56
1

3GPP TSG_CN WG5#6

Tdoc N5-000208

Vienna, Austria

17th-19th of October 2000.

Source:
Alcatel

Title:
APIs for Third Party Service Applications: Framework

SPAN- EN SPAN3 ? Part 1

 Draft V0.0.0 (2000-09)
APIs for Third Party Service Applications

Framework

[image: image1.png]
Reproduction is only permitted for the purpose of standardization work undertaken within ETSI.
The copyright and the foregoing restrictions extend to reproduction in all media.
© European Telecommunications Standards Institute .

All rights reserved.

European Telecommunications Standards Institute

ETSI Secretariat

Postal address

F-06921 Sophia Antipolis Cedex - FRANCE

Office address

650 Route des Lucioles - Sophia Antipolis

Valbonne - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C

Association à but non lucratif enregistrée à la

Sous-Préfecture de Grasse (06) N° 7803/88

X.400

c= fr; a=atlas; p=etsi; s=secretariat

Internet

secretariat@etsi.fr

Reference

APIs for Third Party Service Applications

Keywords

APIs, Interface Classes, Framework, IDL

http://www.etsi.fr

Contents

61.
Scope

2.
References
6
2.1
Normative References
6
2.2
Informative References
6
3.
Definitions, Symbols and Abbreviations
6
3.1
Definitions
6
3.2
Symbols
6
3.3
Abbreviations
6
4.
Introduction
7
4.1
Generic Service Interfaces
7
4.2
Framework Interfaces
7
4.3
Generic Service Data Definitions
7
4.4
Framework Data Definitions
8
4.5
Common Data Definitions
8
4.6
Sequence Transition Diagrams (STDs)
8
4.7
OMG IDL
8
5.0
Framework
8
6.0
Framework Sequence Diagrams
9
Initial Contact
9
Authentication
9
Access
10
Discovery
11
7.0
Framework class diagrams
12
7.1
Top level Framework packages
13
7.2
Service Discovery
15
7.3
Trust and Security Management
16
7.4
Integrity Management
18
7.5
Service Registration
19
7.6
Service Factory
20
8.0
Interface Specifications
20
8.1
Architecture of the API specification
21
9.0
The Service Interface Specifications
21
Interface Class
21
Method descriptions
22
Parameter descriptions
22
State Model
22
10.0
Base Interface
22
Interface Class
22
11.0
Service Interfaces
22
Overview
22
12.0
Generic Service Interface
23
Interface Class
23
13.0
Framework
23
13.1
Trust and Security Management Interfaces
24
IpInitial
24
Interface Class
24
IpAppAuthentication
25
Interface Class
25
IpAuthentication
26
Interface Class
26
IpAccess
28
Interface Class
28
IpAppAccess
32
Interface Class
32
13.2
Discovery Interface
35
IpServiceDiscovery
35
Interface Class
35
13.3
Integrity Management Interfaces
38
IpHeartBeatMgmt
38
Interface Class
38
IpAppHeartBeatMgmt
39
Interface Class
39
IpHeartBeat
40
Interface Class
40
IpAppHeartBeat
41
Interface Class
41
IpLoadManager
41
Interface Class
41
IpAppLoadManager
45
Interface Class
45
IpFaultManager
47
Interface Class
47
IpAppFaultManager
49
Interface Class
49
IpOAM
52
Interface Class
52
IpAppOAM
53
Interface Class
53
14.0
Framework State Diagrams
53
14.1
IpAuthentication
55
States
55
14.2
IpAccess
57
States
57
14.3
IpServiceDiscovery
58
States
58
14.4
IpLoadManager
59
States
59
States
60
14.5
IPFaultManager
61
States
61
14.6
IpHeartbeatmgmt
62
States
62
14.7
IpHeartBeat
63
States
63
14.8
IpOAM
63
States
64
15.0
Framework Data Definitions
64
Data Type
64
Description
64
Tabular Specification
64
Example
64
15.1
Common Framework Data Definitions
65
15.2
Trust and Security Management Data Definitions
68
15.3
Integrity Management Data Definitions
70

1. Scope

The scope of this document is to consider the interface specification of an API for accessing Third Party Service Applications. UML techniques have been utilized for this purpose. This document specifies the Framework of the interface for ‘Access to Third Party Service provision. All aspects of the Framework are defined here, these being:

· Sequence Diagrams

· Class Diagrams

· Interface specification plus detailed method descriptions

· State Transition diagrams

· Data definitions

The process by which this task is accomplished is through the use of Object modeling techniques described by the Unified Modeling Language (UML). UML is a combined tools and methodology process which results in a comprehensive set of specifications representing, in this case, an interface between client and server applications. Further information can be found in the latest version of the ITU-T Recommendation Q.65.

The reader should note that this specification has been defined in co-operation with 3GPP CN5 and two industry consortiums, PARLAY and JAIN.

2. References

2. Normative References

2. Informative References

3. Definitions, Symbols and Abbreviations

3. Definitions

3. Symbols

3. Abbreviations

4. Introduction

This ETSI Standard uses the Unified Modelling Language (UML) to describe access to Third Party Service applications via an API. The API is divided into a number of separate parts, these being:

· Generic Service Interfaces

· Framework Interfaces

· Service Data Definitions

· Framework Data Definitions

· Common Data Definitions

· Sequence Transition Diagrams

· OMG IDL

The following text briefly describes each part:

4. Generic Service Interfaces

The API is split into two types of interface class descriptions, Service and Framework. Framework classes are those that are perceived to be applicable to the interface irrespective of the type of service that is being implemented at a specific moment in time e.g. Authentication. Whereas Service Interface classes are individual services that may be required by the client or network operator to enable the running of third party applications over the interface e.g. Messaging type service.

Editors Note: This next paragraph will need to be altered in light of new interface descriptions.
There are five parts here which represent the Generic Service Interface Classes, these being; Generic Call Control, Generic User Interaction, Generic Messaging, Mobility and Connectivity Management.

 Each of these parts defines the interfaces, parameters and state models that form part of the API specification. UML is used to specify the interface classes. As such it provides a UML interface class description of the methods (API calls) supported by that interface and the relevant parameters and types.

4. Framework Interfaces

The API is split into two types of interface class descriptions, Service and Framework. Framework classes are those that are perceived to be applicable to the interface irrespective of the type of service that is being implemented at a specific moment in time e.g. Authentication. Whereas Service Interface classes are individual services that may be required by the client of network operator to enable the running of third party applications over the interface e.g. Messaging type service.

Editors Note: This next paragraph may need altering in light of new interface descriptions
The Framework is split into two different sections, the first addressing the Client view representing interfaces ?????? in figure 2. The second addresses the relationship between the Service and Framework providers indicated by interface 3 in figure 2. The client to Framework section is split into 5 parts these being; Trust and Security Framework (which includes Authentication), Fault Management, Integrity Management, Service Subscription and Service Discovery. The Service to framework interface contains all of the same interfaces except for Service Subscription.

4. Generic Service Data Definitions

This section provides the Data Definitions necessary to support the Generic Service interface. For instance the Generic Call Control Service Data Definitions document describes each of the Data types that were shown in the detailed parameter descriptions made in the ‘Generic Call Control Service Interface’ part and so on.

4. Framework Data Definitions

This section once again provides the Data Definitions necessary to support the Framework interface.

4. Common Data Definitions

This section provides the Data definitions that are common to both the Framework and Generic Service API parameters.

4. Sequence Transition Diagrams (STDs)

This section contains the sequence transition diagrams from each service. They are used to enhance the understanding of each service in more detail.

4. OMG IDL

The section provides an OMG IDL version of the whole API. It was felt useful that a working version of the API be produced so that the API could be realisable in the Market place of today.

It was felt appropriate that this section be represented as an Appendix to the Recommendation.

The interface under consideration can be found represented by IF8 and IF9 in Figure 1:

[image: image2.wmf]SCF

SA-GF

Distributed

Service Logic

IF8

IF9

Figure 1

5.0 Framework

The following sections describe each aspect of the Framework in the following order:

· The sequence diagrams give the reader a practical idea of how each of the Framework is implemented.

· The class diagrams section show how each of the interfaces applicable to the Framework relate to one another.

· The interface specification section describes in detail each of the interfaces shown within the class diagram part.

· The State Transition Diagrams (STD) show the progression of internal processes, either in the application or in the gateway.

· The data definitions section show a detailed expansion of each of the data types associated with the methods within the classes. Note that some data types are used in other methods and classes and are therefore defined within the common data types part of this specification.

6.0 Framework Sequence Diagrams

Editor’s note (Chelo): sequence diagrams were missing in stage 2 of OSA release 99. I have included in this section introductory text for a series of sequence diagrams that I think would be useful to add
Initial Contact

The application gains a reference to the Initial Contact interfaces for the Home Environment that they wish to access. This may be gained through a URL, a Naming or Trading Service or an equivalent service, a stringified object reference, etc. At this stage, the application has no guarantee that this is a reference to the Home Environment.

The application uses this reference to initiate the authentication process with the Home Environment.

Initial Contact supports the initiateAuthentication method to allow the authentication process to take place (using the Authentication interfaces defined in subclause ###). This method must be the first invoked by the application. Invocations of other methods will fail until authentication has been successfully completed.

Once the application has authenticated with the provider, it can gain access to another framework and other service capability features. This is done by invoking the requestAccess method, by which the application requests a certain type of access service capability feature. The OSA Access interfaces are defined in subclause ###.

Authentication

Once the application has made initial contact with the Home Environment, authentication of the application and Home Environment may be required.

The OSA API supports multiple authentication techniques. The procedure used to select an appropriate technique for a given situation is described below. The authentication mechanisms may be supported by cryptographic processes to provide confidentiality, and by digital signatures to ensure integrity. The inclusion of cryptographic processes and digital signatures in the authentication procedure depends on the type of authentication technique selected. In some cases strong authentication may need to be enforced by the Home Environment to prevent misuse of resources. In addition it may be necessary to define the minimum encryption key length that can be used to ensure a high degree of confidentiality.

The application must authenticate with the Framework before it is able to use any of the other interfaces supported by the Framework. Invocations on other interfaces will fail until authentication has been successfully completed.

1) The application calls initiateAuthentication on the Home Environment's Framework Initial interface. This allows the application to specify the type of authentication process. This authentication process may be specific to the Home Environment, or the implementation technology used. The initiateAuthentication method can be used to specify the specific process, (e.g. CORBA security). OSA defines generic a authentication interface (Authentication), which can be used to perform the authentication process. The initiateAuthentication method allows the application to pass a reference to its own authentication interface to the Framework, and receive a reference to the Authentication interface supported by the Framework, in return.

2) The application invokes the selectAuthMethod on the Framework's Authentication interface. This includes the authentication capabilities of the application. The framework then chooses an authentication method based on the authentication capabilities of the application and the Framework. If the application is capable of handling more than one authentication method, then the Framework chooses one option, defined in the prescribedMethod parameter. In some instances, the authentication capability of the application may not fulfil the demands of the Framework, in which case, the authentication will fail.

3) The application and Framework interact to authenticate each other. Depending on the method prescribed, this procedure may consist of a number of messages e.g. a challenge/ response protocol. This authentication protocol is performed using the authenticate method on the Authentication interface. Depending on the authentication method selected, the protocol may require invocations on the Authentication interface supported by the Framework; or on the application counterpart; or on both.
Access

During an authenticated session accessing the Framework, the application will be able to select and access an instance of a Framework or of a Service Capability Feature.

Access to the Framework is gained by invoking the obtainInterface, or obtainInterfaceWithCallback methods; the latter is used when a callback reference is supplied to the Framework. For example, a SCF discovery interface reference is returned when invoking obtainInterface with "discovery" as the interface name.

In order to use Service Capability Features, the application must first be authorised to do so by establishing a service agreement with the Home Environment. The application uses the discovery interface to retrieve the ID of the SCF they wish to use. They may then use the accessCheck method to check that they are authorised to use the SCF. The selectService method is used to tell the Home Environment that the application wishes to use the SCF. The signServiceAgreement method is used to digitally sign the agreement, and provide non-repudiation for both parties in agreeing that the SCF would be available for use.

Establishing a service agreement is a business level transaction, which requires the HE-VASP that owns the application to agree terms for the use of an SCF with the Home Environment. Service agreements can be reached using either off-line or on-line mechanisms. Off-line agreements will be reached outside of the scope of OSA interactions, and so are not described here. However, applications can make use of service agreements that are made off-line. Some Home Environments may only offer off-line mechanisms to reach service agreements.

After a service agreement has been established between the application and the Home Environment domains, the application will be able to make use of this agreement to access the SCF.

The accessCheck method allows the application to check whether it has permission to access (read, write, etc) to a specified SCF, and specific SCF features. The application defines the security domain and context of access to the SCF. The access control policy is based on a number of conditions, events and permissions that determine whether the application is authorised to access the SCF.

The accessCheck method is optional, in that can be called by the application to check that it has permission to use specific SCF features, before starting an SCF instance. It is not compulsory for the application to make this check before selecting a SCF and signing a service agreement to use an instance of the SCF. If the accessCheck method confirms that the application has permission to use a specific SCF feature, then this feature should be available to the application when using the SCF instance. The Home Environment may include the results of the accessCheck as part of the service agreement, that is signed before using an SCF instance, thereby assuring the application that the SCF features will be available.

The selectService method is used to identify the SCF that the application wishes to use. A list of service properties initialises the SCF, and an SCF token is returned. The application and Home Environment must sign a copy of the service agreement to confirm the use of the SCF. The Framework invokes signServiceAgreement method on the applications's Access callback interface with the service agreement text to be signed. The application uses its digital signature key to sign the agreement text, and return the signed text to the Framework. The application then calls the signServiceAgreement method on the OSA Access SCF. The framework signs the agreement text, retrieves a reference to a manager interface for the selected SCF (using the getServiceManager method defined in clause ###), and returns this reference to the client application. In addition, the OSA Access interface may be invoked by SCSs in the context of SCF registration, see subclause ###.

Discovery

Discovery is a single interface. Before a SCF can be discovered, the application must know what "types" of SCFs are supported by the network and what "properties" are applicable to each SCF type. The listServiceType() method returns a list of all "SCF types" that are currently supported by the Framework and the "describeServiceType()" returns a description of each SCF type. The description of SCF type includes the "SCF-specific properties" that are applicable to each SCF type. Then the application can discover a specific set of registered SCFs that belongs to a given type and possess the desired "property values", using the "discoverService() method.

Once the HE-VASP finds out the desired set of SCFs supported by the network, it subscribes (a sub-set of) these SCFs using the Subscription framework interfaces. The HE-VASP (or the applications in its domain) can find out the set of SCFs available to it (i.e., the SCFs that it can use) by invoking "listSubscriberServices()".

The discovery SCF is invoked by the HE-VASP or applications. In addition, the discovery interface may be invoked by SCSs in the context of SCF registration, see subclause ###.

7.0 Framework class diagrams

The Framework interfaces are either interfaces between the Application Server and the Framework, or between Network Service Capability Server (SCS) and the Framework. This section specifies the class diagrams that define the Framework, and proposes a way to package them.

7.1 Top level Framework packages
The top level view of the Framework consists of the following four packages:

[image: image3.wmf]PAppFramework

PFramework

PFWFramework

PSvcFramework

Figure ##: Framework top level packages
The first two packages are de-composed in the following way:

[image: image4.wmf]PAppFramework

Consists of

·

PappTrustAndSecurityMgmt

·

PAppIntegrityMgmt

[image: image5.wmf]PFramework

Consists of

·

PServiceDiscovery

·

PTrustAndSecurityMgmt

·

PIntegrityMgmt

The latter two packages contain only one interface each:

· PFWFramework consists of the Service Registration Interface

· PSvcFramework consists of the Service Factory Interface

The top-level packages are de-composed as described above; between some of the resulting sub-packages there are dependencies, that reflect dependencies between any two classes in the sub-package. The following figure shows all this.

[image: image6.wmf]PAppIntegrityMgmt

PTrustAndSecurityMgmt

PIntegrityMgmt

PAppTrustAndSecurityMgmt

PServiceDiscovery

PAppFramework

PFramework

PFWFramework

PSvcFramework

Figure ##: Framework sub-packages
7.2 Service Discovery

[image: image7.wmf]

IpServiceDiscovery

listServiceTypes()

describeServiceType()

discoverService()

listSubscribedServices()

<<Interface>>

Figure ##: Service Discovery Class Diagrams

7.3 Trust and Security Management

[image: image8.wmf]IpInitial

initiateAuthentication()

requestAccess()

<<Interface>>

IpAccess

obtainInterface()

obtainInterfaceWithCallback()

accessCheck()

selectService()

signServiceAgreement()

terminateServiceAgreement()

endAccess()

<<Interface>>

IpAppAccess

signServiceAgreement()

terminateServiceAgreement()

terminateAccess()

<<Interface>>

<<uses>>

IpAuthentication

selectAuthMethod()

authenticate()

abortAuthentication()

<<Interface>>

IpAppAuthentication

authenticate()

abortAuthentication()

<<Interface>>

<<uses>>

Figure ##: Trust and Security Management – Application and Framework Class Diagrams

7.4
Integrity Management

[image: image9.wmf]0..*

IpAppHeartBeatMgmt

enableAppHeartBeat()

disableAppHeartBeat()

changeTimePeriod()

<<Interface>>

IpAppHeartBeat

send()

<<Interface>>

1

IpLoadManager

reportLoad()

queryLoadReq()

queryAppLoadRes()

queryAppLoadErr()

registerLoadController()

unregisterLoadController()

resumeNotification()

suspendNotification()

<<Interface>>

IpAppLoadManager

queryAppLoadManager()

queryLoadRes()

queryLoadErr()

disableLoadControl()

enableLoadControl()

resumeNotification()

suspendNotification()

<<Interface>>

<<uses>>

IpFaultManager

activityTestReq()

appActivityTestRes()

serviceUnavailableInd()

genFaultStatsRecordReq()

<<Interface>>

IpAppFaultManager

activityTestRes()

appActivityTestReq()

fwFaultReportInd()

fwFaultRecoveryInd()

svcUnavailableInd()

genFaultStatsRecordRes()

<<Interface>>

<<uses>>

IpOAM

systemDateTimeQuery()

<<Interface>>

IpAppOAM

systemDateTimeQuery()

<<Interface>>

<<uses>>

IpHeartBeatMgmt

enableHeartBeat()

disableHeartBeat()

changeTimePeriod()

<<Interface>>

<<uses>>

IpHeartBeat

send()

<<Interface>>

<<uses>>

1

0..*

Figure ##: Integrity Management – Application and Framework Class Diagrams

7.5 Service Registration

[image: image10.wmf]registerService()

announceServiceAvailability()

unregisterService()

describeService()

IpServiceRegistration

<<Interface>>

Figure ##: Service Registration Class Diagram

7.6 Service Factory

[image: image11.wmf]getServiceManager()

IpSvcFactory

<<Interface>>

Figure ##: Service Factory Class Diagram

8.0 Interface Specifications

Editor’s note (Chelo): I didn’t touch this part, but I guess this should not be repeated for the Framework and all SCFs
The general format of an interface specification is described below:

· Interface Class

This is a UML interface class description of the methods supported by that interface, and the relevant parameters and types. The Service and Framework interfaces to capabilities within the network are denoted by classes with name I<name>. The callback interfaces to the applications are denoted by classes with name IApp<name>.

· Method descriptions

Each method (API method “call”) is described. All methods in the API return a value of type TResult, indicating, amongst other things, if the method invocation was sucessfully executed or not.
Both synchronous and asynchronous methods are used in the API. Asynchronous methods are identified by a 'Req' suffix for a method request, and, if applicable, are served by asynchronous methods identified by either a 'Res' or 'Err' suffix for method results and errors, respectively. To handle responses and reports, the developer must implement the relevant IApp<name> interfaces to provide the callback mechanism.

· Parameter descriptions

Each method parameter and its possible values are described. Parameters described as 'in' represent those which must have a value when the method is called. Those described as 'out' are those which contain the return result of the method when the method returns.

· State Model

If relevant, a state model is shown to illustrate the states of the objects which implement the described interface.

8.1 Architecture of the API specification

Editor’s note (Chelo): I didn’t touch this section but I think it would fit better earlier in the document
The API is object-oriented and consists of several categories of interfaces as shown in Figure 2. Phase 1 addressed public interfaces between enterprise-based client applications and services (interface 2) and the Framework (interface 1), where:

· Service Interfaces offer applications access to a range of network capabilities.

· Framework Interfaces provide 'surround' capabilities necessary for the Service Interfaces to be open, secure, resilient and manageable.

In Phase 2, additional public interfaces are introduced to support administrative functions within the enterprise (interfaces 4 & 6) and to permit the supply of services by third party vendors (interfaces 3 & 5).

The Call Control service interface is represented by interface 2.

[image: image12.wmf]Framework

operator

admin

Enterprise

operator

admin tool

Service

supplier

admin tool

1

1

4

4

3

3

5

5

Not in scope of

this version of

the API

Not in scope of

this version of

the API

Telecom Network

Not in scope of

this version of

the API

Not in scope of

this version of

the API

2

2

6

6

Client

Application

Not in

 scope

of this

API

version

Figure 2 Interfaces

In order to realise the Service and Framework interfaces, it is recognised that categories of resource interfaces are required to facilitate integration of network equipment. The definition of the resource interfaces is not in the scope of the group at this time.

9.0 The Service Interface Specifications

This section defines the interfaces, methods and parameters that form a part of the API specification. The Unified Modelling Language (UML) is used to specify the interface classes. The general format of an interface specification is described below.

Interface Class

This shows a UML interface class description of the methods supported by that interface, and the relevant parameters and types. The Service and Framework interfaces for enterprise-based client applications are denoted by classes with name Ip<name>. The callback interfaces to the applications are denoted by classes with name IpApp<name>. For the interfaces between a Service and the Framework, the Service interfaces are typically denoted by classes with name IpSvc<name>, while the Framework interfaces are denoted by classes with name IpFw<name>

Method descriptions

Each method (API method “call”) is described. All methods in the API return a value of type TpResult, indicating, amongst other things, if the method invocation was sucessfully executed or not.
Both synchronous and asynchronous methods are used in the API. Asynchronous methods are identified by a 'Req' suffix for a method request, and, if applicable, are served by asynchronous methods identified by either a 'Res' or 'Err' suffix for method results and errors, respectively. To handle responses and reports, the application or service developer must implement the relevant IpApp<name> or IpSvc<name> interfaces to provide the callback mechanism.

Parameter descriptions

Each method parameter and its possible values are described. Parameters described as 'in' represent those that must have a value when the method is called. Those described as 'out' are those that contain the return result of the method when the method returns.

State Model

If relevant, a state model is shown to illustrate the states of the objects that implement the described interface.

10.0 Base Interface

All application, framework and service interfaces inherit from the following interface. This API Base Interface does not provide any additional methods.

Interface Class

	<<Interface>>

IpInterface

	

	

11.0 Service Interfaces

Editor’s note (Chelo): I left this section here untouched, so I would not change the section numbering, but this has nothing to do with the Framework)
Overview

The Service Interfaces provide the interfaces into the capabilities of the underlying network - such as call control, user interaction, messaging, mobility and connectivity management.

The interfaces that are implemented by the services are denoted as 'Service Interface'. The corresponding interfaces that must be implemented by the application (e.g. for API callbacks) are denoted as 'Application Interface'.

12.0 Generic Service Interface

Editor’s note (Chelo): I left this section here untouched, so the section numbering would not be changed, but this has nothing to do with the Framework)
Inherits from the base interface.

All service interfaces inherit from the following interface.

Interface Class

	<<Interface>>

IpService

	

	setCallback(appInterface : in IpInterfaceRef) : TpResult

setCallbackWithSessionID(appInterface : in IpInterfaceRef , sessionID : in TpSessionID) : TpResult

Method

setCallback()

This method specifies the reference address of the callback interface that a service uses to invoke methods on the application.

Parameters

appInterface : in IpInterfaceRef

Specifies a reference to the application interface, which is used for callbacks.

Method

setCallbackWithSessionID()

This method specifies the reference address of the application’s callback interface that a service uses for interactions associated with a specific session ID: e.g. a specific call, or call leg.

Parameters

appInterface : in IpInterfaceRef

Specifies a reference to the application interface, which is used for callbacks.

sessionID : in TpSessionID

Specifies the session for which the service can invoke the application’s callback interface.

13.0 Framework

13.1 Trust and Security Management Interfaces

The Trust and Security Management Interfaces provide:

-
the first point of contact for an application to access a Home Environment;

-
the authentication methods for the application and Home Environment to perform an authentication protocol;

-
the application with the ability to select a service capability feature to make use of;

-
the application with a portal to access other Framework interfaces.

The process by which the application accesses the Home Environment has been separated into 3 stages, each supported by a different Framework interface:

1)
Initial Contact with the Framework;

2)
Authentication to the Framework;

4) Access to Framework and Service Capability Features.

IpInitial

The application gains a reference to the Initial Contact interface for the Home Environment that they wish to access, and uses it to initiate the authentication process with the Home Environment.

Interface Class

	<<Interface>>

IpInitial

	

	initiateAuthentication(clientAppID: in TpClientAppID, authType : in TpAuthType, appAuthInterface: in IpOsaRef, fwAuthInterface :out TpFwAuthRef) : TpResult

requestAccess(accessType: in TpAccessType, appAccessInterface; in IpOsaRef, fwAccessInterface: out IpOsaRefRef): TpResult

Method

initiateAuthentication()

The application uses this method to initiate the authentication process.

Parameters

clientAppID : in TpClientAppID

This is an identifier for the application. It is used to identify the application to the framework, (see authenticate() on Authentication). If the clientAppID cannot be found by the framework, an error code is returned by the framework. The value of the parameter fwAuthInterface is NULL in this case.

authType : in TpAuthType

This identifies the type of authentication mechanism requested by theapplication. It provides operators and HE-VASPss with the opportunity to use an alternative to the OSA Authentication interface, e.g. CORBA Security.

appAuthInterface : in IpOsaRef

This provides the reference for the framework to call the authentication interface of the application.

fwAuthInterface : out TpFwAuthRef

This provides the reference for the application to call the authentication SCF of the framework.

Method

requestAccess ()

Once application and framework are authenticated, the former invokes the requestAccess method on the Initial Contact SCF. This allows the application to request the type of access it requires. If it requests OSA_ACCESS, then a reference to the OSA Access interface is returned. (Home Environments can define their own access interfaces to satisfy application requirements for different types of access.)

Parameters

accessType: in TpAccessType

This identifies the type of access SCF requested by the application.

appAccessInterface : in IpOsaRef

This provides the reference for the framework to call the access interface of the application.

fwAccessInterface : out IpOsaRefRef

This provides the reference for the application to call the access SCF of the framework.

Errors

INVALID_AUTHENTICATION

The application is not authenticated.

IpAppAuthentication

Interface Class

	<<Interface>>

IpAppAuthentication

	

	authenticate(prescribedMethod: in TpAuthCapability, challenge: in TpString, response: out TpStringRef) : TpResult

abortAuthentication() : TpResult

Method
authenticate()

This method is used by the framework to authenticate the application using the mechanism indicated in prescibedMechanism. The application must respond with the correct responses to the challenges presented by the framework. The number of interactions and the order of the interactions is dependant on the prescribedMethod. (These may be interleaved with authenticate() calls by the application on the Authentication interface. This is defined by the prescribedMethod.)
Parameters

prescribedMethod

This parameter contains the agreed method for authentication (see selectAuthMethod on the Authentication interface.)

challenge

The challenge presented by the framework to be responded to by the application. The challenge mechanism used will be in accordance with the IETF PPP Authentication Protocols - Challenge Handshake Authentication Protocol [RFC 1994, August1996]. The challenge will be encrypted with the mechanism prescribed by selectAuthMethod().

response

This is the response of the application to the challenge of the framework in the current sequence. The response will be based on the challenge data, decrypted with the mechanism prescribed by selectAuthMethod().

Errors

INVALID_AUTHENTICATION

The application could not be authenticated.

Method

abortAuthentication()

The framework uses this method to abort the authentication process. This method is invoked if the framework wishes to abort the authentication process, (e.g. if the application responds incorrectly to a challenge.) If this method has been invoked, calls to the requestAccess method on Initial will return an error code (INVALID_AUTHENTICATION), until the application has been properly authenticated.
Parameters

Errors

IpAuthentication

Interface Class

	<<Interface>>

IpAuthentication

	

	selectAuthMethod (authCapability: in TpAuthCapabiltyList, prescribedMethod: out TpAuthCapabilityRef) : TpResult

authenticate (prescribedMethod: in TpAuthCapability, challenge: in TpString, response: out TpStringRef) : TpResult

abortAuthentication() : TpResult

Method

selectAuthMethod ()

The application uses this method to initiate the authentication process. The mechanism returned by the framework is the mechanism it prefers. This should be within capability of the application. If a mechanism that is acceptable to the framework within the capability of the application cannot be found, the framework returns an error code (INVALID_AUTH_CAPABILITY).
Parameters

authCapability

This is the means by which the authentication mechanisms supported by the application are conveyed to the framework.

prescribedMethod

This is returned by the framework to indicate the mechanism it prefers for the authentication process. If the value of the prescribedMethod returned by the framework is not understood by the application, it is considered a fatal error and the application must abort.

Errors

INVALID_AUTH_CAPABILITY

No acceptable authentication mechanism could be found by the framework.

Method

authenticate ()

This method is used by the application to authenticate the framework using the mechanism indicated in prescribed Method. The framework must respond with the correct responses to the challenges presented by the application. The clientAppID received in the initiateAuthentication() can be used by the framework to reference the correct public key for the application (the key management system is currently outside of the scope of the OSA specification). The number of interactions and the order of the interactions is dependent on the prescribedMethod.
Parameters

prescribedMethod

This parameter contains the method that the framework has specified as acceptable for authentication (see selectAuthMethod).

challenge

The challenge presented by the application to be responded to by the framework. The challenge mechanism used will be in accordance with the IETF PPP Authentication Protocols - Challenge Handshake Authentication Protocol [RFC 1994, August1996]. The challenge will be encrypted with the mechanism prescribed by selectAuthMethod().

response

This is the response of the framework to the challenge of the application in the current sequence. The response will be based on the challenge data, decrypted with the mechanism prescribed by selectAuthMethod().

Errors

Method

abortAuthentication()

The application uses this method to abort the authentication process. This method is invoked if the application no longer wishes to continue the authentication process, (e.g. if the framework responds incorrectly to a challenge.) If this method has been invoked, calls to the requestAccess method on Initial Contact will return an error code (INVALID_AUTHENTICATION) until the application has been properly authenticated.
Parameters

Errors

IpAccess

Interface Class

	<<Interface>>

IpAccess

	

	obtainInterface(interfaceName: in TpInterfaceName, fwInterface: out IpOsaRefRef): TpResult

obtainInterfaceWithCallback(interfaceName: in TpInterfaceName, appInterface: in IpOsaRef, fwInterface: out IpOsaRefRef): TpResult

accessCheck(securityContext:: in TpString, securityDomain: in TpString, group : in TpString, serviceAccessTypes: in TpString, serviceAccessControl: out TpServiceAccessControlRef): TpResult

selectService(serviceID: in TpServiceID, serviceProperties: in TpServicePropertyList, serviceToken: out TpServiceTokenRef): TpResult

signServiceAgreement(serviceToken: in TpServiceToken, agreementText: in TpString, signingAlgorithm: in TpSigningAlgorithm, signatureAndServiceMgr: out TpSignatureAndServiceMgrRef): TpResult

terminateServiceAgreement(serviceToken: in TpServiceToken, terminationText: in TpString, digitalSignature: in TpString): TpResult

endAccess(endAccessProperties: in TpPropertyList) : TpResult

Method

obtainInterface ()

The application uses this method to obtain interface references to other framework SCFs (e.g. discovery, load manager). (The obtainInterfacesWithCallback method should be used if the application is required to supply a callback interface to the framework.)
Parameters

interfaceName

The name of the framework SCF to which a reference to the interface is requested.

fwInterface

This is the reference to the SCF interface requested.

Errors

INVALID_INTERFACE_NAME

Returned if the interfaceName is invalid.

Method

obtainInterfaceWithCallback ()

The application uses this method to obtain interface references to other framework SCFs (e.g. discovery, load manager), when they are required to supply a callback interface to the framework. (The obtainInterface method should be used when no callback interface needs to be supplied.)
Parameters

interfaceName

The name of the framework SCF to which a reference to the interface is requested.

appInterface

This is the reference to the application interface which is used for callbacks. If an application interface is not needed, then this method should not be used. (The obtainInterface method should be used when no callback interface needs to be supplied.)

fwInterface

This is the reference to the SCF requested.

Errors

INVALID_INTERFACE_NAME

Returned if the interfaceName is invalid.

Method

accessCheck()

This method may be used by the application to check whether it has been granted permission to access the specified SCF. The response is used to indicate whether the request for access has been granted or denied and if granted the level of trust that will be applied.
Parameters

securityContext

A context is a group of security relevant attributes that may have an influence on the result of the accessCheck request.

securityDomain

The security domain in which the application is operating may influence the access control decisions and the specific set of features that the requestor is entitled to use.

group

A group can be used to define the access rights associated with all applications that belong to that group. This simplifies the administration of access rights.

serviceAccessTypes

These are defined by the specific Security Model in use but are expected to include: Create, Read, Update, Delete as well as those specific to SCFs.

serviceAccessControl

This is a structure containing:

· policy: indicates whether access has been granted or denied. If granted then the parameter trustLevel must also have a value.

· trustLevel: The trustLevel parameter indicates the trust level that the Home Environment has assigned to the application.

Errors

Method

selectService ()

This method is used by the application to identify the network SCF that the application wishes to use.

Parameters

serviceID

This identifies the SCF required.

serviceProperties

This is a list of the properties that the SCF should support. These properties (names and values) are used to initialise the SCF instance for use by the application.

serviceToken

This is a free format text token returned by the framework, which can be signed as part of a service agreement. This will contain operator specific information relating to the service level agreement. The serviceToken has a limited lifetime. If the lifetime of the serviceToken expires, a method accepting the serviceToken will return an error code (INVALID_Service_TOKEN). Service Tokens will automatically expire if the application or framework invokes the endAccess method on the other's corresponding access interface.

Errors

INVALID_SERVICE_ID

Returned if the serviceID is not recognised by the framework

INVALID_SERVICE_PROPERTY

Returned if a property is not recognised by the framework

Method

signServiceAgreement()

This method is used by the application to request that the framework sign an agreement on the SCF, which allows the application to use the SCF. If the framework agrees, both parties sign the service agreement, and a reference to the manager interface of the SCF is returned to the application.
Parameters

serviceToken

This is the token returned by the framework in a call to the selectService() method. This token is used to identify the SCF instance requested by the application.

agreementText

This is the agreement text that is to be signed by the framework using the private key of the framework.

signingAlgorithm

This is the algorithm used to compute the digital signature.

signatureAndServiceMgr

This is a reference to a structure containing the digital signature of the framework for the service agreement, and a reference to the manager interface of the SCF:

· The digitalSignature is the signed version of a hash of the service token and agreement text given by the application.

· The serviceMgrInterface is a reference to the manager interface for the selected SCF.

Errors

INVALID_SERVICE_TOKEN

Returned if the serviceToken is not recognised by the framework

Method

terminateServiceAgreement()

This method is used by the application to terminate a service agreement for the SCF.
Parameters

serviceToken

This is the token passed back from the framework in a previous selectService() method call. This token is used to identify the service agreement to be terminated.

terminationText

This is the termination text describes the reason for the termination of the service agreement.

digitalSignature

This is a signed version of a hash of the service token and the termination text. The signing algorithm used is the same as the signing algorithm given when the service agreement was signed using signServiceAgreement().The framework uses this to check that the terminationText has been signed by the application. If a match is made, the service agreement is terminated, otherwise an error is returned.

Errors

Method

endAccess()

The endAccess method is used to end the application's access session with the framework. The application requests that its access session be ended. After it is invoked, the application will not longer be authenticated with the framework. The application will not be able to use the references to any of the framework SCFs gained during the access session. Any calls to these SCF interfaces will fail.

Parameters

Returns

Errors

IpAppAccess

Interface Class

	<<Interface>>

IpAppAccess

	

	signServiceAgreement(serviceToken: in TpServiceToken, agreementText: in TpString, signingAlgorithm: in TpSigningAlgorithm, digitalSignature: out TpStringRef): TpResult

terminateServiceAgreement(serviceToken: in TpServiceToken, terminationText: in TpString, digitalSignature: in TpString): TpResult

terminateAccess(terminationText: in TpString, signingAlgorithm: in TpSigningAlgorithm, digitalSignature: in TpStringRef) : TpResult

Method

signServiceAgreement()

This method is used by the framework to request that the application sign an agreement on the SCF. It is called in response to the application calling the selectService() method on the Access SCF of the framework. The framework provides the service agreement text for the application to sign. If the application agrees, it signs the service agreement, returning its digital signature to the framework.

Parameters

serviceToken

This is the token returned by the framework in a call to the selectService() method. This token is used to identify the SCF instance to which this service agreement corresponds. (If the application selects many SCFs, it can determine which selected SCF corresponds to the service agreement by matching the service token.)

agreementText

This is the agreement text that is to be signed by the application using the private key of the application.

signingAlgorithm

This is the algorithm used to compute the digital signature.

digitalSignature

The digitalSignature is the signed version of a hash of the service token and agreement text given by the framework.

Errors

Method

terminateServiceAgreement()
This method is used by the framework to terminate a service agreement for the SCF.
Parameters

serviceToken

This is the token passed back from the framework in a previous selectService() method call. This token is used to identify the service agreement to be terminated.

terminationText

This is the termination text describes the reason for the termination of the service agreement.

digitalSignature

This is a signed version of a hash of the service token and the termination text. The signing algorithm used is the same as the signing algorithm given when the service agreement was signed using signServiceAgreement(). The framework uses this to confirm its identity to the application. The application can check that the terminationText has been signed by the framework.

Errors

Method

terminateAccess ()

The terminateAccess method is used to end the application's access session with the framework (e.g. this may be done if the framework believes the application is masquerading as someone else. Using this method will force the application to re-authenticate if it wishes to continue using the framework SCFs.)

After terminateAccess() is invoked, the application will not longer be authenticated with the framework. The application will not be able to use the references to any of the framework SCFs gained during the access session. Any calls to these interfaces will fail.
Parameters

terminationText

This is the termination text describes the reason for the termination of the access session.

signingAlgorithm

This is the algorithm used to compute the digital signature.

digitalSignature

This is a signed version of a hash of the termination text. The framework uses this to confirm its identity to the application. The application can check that the terminationText has been signed by the framework.

Errors

13.2 Discovery Interface

IpServiceDiscovery

Interface Class

Figure 6‑4: Service Discovery Class Diagrams

	<<Interface>>

IpServiceDiscovery

	

	listServiceTypes(listTypes: out TpServiceTypeNameListRef) : TpResult

describeServiceType(name: in TpServiceTypeName, serviceTypeDescription: out TpServiceTypeDescriptionRef) : TpResult

discoverService(serviceTypeName: in TpServiceTypeName, desiredPropertyList: in TpServicePropertyList, max: in TpInt32, serviceList: out TpServiceListRef) : TpResult

listSubscribedServices(serviceList: out TpServiceListRef) : TpResult

	Method
	discoverService ()

The discoverService method is the means by which an application is able to obtain the IDs of the SCFs that meet its requirements. The application passes in a list of desired properties to describe the SCF it is looking for, in the form attribute/value pairs for the properties. The application also specifies the maximum number of matched responses it is willing to accept. The framework must not return more matches than the specified maximum, but it is up to the discretion of the Framework implementation to choose to return less than the specified maximum. The discoverService() method returns a serviceID/Property pair list for those SCFs that match the desired property list that the application provided.

	Direction
	Application to network

	Parameters
	serviceTypeName

The "ServiceTypeName" parameter conveys the required SCF type. It is key to the central purpose of "SCF trading". By stating an SCF type, the importer implies the SCF type and a domain of discourse for talking about properties of SCF.

The framework may return an SCF of a subtype of the "type" requested. An SCF sub-type can be described by the properties of its supertypes.

desiredPropertyList

The "desiredPropertyList"parameter is a list of property name and property value pairs of properties that the discovered set of SCFs should satisfy. These properties deal with the non-functional and non-computational aspects of the desired SCF. The property values in the desired property list must be logically interpreted as "minimum", "maximum", etc. by the framework.

max

The "max" parameter states the maximum number of SCFs that are to be returned in the "ServiceList" result.

	Returns
	serviceList :

This parameter gives a list of matching SCFs. Each SCF is characterised by an SCF ID and a list of property name and property value pairs associated with the SCF.

	Errors
	ILLEGAL_SERVICE_TYPE

Returned of the string representation of the "type" does not obey the rules for SCF type identifiers

UNKNOWN_SERVICE_TYPE

Returned if the "type" is correct syntactically but is not recognised as an SCF type within the Framework

	
	

	Method
	listServiceTypes ()
This method returns the names of all SCF types which are in the repository. The details of the SCF types can then be obtained using the describeServiceType() method.

	Direction
	Application to network

	Parameters
	

	Returns
	listTypes

The names of the requested SCF types.

	Errors
	

	
	

	Method
	describeServiceType()

This method lets the caller to obtain the details for a particular SCF type.

	Direction
	Application to network

	Parameters
	name

The name of the SCF type to be described

	Returns
	serviceTypeDescription

The description of the specified SCF type. The description provides information about:

· the property names associated with the SCF,

· the corresponding property value types,

· the corresponding property mode (mandatory or read only) associated with each SCF property,

· the names of the super types of this type, and

· whether the type is currently enabled or disabled.

	Errors
	ILLEGAL_SERVICE_TYPE

Returned of the string representation of the "type" does not obey the rules for SCF type identifiers

UNKNOWN_SERVICE_TYPE

Returned if the "type" is correct syntactically but is not recognised as an SCF type within the Framework

	
	

	Method
	listSubscribedServices ()

Returns a list of SCFs so far subscribed by the HE-VASP. The HE-VASP (or the applications in the HE-VASP domain) can obtain a list of subscribed SCFs that they are allowed to access.

	Direction
	Application to network

	Parameters
	

	Returns
	serviceList

Returns a list of IDs of the SCFs subscribed by the HE-VASP.

	Errors
	

13.3 Integrity Management Interfaces

IpHeartBeatMgmt

Interface Class

	<<Interface>>

IpHeartBeatMgmt

	

	enableHeartBeat(duration: in TpDuration, appInterface: in IpAppHeartBeatRef, session: out TpSessionIDRef) : TpResult

disableHeartBeat(session: in TpSessionID) : TpResult

changeTimePeriod(duration: in TpDuration, session: in TpSessionID) : TpResult

Method

enableHeartBeat ()

With this method, the client application registers at the framework for heartbeat supervision of itself.

Parameters

duration

The duration in milliseconds between the heartbeats.

appInterface

This parameter refers to the callback interface.

session

Identifies the heartbeat session. In general, the application has only one session. In case of SCF and framework supervision by the client application, the application may maintain more than one session.

Errors

Method

disableHeartBeat()

Allows the stop of the heartbeat supervision of the application.

Parameters

session

Identifies the heartbeat session.

Errors

Method

changeTimeperiod()

Allows the administrative change of the heartbeat period.

Parameters

session

Identifies the heartbeat session. In general, the application has only one session.

duration

The time interval in milliseconds between the heartbeats.

Errors

IpAppHeartBeatMgmt

Interface Class

	<<Interface>>

IpAppHeartBeatMgmt

	

	enableAppHeartBeat(duration: in TpDuration, fwInterface: in IpHeartBeatRef, session: in TpSessionID) : TpResult

disableAppHeartBeat(session: in TpSessionID) : TpResult

changeTimePeriod(duration: TpDuration, session: in TpSessionID) : TpResult

Method

enableAppHeartBeat()

With this method, the framework registers at the client application for heartbeat supervision of itself.

Parameters

duration

The time interval in milliseconds between the heartbeats.

fwInterface

This parameter refers to the callback interface.

session

Identifies the heartbeat session..

Errors

Method

disableAppHeartBeat()

Allows the stop of the heartbeat supervision of the application.

Parameters

session

Identifies the heartbeat session.

Errors

Method

changeTimeperiod()

Allows the administrative change of the heartbeat period.

Parameters

session

Identifies the heartbeat session.

duration

The time interval in milliseconds between the heartbeats.

Errors

IpHeartBeat

Interface Class

	<<Interface>>

IpHeartBeat

	

	send(session: in TpSessionID) : TpResult

Method

send()

This is the method the client application uses in case it supervises the framework or an SCF. The sender must raise an exception if no result comes back after a certain, user-defined time.

Parameters

session

Identifies the heartbeat session. In general, the application has only one session.

Errors

IpAppHeartBeat

Interface Class

	<<Interface>>

IpAppHeartBeat

	

	send(session: in TpSessionID) : TpResult

Method

send()

This is the method the framework uses in case it supervises a client application. The sender must raise an exception if no result comes back after a certain, user-defined time.

Parameters

session

Identifies the heartbeat session.

Errors

IpLoadManager

Interface Class

	<<Interface>>

IpLoadManager

	

	reportLoad(requester : in TpClientAppID, loadLevel : in TpLoadLevel) : TpResult

queryLoadReq(requester : in TpClientAppID, serviceIDs: in TpServiceIDList, timeInterval : in TpTimeInterval) : TpResult

queryAppLoadRes(loadStatistics : in TpLoadStatisticList) : TpResult

queryAppLoadErr(loadStatisticsError : in TpLoadStatisticErrorList) : TpResult

registerLoadController(requester : in TpClientAppID, serviceIDs: in TpServiceIDList) : TpResult

unregisterLoadController(requester : in TpClientAppID, serviceIDs: in TpServiceIDList) : TpResult

resumeNotification(serviceIDs: in TpServiceIDList) : TpResult

suspendNotification(serviceIDs: in TpServiceIDList) : TpResult

Method

reportLoad()

The application notifies the framework about its current load level (0,1, or 2) when the load level on the application has changed.
At level 0 load, the application is performing within its load specifications (i.e. it is not congested or overloaded). At level 1 load, the application is overloaded. At level 2 load, the application is severly overloaded.

Parameters

requester

Specifies the application interface for callbacks.

loadLevel

Specifies the load level for which the application reported.

Errors

Method

queryLoadReq ()

The application requests load statistic records for the framework and specified SCFs.

Parameters

requester

Specifies the application interface for callbacks.

serviceIDs

Specifies the framework, SCFs or applications for which the load statistics shall be reported. The serviceIDs is null for framework load statistics only.

timeInterval

Specifies the time interval within which the load statistics are generated.

Errors

Method

queryAppLoadRes ()

Report load statistics back to the framework that requested the information.

Parameters

loadStatistics

Specifies the load statistics in the application.

Errors

Method

queryAppLoadErr()

Return an error response to the framework that requested the application's load statistics information.

Parameters

loadStatisticsError

Specifies the error code associated with the failed attempt to retrieve the application's load statistics.

Errors

Method

registerLoadController ()

Register the application for load management under various load conditions.

Parameters

requester

Specifies the application interface for callbacks.

serviceIDs

Specifies the framework and SCFs to be registered for load control. To register for framework load control only, the serviceIDs is null.

Errors

Method

unregisterLoadController ()

Unregister the application for load management.

Parameters

requester

Specifies the application interface for callbacks.

serviceIDs

Specifies the framework or SCFs to be unregistered for load control.

Errors

Method

resumeNotification ()

Resume load management notifications to the application for the framework and specified SCFs after their load condition changes.

Parameters

serviceIDs

Specifies the framework and SCFs for which notifications are to be resumed. The serviceIDs is null to resume notifications for the framework only.

Errors

Method

suspendNotification()

Suspend load management notifications to the application for the framework and specified SCFs, while the application handles a temporary load condition.

Parameters

serviceIDs

Specifies the framework and SCFs for which notifications are to be suspended. The serviceIDs is null to suspend notifications for the framework only.

Errors

IpAppLoadManager

Interface Class

	<<Interface>>

IpAppLoadManager

	

	queryAppLoadReq(serviceIDs: in TpServiceIdList, timeInterval : TpTimeInterval) : TpResult

queryLoadRes(loadStatistics : in TpLoadStatList) : TpResult

queryLoadErr(loadStatisticsError : in TpLoadStatErrList) : TpResult

disableLoadControl(serviceIDs: in TpServiceIdList) : TpResult

enableLoadControl(loadStatistics : in TpLoadStatList) : TpResult

resumeNotification() : TpResult

suspendNotification() : TpResult

Method

queryAppLoadReq()

The framework requests for load statistic records produced by a specified application.

Parameters

serviceIDs

Specifies the SCFs or applications for which the load statistics shall be reported.

timeInterval

Specifies the time interval within which the load statistics are generated.

Errors

Method

queryLoadRes()

 Returns load statistics to the application which requested the information.

Parameters

loadStatistics

Specifies the framework-supplied load statistics.

Errors

Method

queryLoadErr()

Returns an error code to the application that requested load statistics.

Parameters

loadStatisticsError

Specifies the framework-supplied error code.

Errors

Method

disableLoadControl()

After load level of the framework or SCF which has been registered for load control moves back to normal, framework disables load control activity at the application based on policy.

Parameters

serviceIDs

Specifies the framework and SCFs for which the load has changed to normal. The serviceIDs is null to specify the framework only.

Errors

Method

enableLoadControl()

Upon detecting load condition change, (i.e. load level changing from 0 to 1, 0 to 2, 1 to 2 or 2 to 1, for the SCFs or framework which has been registered for load control), the framework enables load management activity at the application based on the policy.

Parameters

loadStatistics

Specifies the new load statistics

Errors

Method

resumeNotification()

Resume the notification from an application for its load status after the detection of load level change at the framework and the evaluation of the load balancing policy.

Parameters

Errors

Method

suspendNotification()

Suspend the notification from an application for its load status after the detection of load level change at the framework and the evaluation of the load balancing policy.

Parameters

Errors

IpFaultManager

Interface Class

	<<Interface>>

IpFaultManager

	

	activityTestReq(activityTestID: in TpActivityTestID, svcID: in TpServiceID, appID: in TpClientAppID): TpResult

appActivityTestRes(activityTestID: in TpActivityTestID, activityTestResult: in TpActivityTestRes): TpResult

svcUnavailableInd(serviceID: in TpServiceID, appID: in TpClientAppID): TpResult

genFaultStatsRecordReq(timePeriod: in TpTimeInterval, serviceIDList: in TpServiceIDList, appID: in TpClientAppID): TpResult

Method

activityTestReq()

This method may be used by the application to test that the framework or an SCF is methodal. On receipt of this request, the framework must carry out a test on the specified SCF or the framework itself to check that it is operating correctly and report the test result.

Parameters

activityTestID

The identifier provided by the application to correlate the response (when it arrives) with this request.

svcID

This parameter identifies which SCF the application is requesting the activity test to be done for. A null value denotes that the activity test is being requested for the framework.

appID

This parameter identifies which application is requesting the activity test, and therefore which application to send the result to.

Errors

Method

appActivityTestRes ()

This method is used by the application to return the result of a previously requested activity test.

Parameters
activityTestID

The identifier is used by the framework to correlate this response (when it arrives) with the original request.

activityTestResult

The result of the activity test.

Errors

Method

svcUnavailableInd ()

This method is used by the application to inform the framework that it can no longer use the indicated SCF (either due to a failure in the application or in the SCF). On receipt of this request, the framework should take the appropriate corrective action. The framework assumes that the session between this application and instance SCF is to be closed and updates its own records appropriately as well as attempting to inform the SCF instance and/or its administrator. If the application then tries to continue the use of this session it should be returned an error.

Parameters

serviceID

The identity of the SCF which can no longer be used.

appID

The identity of the application sending the indication.

Errors

Method

genFaultStatsRecordReq ()
This method is used by the application to solicit fault statistics from the framework. On receipt of this request, the framework must produce a fault statistics record, which is returned to the application. The fault statistics record must contain information about faults relating to the SCFs specified in the serviceIDList parameter, during the specified period.

Parameters

timePeriod

The period over which the fault statistics are to be generated. A null value leaves this to the discretion of the framework.

serviceIDList

This parameter lists the SCFs that the application would like to have included in the general fault statistics record. If the application would like the framework fault statistics to be included it should include the NULL serviceID.

appID

This parameter identifies which application is requesting the statistics record, and therefore which application to send the record to.

Errors

IpAppFaultManager

Interface Class

	<<Interface>>

IpAppFaultManager

	

	activityTestRes(activityTestID: in TpActivityTestID, activityTestResult: in TpActivityTestRes): TpResult

appActivityTestReq(activityTestID: in TpActivityTestID): TpResult

fwFaultReportInd(fault: in TpInterfaceFault): TpResult

fwFaultRecoveryInd(fault: in TpInterfaceFault): TpResult

svcUnavailableInd(serviceID: in TpServiceID, reason: in TpSvcUnavailReason): TpResult

genFaultStatsRecordRes(faultStatistics: in TpFaultStatsRecord, serviceIDs: in TpServiceIDList): TpResult

Method

activityTestRes()

The framework returns the result of the activity test in this method, along with a test identifier to allow correlation of result to request within the application.

Parameters

activityTestID

The identifier provided by the application (in the request), to correlate this response with the original request.

activityTestResult

The result of the activity test.

Errors

Method

appActivityTestReq ()

This method is invoked by the framework to request that the application carries out an activity test to check that is it operating correctly.

Parameters

activityTestID

The identifier provided by the application (in the request), to correlate this response with the original request.

Errors

Method

fwFaultReportInd ()

This method is invoked by the framework to notify the application of a failure within the framework. The application must not continue to use the framework until it has recovered (as indicated by a fwFaultRecoveryInd).

Parameters

fault

Specifies the fault that has been detected.

Errors

Method

fwFaultRecoveryInd ()

This method is invoked by the framework to notify the application that a previously reported fault has been rectified.

Parameters

fault

Specifies the fault from which the framework has recovered.

Errors

Method

svcUnavailableInd ()

This method is used by the framework to inform the application that it can no longer use the indicated SCF due to a failure in the SCF. On receipt of this request, the application must act to reset its use of the specified SCF (using the normal mechanisms such as the discovery and authentication interfaces to stop use of this SCF instance and begin use of a different SCF instance).

Parameters

serviceID

The identity of the SCF which can no longer be used.

reason

The reason why the SCF is no longer available.

Errors

Method

genFaultStatsRecordRes ()

This method is used by the framework to provide fault statistics to an application in response to a genFaultStatsRecordReq.

Parameters

faultStatistics

The fault statistics record.

serviceIDs

This parameter lists the SCFs that have been included in the general fault statistics record. The framework is denoted by the NULL serviceID.

Errors

IpOAM

Interface Class

	<<Interface>>

IpOAM

	

	systemDateTimeQuery(clientDateAndTime : in TpDateAndTime, systemDateAndTime: out TpDateAndTimeRef) : TpResult

Method

systemDateTimeQuery()

This method is used to query the system date and time. The client application passes in its own date and time to the framework. The framework responds with the system date and time.

Parameters

clientDateAndTime

This is the date and time of the client application.

systemDateAndTime

This is the system date and time returned by the framework.

Errors

INVALID_DATE_TIME_FORMAT
IpAppOAM

Interface Class

	<<Interface>>

IpAppOAM

	

	systemDateTimeQuery(clientDateAndTime : in TpDateAndTime, systemDateAndTime: out TpDateAndTimeRef) : TpResult

Method

systemDateTimeQuery()

This method is used to query the system date and time. The framework passes in the system date and time to the client. The client responds with its own date and time.

Parameters

systemDateAndTime

This is the system date and time of the framework.

clientDateAndTime

This is the date and time returned by the client.

Errors

OSA_INVALID_DATE_TIME_FORMAT
14.0 Framework State Diagrams

This section contains the State Transition Diagrams for the objects that implement the Framework interfaces on the gateway side. The State Transition Diagrams show the behaviour of these objects. For each state the methods that can be invoked by the application are shown. Methods not shown for a specific state are not relevant for that state and will return an exception. Apart from the methods that can be invoked by the application also events internal to the gateway or related to network events are shown together with the resulting event or action performed by the gateway. These internal events are shown between quotation marks.

14.1 IpAuthentication

[image: image13.wmf]Idle

IpInitial.initiateAuthentication

InitAuthentication

entry/ find auth. mechanism

selectAuthMethod

WaitForApplicationResult

entry/ ^IpAppAuthentication.Authenticate

Application Authenticated

ALL

STATES

authenticate ^result Authenticate(response)

authenticate ^result Authenticate(response)

"no mechanism found" ^result selectAuthMethod(P_INVALID_AUTH_CAPABILITY)

"mechanism found"[[two way authentication] ^result selectAuthenticationMethod(prescribedMethod)

"mechanism found"[one way authentication] / inform IpInitial that application authenticated

abortAuthentication / inform IpInitial that application aborted authentication

result Authenticate[response valid] / inform IpInitial that application authenticated

result Authenticate[response invalid]

IpAccess.endAccess

Figure ##: State Transition Diagram for Authentication

States

Idle state

When the application has requested the IpInitial interface for initiateAuthentication, an object implementing the IpAuthentication interface is created. The application now has to provide it’s authentication capabilities by invoking the SelectAuthMethod method.

Init Authentication state

In this state the Framework selects the preferred authentication mechanism within the capability of the application. When a proper mechanism is found, the Framework can decide that the application doesn’t have to be authenticated (one way authentication) or that the application has to be authenticated. In case no mechanism can be found the error code P_INVALID_AUTH_CAPABILITY) is returned and the Authentication object is destroyed. This implies that the application has to re-initiate the authentication by calling once more the initiateAuthentication method on the IpInitial interface.

Wait For Application Result state

When entering this state, the Framework requests the application to authenticate itself by invoking the Authenticate method on the application. In case the application requests the Framework to authenticate itself by invoking Authenticate on the IpAuthentication interface, the Framework provides the correct response to the challenge of the application. When the Framework responds to the Authenticate request, the response is analysed and in case the response is valid a transition to the state Application Authenticated is made. In case the response is not valid, the Authentication object is destroyed. This implicates that the application has to re-initiate the authentication by calling once more the initiateAuthentication method on the IpInitial interface.

Application Authenticated state

In this state the application is considered authenticated and is now allowed to request access to the IpAccess interface. In case the application requests the Framework to authenticate itself by invoking Authenticate on the IpAuthentication interface, the Framework provides the correct response to the challenge of the application.

The state transition diagram shows the application view on the MultiParty Call object. The diagram is an extension to the state diagram of the Call object in the sense that more than 2 parties are allowed to participate in a call.
14.2 IpAccess

[image: image14.emf]Active

IpInitial.requestAccess

obtainInterface / return requested FW interface

obtainInterfaceWithCallback / return requested FW interface

accessCheck / return whether application has access to requested service

selectService ^signServiceAgreement

signServiceAgreement[correct service selected] / get Service manager from Service Factory and return to application

terminateServiceAgreement / destroy Service manager object

endAccess / destroy all interface objects used by the application

network operator initiated endAccess / destroy all interface objects used by the application

Figure ##: State Transition Diagram for Access
States

Active state

When the application requestes access to the Framework on the IpInitial interface, an object implementing the IpAccess interface is created. The application can now request other Framework interfaces, including Service Discovery. When the application is no longer interested in using the interfaces it calls the endAccess method. This results in the destruction of all interface objects used by the application. In case the network operator decides that the application has no longer access to the interfaces the same will happen.

14.3 IpServiceDiscovery

[image: image15.emf]Active

obtainFrameworkInterface(discoveryService)

obtainInterfaceWithCallback(discoveryService)

listServiceTypes

describeServiceType

listSubscribedServices

discoverService

IpAccess.endAccess

Figure ##: State Transition Diagram for Service Discovery
States
Active state

When the application requests for the Service Discovery SCF by invoking the obtainInterface or the obtainInterfaceWithCallback methods on the IpAccess interface, an instance of the IpServiceDiscovery will be created. Next the application is allowed to request a list of the provided SCFs and to obtain a reference to interfaces of SCFs.

14.4 IpLoadManager

[image: image16.wmf]IDLE

Notifying

do/ obtain load statistics and report them at specified interval with queryLoadRes

Suspending

Notification

reportLoad

Registered

IpAccess.obtainInterface

queryAppLoadRes[load statistics requested by LoadManager]

queryAppLoadErr[load statistics requested by LoadManager]

queryLoadReq

reportLoad

queryAppLoadRes[load statistics requested by LoadManager]

queryAppLoadErr[load statistics requested by LoadManager]

reportLoad

queryAppLoadRes[load statistics requested by LoadManager]

queryAppLoadErr[load statistics requested by LoadManager]

queryLoadReq

unregisterLoadController

registerLoadController

suspendNotification[all notifications suspendend]

unregisterLoadController

queryLoadRes[final load statistics report]

queryLoadErr[final load statistics report]

IpAccess.obtainInterfaceWithCallback

resumeNotification

unregisterLoadController

All States

IpAccess.endAccess

Figure ##: State Transition Diagram for LoadManager

States

Idle State

In this state the application has obtained an interface reference of the LoadManager from the IpAccess interface.

Registered State

In this state the application has registered for load control with the method RegisterLoadController(). The LoadManager can now request the application to supply load statistics information (by invoking queryAppLoadReq()). Furthermore the LoadManager can request the application to control its load (by invoking enableLoadControl() or suspendNotification() on the application side of interface). In case the application detects a change in load level, it reports this to the LoadManager by calling the method reportLoad().

When entering this state, an object called LoadManagerInternal is created that has an internal state machine encapsulating the internal behaviour of the LoadManager. The State Transition Diagram of LoadManagerInternal is shown in Figure .

Notifying

In the Notifying state the application has requested for load statistics. The Loadmanager gathers the requested information and (periodically) reports them to the application.

Suspending Notification

Due to e.g. a temporary load condition, the application has requested the LoadManager to suspend sending the load statistics information.

[image: image17.wmf]Normal load

Application Overload

entry/ evaluate policy and perform necessary actions

exit/ cancel performed actions

A necessary action can

be suspending the load

notifictions to the

application or enabling

load control mechanisms

on certain services.

Internal overload

entry/ evaluate policy and perform necessary actions

exit/ cancel performed actions

A necessary action can be

suspending the load

notifictions from the

application by invoking

suspendNotification or

enabling load control

mechanisms on the

application by invoking

enableLoadControl.

Internal and Application Overload

entry/ evaluate policy and perform necessary actions

exit/ cancel performed actions

reportLoad[loadlevel != 0]

reportLoad[loadlevel = 0]

"internal load change detection"

"internal load change to non overloaded"

"internal load change to non overload"

reportLoad[loadlevel = 0]

reportLoad[loadlevel != 0]

"internal load change detection"

ALL

STATES

unregisterLoadController

registerLoadController

Figure ##: State Transition Diagram for the LoadManagerInternal

States

Normal Load state

In this state the none of the entities defined in the load balancing policy between the application and the framework / SCFs is overloaded.

Application overload state

In this state the application has indicated it is overloaded. When entering this state the load policy is consulted and the appropriate actions are taken by the LoadManager.

Internal overload

In this state the Framework or one or more of the SCFs within the specific load policy is overloaded. When entering this state the load policy is consulted and the appropriate actions are taken by the LoadManager.

Internal and application overload

In this state the application is overloaded as well as the Framework or one or more of the SCFs within the specific load policy. When entering this state the load policy is consulted and the appropriate actions are taken by the LoadManager.

14.5 IPFaultManager

[image: image18.wmf]FW

ACTIVE

FWFAULTY

entry/ ^

fwFaultReportInd to all applications with callback

exit/ ^

fwFaultRecoveryInd to all applications with callback

FW ACTIVITY TEST

entry/ test activity of framework

exit/ ^

app,activityTestRes

SVC ACTIVITY TEST

entry/ test activity of services

exit/ ^

app,activityTestRes

genFaultStatsRecordReq ^

app.genFaultStatsRecordRes

srvUnavailableInd / test the service, inform service that application is not using it

'

service fault' / ^

serviceUnavailableInd to all application using the service

IpAccess.obtainFrameworkInterfaceWithCallback

("

FaultManagement") / add application to fault management

fault detected in

fw

fault resolved

IpAccess.endAccess / remove application from load management

activityTestReq [null]

fault detected in

fw

no fault detected

service fault ^

srvUnavailableInd to all applications using the service

no fault detected

activityTestReq [

scfID]

IpAccess.endAccess/

Abort pending test request

IpAccess.endAccess/

Abort pending test request

IpAccess.endAccess

Figure ##: State Transition Diagram for Fault Manager
States

Framework Active state

This is the normal state of the framework, which is fully functional and able to handle requests from both applications and services capability features.

Framework Faulty state

In this state, the framework has detected an internal problem with itself such that application and services capability features cannot communicate with it anymore; attempts to invoke any methods that belongs to any SCFs of the framework returns an error. If the framework ever recover, application with fault management callbacks will be notified via a fwFaultRecoveryInd message.

The Service Activity Test state

In this state, the framework is performing a test on one service capability feature. If the SCF is faulty, applications with fault management callbacks are notified accordingly through a svcUnavailableInd message.

The Framework Activity Test state

In this state, the framework is performing self-diagnostic test. If a problem is diagnosed, all applications with fault management callbacks are notified through a fwFaultReportInd message.

14.6 IpHeartbeatmgmt

[image: image19.wmf]Application not

Application supervised

enableHeartBeat

IpAccess.obtainInterface

IpAccess.obtainInterfaceWithCallback

IpAccess.endAccess

disableHeartBeat

IpAccess.endAccess

changeTimePeriod

Figure ##: State Transition Diagram for the Heartbeat manager

States

Application not supervised

In this state the application has not registered for heartbeat supervision by the Framework.

Application supervised

In this state the application has registered for heartbeat supervision by the Framework. Periodically the Framework will request for the application heartbeat by calling the send method on the IpAppHeartBeat interface.

14.7 IpHeartBeat

[image: image20.emf]FW supervised by

Application

IpAppHeartBeatMgmt.enableAppHeartBeat

send / return heartbeat

IpAppHeartBeatMgmt.disableAppHeartBeat

IpAccess.endAccess

Figure ##: State Transition Diagram for HeartBeat
States

FW Supervised by Application state

In this state the Framework has requested the application for heartbeat supervision on itself. Periodically the application calls the send() method and the Framework returns it’s heartbeat result.

14.8 IpOAM

[image: image21.emf]Active

systemDateTimeQuery

IpAccess.endAccess

IpAccess.obtainInterface

IpAccess.obtainInterfaceWithCallback

Figure ##: State Transition Diagram for OAM
States

Active state

In this state the application has obtained a reference to the IpOAM interface. The application is now able to request the date / time of the Framework.

15.0 Framework Data Definitions

This section provides the framework specific data definitions necessary to support the OSA interface specification. It is written using Hypertext link, to aid navigation through the data structures. Underlined text represents Hypertext links. The general format of a data definition specification is the following:

Data Type

This shows the name of the data type.

Description

This describes the data type.

Tabular Specification

This specifies the data types and values of the data type.

Example

If relevant, an example is shown to illustrate the data type.

15.1 Common Framework Data Definitions
TpClientAppID

An identifier for the client application. It is used to identify the client to the framework. This data type is identical to TpString and is defined as a string of characters that uniquely identifies the application. The content of this string shall be unique for each OSA API implementation (or unique for a network operator’s domain). This unique identifier shall be negotiated with the OSA operator and the application shall use it to identify itself.

TpClientAppIDList

Defines a Numbered Set of Data Elements of type TpClientAppID.

TpEntOpID

Identical to TpString, it is defined as a string of characters that identifies an enterprise operator. In conjunction with the application it uniquely identifies the enterprise operator which uses a particular OSA Service Capability Feature.

TpEntOpIDList

Defines a Numbered Set of Data Elements of type TpEntOpID.

TpService

A Sequence of Data Elements which describes a registered SCFs. It is a structured type which consists of:

	Sequence Element

Name
	Sequence Element

Type
	Documentation

	ServiceID
	TpServiceID
	

	ServicePropertyList
	TpServicePropertyList
	

TpServiceList

Defines a Numbered Set of Data Elements of type TpService.

TpServiceDescription

A Sequence of Data Elements which describes a registered SCF. It is a structured data type which consists of:

	Sequence Element

Name
	Sequence Element

Type
	Documentation

	ServiceTypeName
	TpServiceTypeName
	

	ServicePropertyList
	TpServicePropertyList
	

TpServiceID

Identical to a TpString, it is defined as a string of characters that uniquely identifies an instance of a SCF interface. The string is automatically generated by the Framework, and comprises a TpUniqueServiceNumber, TpServiceNameString, and a number of relevant TpServiceSpecString, which are concatenated using a forward separator (/) as the separation character.

TpServiceIDList

Defines a Numbered Set of Data Elements of type TpServiceID.

TpServiceIDRef

Defines a Reference to type TpServiceId.

TpServiceNameString

Identical to a TpString, it is defined as a string of characters that uniquely identifies the name of an SCF interface. Other Network operator specific capabilities may also be used, but should be preceded by the string "SP_".The following values are defined for OSA release 99.

	Character String Value
	Description

	NULL
	An empty (NULL) string indicates no SCF name

	P_CALL_CONTROL
	The name of the Call Control SCF

	P_USER_INTERACTION
	The name of the User Interaction SCFs

	P_TERMINAL_CAPABILITIES
	The name of the Terminal Capabilities SCF

	P_USER_LOCATION
	The name of the Network User Location SCF

	P_USER_STATUS
	The name of the User Status SCF

	P_DATA_SESSION_CONTROL
	The name of the Data Session Control SCF

TpServiceSpecString

Identical to a TpString, it is defined as a string of characters that uniquely identifies the name of an SCF specialisation interface. Other network operator specific capabilities may also be used, but should be preceded by the string "SP_".The following values are defined for OSA release 99.

	Character String Value
	Description

	NULL
	An empty (NULL) string indicates no SCF specialisation

	P_CALL
	The Call specialisation of the of the User Interaction SCF

TpUniqueServiceNumber

Identical to a TpString, it is defined as a string of characters that represents a unique number that is used to build the service ID (refer to TpServiceID).

TpPropertyStruct

A Sequence of Data Elements which describes an SCF property. It consists of:

	Sequence Element

Name
	Sequence Element

Type
	Documentation

	ServicePropertyName
	TpServiceTypeName
	

	ServicePropertyMode
	TpServicePropertyMode
	

	ServicePropertyTypeName
	TpServicePropertyTypeName
	

TpPropertyStructList

Defines a Numbered Set of Data Elements of type TpPropertyStruct.

TpServicePropertyMode

This type is left as a placeholder but is not used in release 99.It defines SCF property modes.

	Name
	Value
	Documentation

	NORMAL
	0
	The value of the corresponding SCF property type may optionally be provided

	MANDATORY
	1
	The value of the corresponding SCF property type must be provided at service registration time

	READONLY
	2
	The value of the corresponding SCF property type is optional, but once given a value it may not be modified

	MANDATORY_READONLY
	3
	The value of the corresponding SCF property type must be provided and subsequently it may not be modified.

TpServicePropertyTypeName

Identical to TpString, it describes a valid SCF property name. The valid SCF property names are listed in the SCF data definition.

TpServicePropertyName

Identical to TpString, it defines a valid SFC property name. Valid SCF property names are listed in the SCF data definition.

TpServicePropertyNameList

Defines a Numbered Set of Data Elements of type TpServicePropertyName.

TpServicePropertyValue

Identical to TpString, it describes a valid value of a SCF property. The valid SCF property values are given in the SCF data definition.

TpServicePropertyValueList

Defines a Numbered Set of Data Elements of type TpServicePropertyValue

TpServiceProperty

A Sequence of Data Elements which describes an “SCF property”. It is a structured data type which consists of:

	Sequence Element

Name
	Sequence Element

Type
	Documentation

	ServicePropertyName
	TpServicePropertyName
	

	ServicePropertyValueList
	TpServicePropertyValueList
	

	ServicePropertyMode
	TpServicePropertyMode
	

TpServicePropertyList

Defines a Numbered Set of Data Elements of type TpServiceProperty.

TpServiceTypeDescription

This type is left as a placeholder but is not used in release 99.

This data type is a Sequence_of_Data_Elements which describes an SCF type. It is a structured data type. It consists of:

	Sequence Element

Name
	Sequence Element

Type
	Documentation

	PropertyStructList
	TpPropertyStructList
	a sequence of property name and property mode tuples associated with the SCF type

	ServiceTypeNameList
	TpServiceTypeNameList
	the names of the super types of the associated SCF type

	EnabledOrDisabled
	TpBoolean
	an indication whether the SCF type is enabled or disabled

TpServiceTypeName

Identical to TpString, it describes a valid SCF type name.
TpServiceTypeNameList

Defines a Numbered Set of Data Elements of type TpServiceTypeName.

15.2 Trust and Security Management Data Definitions
TpAccessType

Identical to a TpString, it identifies the type of access interface requested by the client application. If they request P_ACCESS, then a reference to the IpAccess interface is returned. (Network operators can define their own access interfaces to satisfy client requirements for different types of access. These can be selected using the TpAccessType, but should be preceded by the string "SP_". The following values are defined for OSA release 99:

	String Value
	Description

	NULL
	An empty (NULL) string indicates the default access type

	P_ACCESS
	Access using the OSA Access Interfaces: IpAccess and IpAppAccess

TpAuthType

Identical to a TpString, it identifies the type of authentication mechanism requested by the client. It provides Network operators and client's with the opportunity to use an alternative to the OSA Authentication interface, e.g. CORBA Security. OSA Authentication is the default authentication method. Other Network operator specific capabilities may also be used, but should be preceded by the string “SP_”. The following values are defined for OSA release 99:

	String Value
	Description

	NULL
	An empty (NULL) string indicates the default authentication method: OSA Authentication.

	P_AUTHENTICATION
	Authenticate using the OSA Authentication Interfaces: IpAuthentication and IpAppAuthentication

TpAuthCapability

Identical to a TpString, it is defined as a string of characters that identify the authentication capabilities that could be supported by the OSA. Other Network operator specific capabilities may also be used, but should be preceded by the string "SP_". Capabilities may be concatenated, using commas (,) as the separation character. The following values are defined for OSA release 99.

	String Value
	Description

	NULL
	An empty (NULL) string indicates no client capabilities.

	P_DES_56
	A simple transfer of secret information that is shared between the client application and the framework with protection against interception on the link provided by the DES algorithm with a 56bit shared secret key

	P_RSA_512
	A public-key cryptography system providing authentication without prior exchange of secrets using 512 bit keys

	P_RSA_1024
	A public-key cryptography system providing authentication without prior exchange of secrets using 1024bit keys

TpAuthCapabilityList

Identical to a TpString, it is a string of multiple TpAuthCapability concatenated using a comma (,)as the separation character.

TpInterfaceName

Identical to a TpString, it is defined as a string of characters that identify the names of the framework SCFs that are be supported by the OSA API. Other Network operator specific SCFs may also be used, but should be preceded by the string "SP_".The following values are defined for OSA release 99.

	Character String Value
	Description

	NULL
	An empty (NULL) string indicates no interface.

	P_DISCOVERY
	The name for the Discovery interface.

	P_OAM
	The name for the OA&M interface.

	P_TRUST_AND_SECURITY_MANAGEMENT
	The name for the Trust and Security Management interface

	P_INTEGRITY_MANAGEMENT
	The name for the Integrity Management interface.

TpServiceAccessControl

A Sequence of Data Elements containing the access control policy information controlling access to the service capability feature, and the trustLevel that the Network operator has assigned to the client application.

	Sequence Element Name
	Sequence Element Type

	Policy
	TpString

	TrustLevel
	TpString

The policy parameter indicates whether access has been granted or denied. If granted then the parameter trustLevel must also have a value.

The trustLevel parameter indicates the trust level that the Network operator has assigned to the client application.

TpServiceToken

Identical to a TpString, it identifies a selected SCF. This is a free format text token returned by the framework, which can be signed as part of a service agreement. This will contain Network operator specific information relating to the service level agreement. The serviceToken has a limited lifetime, which is the same as the lifetime of the service agreement in normal conditions. If something goes wrong the serviceToken expires, and any method accepting the serviceToken will return an error code (P_INVALID_SERVICE_TOKEN). Service Tokens will automatically expire if the client or framework invokes the endAccess method on the other's corresponding access interface.

TpSignatureAndServiceMgr

A Sequence of Data Elements containing the digital signature of the framework for the service agreement, and a reference to the SCF manager interface of the SCF.

	Sequence Element Name
	Sequence Element Type

	DigitalSignature
	TpStringRef

	ServiceMgrInterface
	IpServiceRef

The digitalSignature is the signed version of a hash of the service token and agreement text given by the client application.

The ServiceMgrInterface is a reference to the SCF manager interface for the selected SCF.

TpSigningAlgorithm

Identical to a TpString, and is defined as a string of characters that identify the signing algorithm that must be used. Other Network operator specific capabilities may also be used, but should be preceded by the string "SP_". The following values are defined for OSA release 99.

	String Value
	Description

	NULL
	An empty (NULL) string indicates no signing algorithm is required

	P_MD5_RSA_512
	MD5 takes an input message of arbitrary length and produces as output a 128-bit message digest of the input. This is then encrypted with the private key under the RSA public-key cryptography system using a 512 bit key.

	P_MD5_RSA_1024
	MD5 takes an input message of arbitrary length and produces as output a 128-bit message digest of the input. This is then encrypted with the private key under the RSA public- key cryptography system using a 1024 bit key

15.3 Integrity Management Data Definitions
TpActivityTestRes

Identical to TpString, it is an implementation specific result. The values in this data type are “Available” or “Unavailable”.

TpFaultStatsRecord

Defines the set of records to be returned giving fault information for the requested time period.

	Sequence Element Name
	Sequence Element Type

	Period
	TpTimeInterval

	FaultRecords
	TpFaultStatsSet

TpFaultStatsSet
Defines the sequence of data elements which provide the statistics on a per fault type basis.

	Sequence Element Name
	Sequence Element Type

	Fault
	TpInterfaceFault

	Occurrences
	TpInt32

	MaxDuration
	TpInt32

	TotalDuration
	TpInt32

	NumberOfClientsAffected
	TpInt32

Occurrences is the number of separate instances of this fault during the period. MaxDuration and TotalDuration are the number of seconds duration of the longest fault and the cumulative total during the period. NumberOfClientsAffected is the number of clients informed of the fault by the framework.
TpActivityTestID

Identical to a TpInt32, it is used as a token to match activity test requests with their results..

TpInterfaceFault

Defines the cause of the interface fault detected.

	Name
	Value
	Description

	INTERFACE_FAULT_UNDEFINED
	0
	Undefined

	INTERFACE_FAULT_LOCAL_FAILURE
	1
	A fault in the local API software or hardware has been detected

	INTERFACE_FAULT_GATEWAY_FAILURE
	2
	A fault in the gateway API software or hardware has been detected

	INTERFACE_FAULT_PROTOCOL_ERROR
	3
	An error in the protocol used on the client-gateway link has been detected

TpSvcUnavailReason

Defines the reason why a SCF is unavailable.

	Name
	Value
	Description

	SERVICE_UNAVAILABLE_UNDEFINED
	0
	Undefined

	SERVICE_UNAVAILABLE_LOCAL_FAILURE
	1
	The Local API software or hardware has failed

	SERVICE_UNAVAILABLE_GATEWAY_FAILURE
	2
	The gateway API software or hardware has failed

	SERVICE_UNAVAILABLE_OVERLOADED
	3
	The SCF is fully overloaded

	SERVICE_UNAVAILABLE_CLOSED
	4
	The SCF has closed itself (e.g. to protect from fraud or malicious attack)

TpAPIUnavailReason

Defines the reason why the API is unavailable.

	Name
	Value
	Description

	API_UNAVAILABLE_UNDEFINED
	0
	Undefined

	API_UNAVAILABLE_LOCAL_FAILURE
	1
	The Local API software or hardware has failed

	API_UNAVAILABLE_GATEWAY_FAILURE
	2
	The gateway API software or hardware has failed

	API_UNAVAILABLE_OVERLOADED
	3
	The gateway is fully overloaded

	API_UNAVAILABLE_CLOSED
	4
	The gateway has closed itself (e.g. to protect from fraud or malicious attack)

	API_UNAVAILABLE_PROTOCOL_FAILURE
	5
	The protocol used on the client-gateway link has failed

TpLoadLevel

Defines the Sequence of Data Elements that specify load level values.

	Name
	Value
	Description

	LOAD_LEVEL_NORMAL
	0
	Normal load

	LOAD_LEVEL_OVERLOAD
	1
	Overload

	LOAD_LEVEL_SEVERE_OVERLOAD
	2
	Severe Overload

TpLoadThreshold

Defines the Sequence of Data Elements that specify the load threshold value. The actual load threshold value is application and SCF dependent, so is their relationship with load level.

	Sequence Element Name
	Sequence Element Type

	LoadThreshold
	TpFloat

TpLoadInitVal

Defines the Sequence of Data Elements that specify the pair of load level and associated load threshold value.

	Sequence Element Name
	Sequence Element Type

	LoadLevel
	TpLoadLevel

	LoadThreshold
	TpLoadThreshold

TpTimeInterval

Defines the Sequence of Data Elements that specify a time interval.

	Sequence Element Name
	Sequence Element Type

	StartTime
	TpDateAndTime

	StopTime
	TpDateAndTime

TpLoadPolicy

Defines the load balancing policy.

	Sequence Element Name
	Sequence Element Type

	LoadPolicy
	TpString

TpLoadStatistic

Defines the Sequence of Data Elements that specify the load statistic record at given timestamp.

	Sequence Element Name
	Sequence Element Type

	ServiceID
	TpServiceID

	LoadValue
	TpFloat

	LoadLevel
	TpLoadLevel

	TimeStamp
	TpDateAndTime

LoadValue is expressed in percentage.

TpLoadStatList

Defines a Numbered Set of Data Elements of TpLoadStatistic.

TpLoadStatusError

Defines the error code for getting the load status.

	Name
	Value
	Description

	LOAD_STATUS_ERROR_UNDEFINED
	0
	Undefined error

	LOAD_STATUS_ERROR_UNAVAILABLE
	1
	Unable to get the load status

TpLoadStatisticError

Defines the Sequence of Data Elements that specify the error for getting the load status at given timestamp.

	Sequence Element Name
	Sequence Element Type

	ServiceID
	TpServiceID

	LoadStatusError
	TpFloat

	TimeStamp
	TpDateAndTime

TpLoadStatisticErrorList

Defines a Numbered Set of Data Elements of TpLoadStatisticsError.

� Contact: Chelo Abarca (Chelo.Abarca@ms.alcatel.fr)

�Rose:CClassDiagram:MDLFilename=C\x3A\x5Cdata\x5CStandardisatie\x5CParlay\x5CParlay\x202.1\x5Cmodel_docs_2_1_pre3\x5Cparlay21pre2.mdl,DiagramID=38FF04A90046

PAGE
1

_1006924015.ppt

SCF

SA-GF

Distributed

Service Logic

IF8

IF9

Figure 1

_1014809645.ppt

Framework

operator

admin

Enterprise

operator

admin tool

Service

supplier

admin tool

1

4

3

5

Not in scope of this version of the API

Telecom Network

Not in scope of this version of the API

2

6

Client

Application

Not in

 scope

of this API version

