3GPP TSG_CN WG 5#6 / ETSI SPAN 3

Tdoc N5-000226

Vienna, Austria

17th –19th October 2000

Source:
BT

Title:
Alignment issues

Date:

Document for:
Discussion
Agenda item:
7.1

Resolutions to align JAIN and Parlay Call Control APIs

Aim for alignment

To reduce the proliferation of call control APIs on the market and increase the cost benefits to the industry by having a single call control API.

To take the 'best of breed' elements from Parlay call control and JAIN call control, producing a single 'world class' call control API.

To develop a single, easy to use, yet powerful, call control API that software developers can build their applications to.

Options for the alignment

The following table explores the possible advantages and disadvantages of aligning the Parlay/ETSI and JAIN Call Control APIs. According to BT, there are four possible scenarios for alignment:

	
	Initiative
	Possible effect

	1.
	Align GCCS and MPCCS with JCC (significant changes in GCCS/MPCCS)
	A new OSA Release ’99 specification

Changes in Parlay/ETSI/JAIN specifications

	2.
	Align GCCS and MPCCS with JCC (significant changes in JCC)
	A new JAIN JCC 1.0 specification

Changes in Parlay/ETSI specifications

	3.
	JCC introduced as an alternative solution into ETSI/3GPP
	Two call control APIs in OSA Release ‘99

	4.
	Forget the alignment
	Competing APIs, i.e. JAIN or PARLAY/ETSI

Options 3 and 4 are bad for business and are not desirable options.

Options 1 and 2 introduce knock-on effects that will have to be dealt with. Either way, this will result in changes to the Parlay/ETSI/JAIN specifications. If option 1 is the outcome of this meeting, we will have no choice other than to re-issue the OSA Release '99 specification. If option 2 is the outcome of this meeting, we will have to re-issue the JAIN JCC 1.0 specification.

Note: It is accepted that GCCS/MPCCS and JCC will never be perfectly aligned as GCCS/MPCCS is a 'semi-lowest common denominator' technology independent API while JCC is a technology dependent API. Where genuine technical solutions for aligning the APIs exist, then these shall be chosen in preference to providing a mapping function between these two APIs. However, in the case that moving from a technology independent API to a technology dependent API causes a difference between these APIs, then a mapping function is regarded as acceptable.

Scope and Timescales for the alignment

· The alignment process should not cause changes that will add functionality to Release '99

· Changes based upon technical merit should be accepted by OSA and JCC groups, and incorporated into their respective specifications and related documents, such as message sequence charts.

· The alignment should be completed by December 2000

· Release '99 should be completed by December 2000

Resolutions for the alignment

In determining the resolutions for alignment, BT undertook a high-level comparison of GCCS/MPCCS and JCC. BT used the ETSI GCCS and MPCCS draft documents (2000-09) as a baseline. Features that were different in JCC (0.8.4) were compared with the baseline; the benefits/drawbacks were discussed; and a resolution was arrived at. The result of this work is given below.

	Number
	Issue
	Discussion
	BT Resolution

	1.
	Exceptions and results
	JCC uses exceptions, xCCS uses TpResults. This is a technology deviation from the UML and, as such, a simple mapping should be provided.
	Provide a mapping rule from the technology independent UML API to the technology dependent Java API.

	2.
	Return parameter and out parameter
	JCC uses the return parameters to pass results while xCCS uses a single 'out' parameter. This is a technology deviation from the UML and, as such, a simple mapping should be provided.
	Provide a mapping rule from the technology independent UML API to the technology dependent Java API.

	3.
	SessionIDs
	JCC doesn't use SessionIDs as this is not in line with the Java concepts of OO; xCCS does permit the use of sessionIDs for systems that may encounter scaleability issues. This is a technology deviation from the UML.
	State that when going from the technology independent UML API to the technology dependent Java API, sessionIDs are removed. The performance / scalability issues will be dealt by using other Java technology techniques.

	4.
	Event listeners and callbacks
	JCC uses event listeners as they align with the way events are dealt with in Java. xCCS uses callbacks. This is a technology deviation from the UML and, as such, a simple mapping should be provided.
	Provide a mapping rule from the technology independent UML API to the technology dependent Java API.

	5.
	Synchronous methods
	JCC uses synchronous method calls, xCCs uses a mixture of synchronous and asynchronous (*Res) method calls. Asynchronous methods reduce thread usage across the API, however, the synchronous/ asynchronous mix makes the API more difficult to understand and use. Thread management in Java makes synchronous method calls simple. This is a technology deviation from the UML and, as such, a simple mapping should be provided. Note: JCC deals with asynchronous behavior though the use of event listeners.
	Provide a mapping rule from the technology independent UML API to the technology dependent Java API.

	6.
	Answer method
	In JCC, the connection interface has a CTI-like answer method to allow the application to connect to a party. xCCS currently solely follows a third-party model, so does not permit this. CTI applications are currently out of the scope of Parlay so it is suggested that this method is not used.
	Change JCC to remove the answer method and put it in a non-Parlay extension package.

	7.
	Event generation
	In JCC providers can only generate provider events; calls can only generate call events; and connections can only generate connection events. In xCCS, CCMs can generate CCM, call and call leg events; call can generate call and call leg events; and call legs can generate call leg events. Duplication of event generation by several interfaces causes redundancy in the specification and may confuse application developers. For example, in certain circumstances, call leg events will come from the CCM, while in others they will come from the call or call leg. JCC providers can generate callLoadControlEvents. These events should be incorporated as standard provider events.
	Change JCC so that callLoadControlEvents are incorporated as standard provider events.

Change xCCS so CCMs can only generate CCM events; calls can only generate call events; and call legs can only generate call leg events. Change the xCCS State Transition Diagrams to accommodate.

	8.
	Calls without call legs
	JCC uses connection objects† even for 2-party calls, xCCS introduces call leg objects only for 3 or more party calls. Oddly enough, GCCS does permit destination call leg identifies. A consistent approach to the use of call leg objects would provide the application developer with a friendlier API environment. The overhead of introducing call leg objects for 2-party calls is considered justified.
	Change GCCS to introduce call leg objects for 2-party calls. Move MPCCS getCallLegs and createCallLeg methods to GCCS. Change the xCCS State Transition Diagrams to accommodate.

	9.
	Call legs or Connections
	JCC refers to call legs as connections. This terminology aligns with CTI terminology.
	Change xCCS call legs to connections.

	10.
	Event filters
	JCC passes an event filter to the event source to indicate what events the listener requires, and whether the event should be blocking or not. This appears to be a more flexible way of requesting events than using the eventCriteria/ responseRequested mechanisms provided by xCCS in that you can specify blocking/ non-blocking events. However, event filters only work on addresses within the context of the provider, call or connection whereas xCCS works on a range of originating/ destination addresses.
	Change JCC event filters to specify originating and destination addresses.

Change xCCS to incorporate event filters.

	11.
	Pre- and post-conditions
	JCC documents pre- and post-conditions for each method call in its specification. This helps with the clarity of the specification.
	Change xCCS to include pre- and post-conditions for each method call.

	12.
	Address interface
	JCC includes an address interface. xCCS uses an address data type, which would be mapped into a Java object.
	No decision made. Note: JCC uses a specific address while xCCS uses a very the generic address that can be used for other service, such as Mobility. JCC's address perhaps should inherit from a more generic address.

† JCC connections are identical in concept to xCCS call legs.

--- End of document ---

