56
3

SPAN- EN SPAN3 ? Part 1

 Draft V0.0.0 (2000-09)
Open Interfaces for Service Provisioning

Service Control Feature

Terminal Capabilities

[image: image1.png]
Reproduction is only permitted for the purpose of standardization work undertaken within ETSI.
The copyright and the foregoing restrictions extend to reproduction in all media.
© European Telecommunications Standards Institute .

All rights reserved.

European Telecommunications Standards Institute

ETSI Secretariat

Postal address

F-06921 Sophia Antipolis Cedex - FRANCE

Office address

650 Route des Lucioles - Sophia Antipolis

Valbonne - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C

Association à but non lucratif enregistrée à la

Sous-Préfecture de Grasse (06) N° 7803/88

X.400

c= fr; a=atlas; p=etsi; s=secretariat

Internet

secretariat@etsi.fr

Reference

APIs for Third Party Service Applications

Keywords

APIs, Interface Classes, Framework, IDL

http://www.etsi.fr

Contents

41.
Scope

2.
References
4
2.1
Normative References
4
2.2
Informative References
4
3.
Definitions, Symbols and Abbreviations
4
3.1
Definitions
4
3.2
Symbols
4
3.3
Abbreviations
4
4.
Introduction
5
4.1
Generic Service Interfaces
5
4.2
Framework Interfaces
5
4.3
Generic Service Data Definitions
5
4.4
Framework Data Definitions
6
4.5
Common Data Definitions
6
4.6
State Transition Diagrams (STDs)
6
4.7
OMG IDL
6
5.0
Terminal Capabilities SCF
6
6.0
Terminal Capabilities Service sequence diagrams
7
7.0
Terminal Capabilities Service class diagrams
7
8.0
The Service Interface Specifications
8
Interface Class
8
Method descriptions
8
Parameter descriptions
9
State Model
9
9.0
Base Interface
9
Interface Class
9
10.0
Service Interfaces
9
Overview
9
11.0
Generic Service Interface
9
Interface Class
9
12.0
Terminal Capabilities Service
10
13.0
State Transition Diagrams
11
13.1
Terminal Capabilities State diagrams
11
14.0
Terminal Capabilities Data Definitions
11
Terminal Capabilities Data Definitions
11

1. Scope

The scope of this document is to consider the interface specification of an API for accessing Third Party Service Applications. UML techniques have been utilized for this purpose. This document specifies the Terminal Capabilities aspects of the interface for ‘Access to Third Party Service provision. All aspects of Terminal Capabilities are defined here, these being:

· Sequence Diagrams

· Class Diagrams

· Interface specification plus detailed method descriptions

· State Transition diagrams

· Data definitions

The process by which this task is accomplished is through the use of Object modeling techniques described by the Unified Modeling Language (UML). UML is a combined tools and methodology process which results in a comprehensive set of specifications representing, in this case, an interface between client and server applications. Further information can be found in the latest version of the ITU-T Recommendation Q.65.

The reader should note that this specification has been defined in co-operation with 3GPP CN5 and two industry consortiums, PARLAY and JAIN.

2. References

2. Normative References

2. Informative References

3. Definitions, Symbols and Abbreviations

3. Definitions

3. Symbols

3. Abbreviations

4. Introduction

This ETSI Standard uses the Unified Modelling Language (UML) to describe access to Third Party Service applications via an API. The API is divided into a number of separate parts, these being:

· Generic Service Interfaces

· Framework Interfaces

· Service Data Definitions

· Framework Data Definitions

· Common Data Definitions

· Sequence Transition Diagrams

· OMG IDL

The following text briefly describes each part:

4. Generic Service Interfaces

The API is split into two types of interface class descriptions, Service and Framework. Framework classes are those that are perceived to be applicable to the interface irrespective of the type of service that is being implemented at a specific moment in time e.g. Authentication. Whereas Service Interface classes are individual services that may be required by the client or network operator to enable the running of third party applications over the interface e.g. Messaging type service.

Editors Note: This next paragraph will need to be altered in light of new interface descriptions.
There are five parts here which represent the Generic Service Interface Classes, these being; Generic Call Control, Generic User Interaction, Generic Messaging, Mobility and Connectivity Management.

 Each of these parts defines the interfaces, parameters and state models that form part of the API specification. UML is used to specify the interface classes. As such it provides a UML interface class description of the methods (API calls) supported by that interface and the relevant parameters and types.

4. Framework Interfaces

The API is split into two types of interface class descriptions, Service and Framework. Framework classes are those that are perceived to be applicable to the interface irrespective of the type of service that is being implemented at a specific moment in time e.g. Authentication. Whereas Service Interface classes are individual services that may be required by the client of network operator to enable the running of third party applications over the interface e.g. Messaging type service.

Editors Note: This next paragraph may need altering in light of new interface descriptions
The Framework is split into two different sections, the first addressing the Client view representing interfaces ?????? in figure 2. The second addresses the relationship between the Service and Framework providers indicated by interface 3 in figure 2. The client to Framework section is split into 5 parts these being; Trust and Security Framework (which includes Authentication), Fault Management, Integrity Management, Service Subscription and Service Discovery. The Service to framework interface contains all of the same interfaces except for Service Subscription.

4. Generic Service Data Definitions

This section provides the Data Definitions necessary to support the Generic Service interface. For instance the Generic Call Control Service Data Definitions document describes each of the Data types that were shown in the detailed parameter descriptions made in the ‘Generic Call Control Service Interface’ part and so on.

4. Framework Data Definitions

This section once again provides the Data Definitions necessary to support the Framework interface.

4. Common Data Definitions

This section provides the Data definitions that are common to both the Framework and Generic Service API parameters.

4. State Transition Diagrams (STDs)

This section contains the sequence transition diagrams from each service. They are used to enhance the understanding of each service in more detail.

4. OMG IDL

The section provides an OMG IDL version of the whole API. It was felt useful that a working version of the API be produced so that the API could be realisable in the Market place of today.

It was felt appropriate that this section be represented as an Appendix to the Recommendation.

The interface under consideration can be found represented by IF8 and IF9 in Figure 1:

[image: image2.wmf]SCF

SA-GF

Distributed

Service Logic

IF8

IF9

Figure 1

5.0 Terminal Capabilities SCF

The following sections describe each aspect of the Terminal Capabilities Capability Feature (SCF).

The order is as follows:

· The Sequence diagrams give the reader a practical idea of how each of the service capability feature is implemented.

· The Class relationships section show how each of the interfaces applicable to the SCF, relate to one another

· The Interface specification section describes in detail each of the interfaces shown within the Class diagram part.

· The State Transition Diagrams (STD) show the progression of internal processes either in the application, or Gateway.

· The Data definitions section show a detailed expansion of each of the data types associated with the methods within the classes. Note that some data types are used in other methods and classes and are therefore defined within the Common Data types part of this specification.

6.0 Terminal Capabilities Service sequence diagrams

Note : at present there are no Terminal Capabilities Sequence diagrams
7.0 Terminal Capabilities Service class diagrams

The Terminal Capabilities service enables the application to retrieve the terminal capabilities of the specified terminal. The Terminal Capabilities service provides a service interface that is called IpTerminalCapabilities. There is no need for an application interface, since IpTerminalCapabilities only contains the synchronous method getTerminalCapabilities.

[image: image3.wmf]termcap

Figure 26‑1: Terminal Capabilities package

[image: image4.wmf]IpTerminalCapabilities

getTerminalCapabilities()

<<Interface>>

IpService

setCallback()

<<Interface>>

IpOSA

<<Interface>>

Figure 26‑2: Terminal Capabilities class diagrams

8.0 The Service Interface Specifications

This section defines the interfaces, methods and parameters that form a part of the API specification. The Unified Modelling Language (UML) is used to specify the interface classes. The general format of an interface specification is described below.

Interface Class

This shows a UML interface class description of the methods supported by that interface, and the relevant parameters and types. The Service and Framework interfaces for enterprise-based client applications are denoted by classes with name Ip<name>. The callback interfaces to the applications are denoted by classes with name IpApp<name>. For the interfaces between a Service and the Framework, the Service interfaces are typically denoted by classes with name IpSvc<name>, while the Framework interfaces are denoted by classes with name IpFw<name>

Method descriptions

Each method (API method “call”) is described. All methods in the API return a value of type TpResult, indicating, amongst other things, if the method invocation was sucessfully executed or not.
Both synchronous and asynchronous methods are used in the API. Asynchronous methods are identified by a 'Req' suffix for a method request, and, if applicable, are served by asynchronous methods identified by either a 'Res' or 'Err' suffix for method results and errors, respectively. To handle responses and reports, the application or service developer must implement the relevant IpApp<name> or IpSvc<name> interfaces to provide the callback mechanism.

Parameter descriptions

Each method parameter and its possible values are described. Parameters described as 'in' represent those that must have a value when the method is called. Those described as 'out' are those that contain the return result of the method when the method returns.

State Model

If relevant, a state model is shown to illustrate the states of the objects that implement the described interface.

9.0 Base Interface

All application, framework and service interfaces inherit from the following interface. This API Base Interface does not provide any additional methods.

Interface Class

<<Interface>>

IpInterface

10.0 Service Interfaces

Overview

The Service Interfaces provide the interfaces into the capabilities of the underlying network - such as call control, user interaction, messaging, mobility and connectivity management.

The interfaces that are implemented by the services are denoted as 'Service Interface'. The corresponding interfaces that must be implemented by the application (e.g. for API callbacks) are denoted as 'Application Interface'.

11.0 Generic Service Interface

Inherits from the base interface.

All service interfaces inherit from the following interface.

Interface Class

<<Interface>>

IpService

setCallback(appInterface : in IpInterfaceRef) : TpResult

setCallbackWithSessionID(appInterface : in IpInterfaceRef , sessionID : in TpSessionID) : TpResult

Method

setCallback()

This method specifies the reference address of the callback interface that a service uses to invoke methods on the application.

Parameters

appInterface : in IpInterfaceRef

Specifies a reference to the application interface, which is used for callbacks.

Method

setCallbackWithSessionID()

This method specifies the reference address of the application’s callback interface that a service uses for interactions associated with a specific session ID: e.g. a specific call, or call leg.

Parameters

appInterface : in IpInterfaceRef

Specifies a reference to the application interface, which is used for callbacks.

sessionID : in TpSessionID

Specifies the session for which the service can invoke the application’s callback interface.

12.0 Terminal Capabilities Service

The Terminal Capabilities service interface IpTerminalCapabilities contains the synchronous method getTerminalCapabilities. The application has to provide the terminaIdentity is input to this method. The result indicates whether or not the terminal capabilities are available in the network and, in case they are, it will return the terminal capabilities (see the data definition of TpTerminalCapabilities for more information).

<<Interface>>

IpTerminalCapabilities

getTerminalCapabilities(
terminalIdentity : in TpString,

Result : out TpTerminalCapabilities) : TpResult

13.0 State Transition Diagrams

13.1 Terminal Capabilities State diagrams

Note : At present there are no Terminal Capabilities State diagrams
14.0 Terminal Capabilities Data Definitions

Terminal Capabilities Data Definitions

The constants and types defined in the following sections are defined in the org.threegpp.osa.termcap package.

terminalIdentity

Identifies the terminal.

Name
Type
Documentation

terminalIdentity
TpString
Identifies the terminal. It may be a logical address known by the WAP Gateway/PushProxy.

TpTerminalCapabilities

This data type is a Sequence_of_Data_Elements that describes the terminal capabilities. It is a structured type that consists of:

Sequence Element

Name
Sequence Element

Type
Documentation

StatusCode
TpBoolean
Indicates whether or not the terminalCapabilities are available.

TerminalCapabilities
TpServicePropertyList
Specifies the latest available capabilities of the user´s terminal.
This information, if available, is returned as CC/PP headers as specified in W3C [12] and adopted in the WAP UAProf specification [13]. It contains URLs; terminal attributes and values, in RDF format; or a combination of both.

TpTerminalCapabilitiesError

Defines an error that is reported by the Terminal Capabilities SCF.

Name
Value
Description

P_TERMCAP_ERROR_UNDEFINED
0
Undefined.

P_TERMCAP_INVALID_TERMINALID
1
The request can not be handled because the terminal id specified is not valid.

P_TERMCAP_SYSTEM_FAILURE
2
System failure.

The request cannot be handled because of a general problem in the terminal capabilities service or the underlying network.

PAGE
3

_1006924015.ppt

SCF

SA-GF

Distributed

Service Logic

IF8

IF9

Figure 1

_1013427700.doc

termcap

