends" ^callEnded

release

deassignCall

"routing aborted or invalid address" / decrease number of requested + active parties ^routeErr

"network event received that was monitored" ^routeRes

"connection to called party unsuccessful" / decrease number of requested + active parties ^routeRes

"disconnect from called party" ^routeRes, getCallInfoRes(intermediate report)

"call supervision event" ^superviseCallRes

"fault detected" ^callFaultDetected

Figure 2 Application view on the MultiParty Call object
 States

No Parties

In this state the Call object has been created. The application can request the gateway for a certain type of charging of the call by calling setCallChargePlan(). The application can request for charging related information by calling getCallInfoReq(). Furthermore the application can request supervision of the call by calling superviseCallReq().

Active

In this state a call between two parties is being setup or present. Refer to the substates for more details
The application can request the gateway for a certain type of charging of the call by calling setCallChargePlan(). The application can request for charging related information by calling getCallInfoReq(). Furthermore the application can request supervision of the call by calling superviseCallReq(). It is also allowed to send Advice of Charge information by calling setAdviceOfCharge().

1 Party in Call

In this state there is one party in the call.
In case the call originated from the network the application can now request for more digits in case the address is not yet complete or the application can request for a connection to a called party be established by calling the operation routeReq().
In case the called party was reached by issuing a route request, the application can request a connection to an additional party by calling the operation routeReq() again.
Otherwise, it depends on the actual number of invoked (and still outstanding or successful) routing requests whether the application can still call the routeReq() operation in order to setup a connection to a called party.
Also in this case the called party can disconnect before another party is reached. In this case depending on the actual configuration, the call is ended or a transition is made back to the Routing to Destinations substate.
In case there are no outstanding routing request and the application releases the leg corresponding to the 1 party in call state, a transition is made to the Application Released state.
In case there are no outstanding routing request and the application releases the leg corresponding to the 1 party in call state, a transition is made to the Application Released state.
In this state user interaction is possible

2 .. n Parties in Call

In this state a successful connection between at least two parties is established.
In this state user interaction is possible, depending on the underlying network.

Routing to Destination(s)

In this state there is at least one outstanding routeReq.

Network Released

In this state the call has ended and the Gateway collects the possible call information requested with getCallInfoReq() and / or superviseCallReq(). In case the application has not requested additional call related information a transition to the Idle state is made immediately.

Finished

In this state the call has ended and no call related information is to be send to the application. The application can only release the call object. Calling the deassignCall() operation has the same effect. Note that the application has to release the object itself as good OO practice requires that when an object was created on behalf of a certain entity, this entity is also responsible for destroying it when the object is no longer needed.

Application Released

In this state the application has requested to release the Call object and the Gateway collects the possilbe call information requested with getCallInfoReq() and / or superviseCallReq(). In case the application has not requested additional call related information the Call object is destroyed immediately.

5.2 Multi-Party Call Leg State Diagram

[image: image5.wmf]Idle

Routing

Progress

Alerting

Redirected

Connected

Attached

Detached

Failed or

Disconnected

All States

Attached

Detached

EventReportReq

getInfoReq

"call progress event"

^EventReportRes

"answer"

^EventReportRes

"midcall event" ^EventReportRes

"invalid address"

[when routed with routeReq]

^EventReportErr

"disconnect" ^EventReportRes

"routing failed, refused busy or

no answer" ^EventReportRes

"last report"

"call object is destructed"

release

getCall

detachMedia

attachMedia

[when routed with routeReq]

[when routed with route()]

Incoming

"answer from other party"

Progress

Alerting

Redirected

route

only send result

when monitor for

this event was

requested

getLastRedirectedAddress

eventReportReq

getInfoReq

IpMultiPartyCall.routeReq

IpMultiPartyCall.createCallLeg

"incoming call event" ^IpAppMultiPartyCallControlManager.callEventNotify

Figure 3 Application view on the CallLeg object
 States

Incoming

This state is only valid for an incoming Call Leg in case and there is no call established to another party.

Idle

In this state a new CallLeg object has been created and the application has not yet issued a routing request.

Routing

In this state a connection to the call party is being established.

Progress

In this sub-state the network has indicated there is progress in routing the CallLeg.

Alerting

In this sub-state the network has indicated there the terminal of the party is alerting.

Redirected

In this sub-state the network has indicated the call party has redirected calls to another address.

Connected

In this state a connection to the call party is established.
In case the request for the connection was made by either route() or route() on the Call object, the call party is also attached to the Call.
In case the request was made by routeCallLegToOrignation() or route() the call party still needs to be attached to the Call.

Attached

In this sub-state the media of the Call Leg object is attached to a Call object.

Detached

In this sub-state the media of the Call Leg object is not attached to a Call object.

Failed or Disconnected

In this state no connection to the call party could be established or the call party has disconnected.
The reason that no connection could be established can be that an invalid address was specified, the network aborted routing or the call party was busy.

All States

This represents all normal states the CallLeg object can have.

