56
31

SPAN- EN SPAN3 ? Part 1 

 Draft V0.0.0 (2000-09)
APIs for Third Party Service Applications

Service Control Feature

Multi-Media Call Control

[image: image1.png]ETSI

“H




Reproduction is only permitted for the purpose of standardization work undertaken within ETSI.
The copyright and the foregoing restrictions extend to reproduction in all media.
© European Telecommunications Standards Institute .

All rights reserved.

European Telecommunications Standards Institute

ETSI Secretariat

Postal address

F-06921 Sophia Antipolis Cedex - FRANCE

Office address

650 Route des Lucioles - Sophia Antipolis

Valbonne - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C

Association à but non lucratif enregistrée à la

Sous-Préfecture de Grasse (06) N° 7803/88

X.400

c= fr; a=atlas; p=etsi; s=secretariat

Internet

secretariat@etsi.fr

Reference

APIs for Third Party Service Applications

Keywords

APIs, Interface Classes, Framework, IDL

http://www.etsi.fr

Contents

51.
Scope

2.
References
5
2.1
Normative References
5
2.2
Informative References
5
3.
Definitions, Symbols and Abbreviations
5
3.1
Definitions
5
3.2
Symbols
5
3.3
Abbreviations
5
4.
Introduction
6
4.1
Generic Service Interfaces
6
4.2
Framework Interfaces
6
4.3
Generic Service Data Definitions
6
4.4
Framework Data Definitions
7
4.5
Common Data Definitions
7
4.6
Sequence Transition Diagrams (STDs)
7
4.7
OMG IDL
7
5.0
Multi-Media Call Control SCF
7
6.0
Multi-Media Call Control Service sequence diagrams
8
Barring for media, simple
9
Barring for media combined with call routing, alternative 1
9
Barring for media combined with call routing, alternative 2
11
7.0
Multi-Media Call Control Service class diagrams
13
8.0
Interface Specifications
15
8.1
Architecture of the  API specification
16
9.0
The Service Interface Specifications
16
Interface Class
16
Method descriptions
17
Parameter descriptions
17
State Model
17
10.0
Base  Interface
17
Interface Class
17
11.0
Service Interfaces
17
Overview
17
12.0
Generic Service Interface
18
Interface Class
18
13.0
Multi-Media Call Control Service
18
IpMultiMediaCallControlManager
19
Interface Class
19
IpAppMultiMediaCallControlManager
20
Interface Class
20
IpMultiMediaCall
21
Interface Class
21
IpAppMultiMediaCall
22
Interface Class
22
IpMultiMediaCallLeg
23
Interface Class
23
IpAppMultiMediaCallLeg
25
Interface Class
25
IpMultiMediaChannel
26
Interface Class
26
14.0
State Diagrams
27
14.1
Multi-Media Call State diagrams
27
15.0
Multi-Media Call Control Data Definition
27
Data Type
27
Description
27
Tabular Specification
27
Example
27
15.1
Event Notification Data Definitions
27
Multi-Media Call Control
27
15.2
Multi-Media Call Control Data Definitions
30


1. Scope

The scope of this document is to consider the interface specification of an API for accessing Third Party Service Applications. UML techniques have been utilized for this purpose.  This document specifies the Multi-Media Call Control aspects of the interface for ‘Access to Third Party Service provision.  All aspects of Call Control are defined here, these being:

· Sequence Diagrams

· Class Diagrams

· Interface specification plus detailed method descriptions

· State Transition diagrams

· Data definitions

The process by which this task is accomplished is through the use of Object modeling techniques described by the Unified Modeling Language (UML).  UML is a combined tools and  methodology process which results in a comprehensive set of specifications representing, in this case, an interface between client and server applications.  Further information can be found in the latest version of the ITU-T Recommendation Q.65.

The reader should note that this specification has been defined in co-operation with 3GPP CN5 and two industry consortiums, PARLAY and JAIN. 

2. References

2. Normative References

2. Informative References

3. Definitions, Symbols and Abbreviations

3. Definitions

3. Symbols

3. Abbreviations

4. Introduction

This ETSI Standard uses the Unified Modelling Language (UML) to describe access to Third Party Service applications via an API.  The API is divided into a number of separate parts, these being:

· Generic Service Interfaces

· Framework Interfaces

· Service Data Definitions

· Framework Data Definitions

· Common Data Definitions

· Sequence Transition Diagrams

· OMG IDL

The following  text briefly describes each part:

4. Generic Service Interfaces

The API is split into two types of interface class descriptions, Service and Framework.  Framework classes are those that are perceived to be applicable to the interface irrespective of the type of service that is being implemented at a specific moment in time e.g. Authentication.  Whereas Service Interface classes are individual services that may be required by the client or network operator to enable the running of third party applications over the interface e.g. Messaging type service.

Editors Note: This next paragraph will need to be altered in light of new interface descriptions.
There are five parts here which represent the Generic Service Interface Classes, these being; Generic Call Control, Generic User Interaction, Generic Messaging, Mobility and Connectivity Management. 

 Each of these parts defines the interfaces, parameters and state models that form part of the API specification.  UML is used to specify the interface classes.  As such it provides a UML interface class description of the methods (API calls) supported by that interface and the relevant parameters and types.

4. Framework Interfaces

The API is split into two types of interface class descriptions, Service and Framework.  Framework classes are those that are perceived to be applicable to the interface irrespective of the type of service that is being implemented at a specific moment in time e.g. Authentication.  Whereas Service Interface classes are individual services that may be required by the client of network operator to enable the running of  third party applications over the interface e.g. Messaging type service.

Editors Note: This next paragraph may need altering in light of new interface descriptions
The Framework is split into two different sections, the first addressing the Client view representing interfaces ?????? in figure 2.  The second addresses the relationship between the Service and Framework providers indicated by interface 3 in figure 2.  The client to Framework section is split into 5 parts these being; Trust and Security Framework (which includes Authentication), Fault Management, Integrity Management, Service Subscription and Service Discovery.  The Service to framework interface contains all of the same interfaces except for Service Subscription.

4. Generic Service Data Definitions

This section provides the Data Definitions necessary to support the Generic Service interface.  For instance the Generic Call Control Service Data Definitions document describes each of the Data types that were shown in the detailed parameter descriptions made in the ‘Generic Call Control Service Interface’ part and so on.

4. Framework Data Definitions

This section once again provides the Data Definitions necessary to support the Framework interface.

4. Common Data Definitions

This section provides the Data definitions that are common to both the Framework and Generic Service API parameters.

4. Sequence Transition Diagrams (STDs)

This section contains the sequence transition diagrams from each service.  They are used to enhance the understanding of each service in more detail.

4. OMG IDL

The section provides an OMG IDL version of the whole API.  It was felt useful that a working version of the API be produced so that the API could be realisable in the Market place of today. 

It was felt appropriate that this section be represented as an Appendix to the Recommendation.

The interface under consideration can be found represented by IF8 and IF9 in Figure 1:


[image: image2.wmf]SCF

SA-GF

Distributed

Service Logic

IF8

IF9

Figure 1


5.0 Multi-Media Call Control SCF

The following sections describe each aspect of the Multi-Media Call Control Service Capability Feature (SCF). 

The order is as follows:

· The Sequence diagrams give the reader a practical idea of how each of the service capability feature is implemented. 

· The Class relationships section show how each of the interfaces applicable to the SCF, relate to one another 

· The Interface specification section describes in detail each of the interfaces shown within the Class diagram part.

·  The State Transition Diagrams (STD) show the progression of internal processes either in the application, or Gateway.

· The Data definitions section show a detailed expansion of each of the data types associated with the methods within the classes.  Note that some data types are used in other methods and classes and are therefore defined within the Common Data types part of this specification. 

6.0 Multi-Media Call Control Service sequence diagrams

Barring for media, simple 

This sequence illustrates how an application can block the establishment of video channels for a certain user. 

[image: image3.wmf] : IpAppLogic

 : 

IpAppMultiMediaCallControlManager

 : 

IpMultiMediaCallControlManager

 : 

IpMultiMediaCall

 : 

IpMultiMediaCallLeg

1: new()

2: enableMediaChannelNotification()

3: mediaChannelEventNotify()

4: "forward event"

6: deassignCall()

5: mediaChannelAllow()


1: The application starts a new AppMultiMediaCallControlManager interface for reception of callbacks. 

2: The application expresses interest in all calls from or to subscriber A that use video. The just created App interface is given as the callback interface. 

3: Subscriber A makes a call with the H.323 faststart indicating video. 

4: The message is forwarded to the application. 

5: The application indicates that the setup of the channel is not allowed by not including the channel in the allowed list. This has the effect of supressing the video capabilities in the setup. 

6: The application is no longer interested in the call.

New attempts to open video channels will again be indicated with an enableMediaNotification. 

Barring for media combined with call routing, alternative 1 

This sequence illustrates how one application can influence both the call routing and the media establishment of one call.

In this sequence there is one application handling both the media barring and the routing of the call. 

[image: image4.wmf] : IpAppLogic

 : 

IpAppMultiMediaCallControlManager

 : 

IpMultiMediaCallControlManager

 : 

IpMultiMediaCall

 : 

IpMultiMediaCallLeg

 : 

IpAppMultiMediaCallLeg

1: new()

2: enableCallNotification()

3: callEventNotify()

4: "forward event"

10: routeReq ()

6: mediaChannelMonitorReq( )

9: mediaChannelAllow()

7: mediaChannelMonitorRes ()

5: new()

8: "forward event"

11: mediaChannelMonitorRes ()

12: "forward event"

13: mediaChannelAllow()


1: The application creates a AppMultiMediaCallControlManager interface in order to handle callback methods. 

2: The application expresses interest in all calls from subscriber A. Since enableCallNotification is used and not enableMediaNotification all calls are reported regardless of the media used. 

3: A makes a call with the H.323 faststart indicating video.  The application is notified.  

4: The event is forwarded to the application. 

5: The application requests the controlling leg from the call (corresponding to subscriber A). 

6: The application creates a new AppMultiMediaCallLeg interface to receive callbacks. 

7: The application sets a monitor on video media channel open for the controlling leg. 

8: Since video was included in the faststart, the media channels monitored will be returned in the monitor result. 

9: The event is forwarded to the application. 

10: The application denies the video channel, i.e., it is not included in the allowed channels. This corresponds to removing the channel from the setup. 

11: The application requests to reroute the call to a different destination (or the same one...)

There is a timing issue here: The outgoing setup should be delayed until both the mediaChannelAllow and the routeReq are received. 

12: Later in the call the A party tries to open a lower bandwidth video channel. This is again reported with MediaChannelMonitorRes. 

13: The event is forwarded. 

14: This time the application allows the setup of the channel by including the channel in the allowed list. 

Barring for media combined with call routing, alternative 2 

This sequence illustrates how one application can influence both the call routing and the media establishment of one call.

Media establishment and call establishment are regarded separately by the application.

From the gateway point of view it can actually be regarded as two separately triggered applications, one for media control and one for routing. This is also the way that it is shown here, for clarity.

However, an implementation of the application could combine the media logic and call logic in one object. 

[image: image5.wmf]callLogic : 

IpAppLogic

callAppLogic : 

IpAppMultiMediaCallControlManager

 : IpMultiMediaCallControlManager

 : IpMultiMediaCall

 : 

IpMultiMediaCallLeg

 : IpAppMultiMediaCallLeg

mediaAppLogic : 

IpAppMultiMediaCallControlManager

mediaLogic : 

IpAppLogic

1: new()

2: enableCallNotification()

5: callEventNotify()

6: "forward event"

10: routeReq ()

15: deassignCall()

7: new()

13: routeRes()

14: "forward event"

8: mediaChannelEventNotify()

16: mediaChannelEventNotify()

3: new()

4: enableMediaChannelNotification()

9: "forward event"

11: mediaChannelAllow()

12: deassignCall()

17: "forward event"

18: mediaChannelAllow()

19: deassignCall()


1: The application creates a new AppMultiMediaCallControlManager interface. 

2: The application expresses interest in all calls from subscriber A for rerouting purposes.  

3: The application creates a new AppMultiMediaCallControlManager interface. This is is to be used for the media control only. 

4: Separately the application expresses interest is some media channels for calls from and to A. The request indicates interrupt mode. 

5: Subscriber A makes a call with the H.323 faststart indicating video. Since the media establishment is combined with the setup in the case of faststart, both applications are triggered (not necessarily in the order shown).

Here the call application is notified about the call setup. 

6: The event is forwarded to the call control application.  

7: The call control application creates a new AppMultiMediaCall interface. 

8: The media application is notified about the call setup.

All media channels from the setup will be indicated. 

9: The event is forwarded to the media application. 

10: The call application decides to reroute the call to another address. Included in the request are monitors on answer and call end.

However, since the media was also triggered in mode interrupt the call will not proceed until the media channels are confirmed or rejected. 

11: The application allows the audio channel, but refuses the high bandwidth video, by excluding it from the allowed list. Since both call processing and media handling is now acknowledged,  the call routing can continue (with a changed faststart parameter reflecting the manipulated media). 

12: The Media application is no longer interested in the call. 

13: When the B subscriber answers the call application is notified. 

14: The event is forwarded to the call application. 

15: The call application is no longer interested in the call. 

16: When later in the call A tries to establish a lower bandwidth video channel the media application is triggered. 

17: The triggering is forwarded to the media application. 

18: The application now allows the establishment of the channel by including the channel in the mediaChannelAllow list. 

19: The media application is no longer interested in the call. 

7.0 Multi-Media Call Control Service class diagrams

The MultiMedia Call Control service enhances the functionality of the MultiParty Call Control Service with  multi-media capabilities. 

The MultiMedia Call Control Service is represented by the IpMultiMediaCallControlManager, IpMultiMediaCall, IpMultiMediaCallLeg and IpMMchannel interfaces that interface to services provided by the network. Some methods are asynchronous, in that they do not lock a thread into waiting whilst a transaction performs. In this way, the client machine can handle many more calls, than one that uses synchronous message calls. To handle responses and reports, the developer must implement IpAppMultiMediaCallManager, IpAppMutliMediaCall and IpAppMultiMediaCallLeg to provide the callback mechanism.

To handle the multi-media aspects of a call the concept of media channel is introduced. A media channel is a unidirectional media stream that is associated with a call leg. These channels are usually negotiated between the terminals in the call. The multi-party Call Service gives the application control over the media-channels associated with the legs in a multi-media call in the following way:

· the application can be triggered on the establishment of a media channel that meets the application defined characteristics.

· the application can monitor on the establishment or release of media channels of an ongoing call.

· the application can allow or deny the establishment of media channels (provided the channel establishment was monitored/notified in interrupt mode).

· the application can explicitly close already established media channels.

· the application can request the media channels associated with a specific leg.

 

[image: image6.wmf]PparlayMultiMediaCall

PparlayAppMultiMediaCall


Figure 7 MultiMedia Call Overview



[image: image7.wmf]IpAppMultiMediaCall

superviseVolumeRes()

superviseVolumeErr()

<<Interface>>

IpAppMultiMediaCallControlManager

mediaChannelEventNotify()

<<Interface>>

IpAppMultiMediaCallLeg

mediaChannelMonitorRes()

<<Interface>>

IpAppCallLeg

eventReportRes()

eventReportErr()

getInfoRes()

getInfoErr()

(from MultiParty Call Control Service)

<<Interface>>

IpAppMultiPartyCall

(from MultiParty Call Control Service)

<<Interface>>

IpAppMultiPartyCallControlManager

(from MultiParty Call Control Service)

<<Interface>>

1

0..n

1

0..n

IpMultiMediaCallLeg

mediaChannelAllow()

mediaChannelMonitorReq()

getMediaChannels()

<<Interface>>

<<uses>>

IpMultiMediaCall

superviseVolumeReq()

<<Interface>>

1

0..n

IpMultiMediaCallControlManager

enableMediaChannelNotification()

disableMediaChannelNotification()

<<Interface>>

1

0..n

<<uses>>

<<uses>>


Figure 8 MultiMedia Call - Application Interfaces

[image: image8.wmf]IpMultiMediaCallControlManager

enableMediaChannelNotification()

disableMediaChannelNotification()

<<Interface>>

IpMultiMediaCall

superviseVolumeReq()

<<Interface>>

IpMultiMediaCallLeg

mediaChannelAllow()

mediaChannelMonitorReq()

getMediaChannels()

<<Interface>>

IpMultiMediaChannel

close()

<<Interface>>

IpCallLeg

route()

eventReportReq()

release()

getInfoReq()

getCall()

attachMedia()

detachMedia()

getLastRedirectedAddress()

(from MultiParty Call Control Service)

<<Interface>>

IpMultiPartyCall

getCallLegs()

createCallLeg()

(from MultiParty Call Control Service)

<<Interface>>

IpMultiPartyCallControlManager

(from MultiParty Call Control Service)

<<Interface>>

1

0..n

1

0..n

1

0..n


Figure 9 Multi-Media Call - Service Interfaces
8.0 Interface Specifications

The general format of an interface specification is described below:

· Interface Class

This is a UML interface class description of the methods supported by that interface, and the relevant parameters and types. The Service and Framework interfaces to capabilities within the network are denoted by classes with name I<name>. The callback interfaces to the applications are denoted by classes with name IApp<name>.

· Method descriptions

Each method (API method “call”) is described. All methods in the API return a value of type TResult, indicating, amongst other things, if the method invocation was sucessfully executed or not.
Both synchronous and asynchronous methods are used in the API. Asynchronous methods are identified by a 'Req' suffix for a method request, and, if applicable, are served by asynchronous methods identified by either a 'Res' or 'Err' suffix for method results and errors, respectively. To handle responses and reports, the developer must implement the relevant IApp<name> interfaces to provide the callback mechanism.

· Parameter descriptions

Each method parameter and its possible values are described. Parameters described as 'in' represent those which must have a value when the method is called. Those described as 'out' are those which contain the return result of the method when the method returns.

· State Model

If relevant, a state model is shown to illustrate the states of the objects which implement the described interface.

8.1 Architecture of the  API specification

The  API is object-oriented and consists of several categories of interfaces as shown in Figure 2.  Phase 1 addressed public interfaces between enterprise-based client applications and  services (interface 2) and the  Framework (interface 1), where: 

·  Service Interfaces offer applications access to a range of network capabilities.

·  Framework Interfaces provide 'surround' capabilities necessary for the Service Interfaces to be open, secure, resilient and manageable. 

In Phase 2, additional public interfaces are introduced to support administrative functions within the enterprise (interfaces 4 & 6) and to permit the supply of  services by third party vendors (interfaces 3 & 5).

The Call Control service interface is represented by interface 2.


[image: image9.wmf]Framework

operator

admin

Enterprise

operator

admin tool

Service

supplier

admin tool

1

1

4

4

3

3

5

5

Not in scope of

this version of

the API

Not in scope of

this version of

the API

Telecom Network

Not in scope of

this version of

the API

Not in scope of

this version of

the API

2

2

6

6

Client

Application

Not in

 scope

of this

API

version


Figure 2  Interfaces

In order to realise the Service and Framework interfaces, it is recognised that categories of resource interfaces are required to facilitate integration of network equipment. The definition of the resource interfaces is not in the scope of the  group at this time. 

9.0 The Service Interface Specifications

This section defines the interfaces, methods and parameters that form a part of the  API specification. The Unified Modelling Language (UML) is used to specify the interface classes. The general format of an interface specification is described below.

Interface Class

This shows a UML interface class description of the methods supported by that interface, and the relevant parameters and types. The Service and Framework interfaces for enterprise-based client applications are denoted by classes with name Ip<name>. The callback interfaces to the applications are denoted by classes with name IpApp<name>.  For the interfaces between a Service and the Framework, the Service interfaces are typically denoted by classes with name IpSvc<name>, while the Framework interfaces are denoted by classes with name IpFw<name>

Method descriptions

Each method (API method “call”) is described. All methods in the  API return a value of type TpResult, indicating, amongst other things, if the method invocation was sucessfully executed or not.
Both synchronous and asynchronous methods are used in the  API. Asynchronous methods are identified by a 'Req' suffix for a method request, and, if applicable, are served by asynchronous methods identified by either a 'Res' or 'Err' suffix for method results and errors, respectively. To handle responses and reports, the application or service developer must implement the relevant IpApp<name> or IpSvc<name> interfaces to provide the callback mechanism.

Parameter descriptions

Each method parameter and its possible values are described. Parameters described as 'in' represent those that must have a value when the method is called. Those described as 'out' are those that contain the return result of the method when the method returns.

State Model

If relevant, a state model is shown to illustrate the states of the objects that implement the described interface.

10.0 Base  Interface

All application, framework and service interfaces inherit from the following interface. This API Base  Interface does not provide any additional methods.

Interface Class

<<Interface>>

IpInterface





11.0 Service Interfaces

Overview

The Service Interfaces provide the interfaces into the capabilities of the underlying network - such as call control, user interaction, messaging, mobility and connectivity management.

The interfaces that are implemented by the services are denoted as 'Service Interface'. The corresponding interfaces that must be implemented by the application (e.g. for API callbacks) are denoted as 'Application Interface'.

12.0 Generic Service Interface

Inherits from the base  interface.

All service interfaces inherit from the following interface.

Interface Class

<<Interface>>

IpService



setCallback(appInterface : in IpInterfaceRef) : TpResult

setCallbackWithSessionID(appInterface : in IpInterfaceRef , sessionID : in TpSessionID) : TpResult

Method

setCallback()

This method specifies the reference address of the callback interface that a service uses to invoke methods on the application.

Parameters

appInterface : in IpInterfaceRef

Specifies a reference to the application interface, which is used for callbacks.

Method

setCallbackWithSessionID()

This method specifies the reference address of the application’s callback interface that a service uses for interactions associated with a specific session ID: e.g. a specific call, or call leg.

Parameters

appInterface : in IpInterfaceRef

Specifies a reference to the application interface, which is used for callbacks.

sessionID : in TpSessionID

Specifies the session for which the service can invoke the application’s callback interface.

13.0 Multi-Media Call Control Service

The MultiMedia Call Control service enhances the functionality of the MultiParty Call Control Service with  multi-media capabilities. 

The MultiMedia Call Control Service is represented by the IpMultiMediaCallControlManager, IpMultiMediaCall, IpMultiMediaCallLeg and IpMMchannel interfaces that interface to services provided by the network. Some methods are asynchronous, in that they do not lock a thread into waiting whilst a transaction performs. In this way, the client machine can handle many more calls, than one that uses synchronous message calls. To handle responses and reports, the developer must implement IpAppMultiMediaCallManager, IpAppMutliMediaCall and IpAppMultiMediaCallLeg to provide the callback mechanism.

To handle the multi-media aspects of a call the concept of media channel is introduced. A media channel is a unidirectional media stream that is associated with a call leg. These channels are usually negotiated between the terminals in the call. The multi-party Call Service gives the application control over the media-channels associated with the legs in a multi-media call in the following way:

· the application can be triggered on the establishment of a media channel that meets the application defined characteristics.

· the application can monitor on the establishment or release of media channels of an ongoing call.

· the application can allow or deny the establishment of media channels (provided the channel establishment was monitored/notified in interrupt mode).

· the application can explicitly close already established media channels.

· the application can request the media channels associated with a specific leg.

IpMultiMediaCallControlManager 

Inherits from: IpMultiPartyCallControlManager 

The Multi Media Call Control Manager is the factory interface for creating multimedia calls. It also allows eventNotifications on the mediaChannel events.  

 Interface Class

<<Interface>>

IpMultiMediaCallControlManager



enableMediaChannelNotification(appInterface : in IpAppMultiMediaCallControlManagerRef , callEventCriteria : in TpCallEventCriteria , monitorMode : in TpCallMonitorMode , channelEventCriteria : in TpChannelRequestSet , assignmentID : out TpAssignmentIDRef ) :  TpResult 

disableMediaChannelNotification(assignmentID : in TpAssignmentID ) :  TpResult 

Method

enableMediaChannelNotification ()

This method is used to enable media channel notifications so that events can be sent to the application.
This applies both to callsetup media (e.g., SIP initial INVITE or H.323 with faststart) and for media setup during the call.
Parameters

appInterface : in IpAppMultiMediaCallControlManagerRef 

Specifies a reference to the application interface, which is used for callbacks. 

callEventCriteria : in TpCallEventCriteria 

Specifies the call event criteria used by the application to define the call event required. This is the call portion of the criteria. Only events that meet both the call- and the channelEventCriteria are reported. 

monitorMode : in TpCallMonitorMode 

Specifies the monitor mode. If in interrupt mode the application has to specify which channels are allowed by calling mediaChannelAllow on the callLeg. 

channelEventCriteria : in TpChannelRequestSet 

Specifies the event specific criteria used by the application to define the event required. This is the media portion of the criteria. Only events that meet both the call- and the channelEventCriteria are reported reported 

assignmentID : out TpAssignmentIDRef 

Specifies the ID assigned by the Multi-Party call control manager interface for this newly-enabled event notification. This can be used to correlate the received callbacks with the enable Notification request. 

Method

disableMediaChannelNotification ()

This method is used by the application to disable Multi Media Channel notifications
Parameters

assignmentID : in TpAssignmentID 

Specifies the assignment ID given by the Multi Media call control manager interface when the previous enable..Notification was called. If the assignment ID does not correspond to one of the valid assignment IDs, the framework will return the error code P_INVALID_ASSIGNMENTID. 

IpAppMultiMediaCallControlManager 

Inherits from: IpAppMultiPartyCallControlManager 

The Multi Media call control manager application interface provides the application call control management functions to the multi media call control service. 

 Interface Class

<<Interface>>

IpAppMultiMediaCallControlManager



mediaChannelEventNotify(callReference : in TpMultiMediaCallIdentifier , callLeg : in TpMultiMediaCallLegIdentifier , channels : in TpChannelSet , type : in TpChannelEventType , assignmentID : in TpAssignmentID , appInterface : out IpAppMultiMediaCallRefRef ) :  TpResult 

Method

mediaChannelEventNotify ()

This method is used to inform the application about the establishment of media channels.
If the corresponding monitor was in interrupt mode, then the application has to allow or deny the channels using mediaChannelAllow.
Parameters

callReference : in TpMultiMediaCallIdentifier 

Specifies the call interface on which the media channels were closed or requested to be opened. It also gives the corresponding sessionID. 

callLeg : in TpMultiMediaCallLegIdentifier 

Specifies the callLeg (interface and sessionID)  for which the media channels were opened or closed. 

channels : in TpChannelSet 

Specifies all the media channels that are opened. Note that this can be more channels  then requested in the enableMediaNotify, e.g., when faststart is used in H.323. 

type : in TpChannelEventType 

Refers to the type of event on the media channel, i.e., open or close. 

assignmentID : in TpAssignmentID 

Specifies the assignment id which was returned by the enableNotification() method. The application can use assignment id to associate events with event specific criteria and to act accordingly. 

appInterface : out IpAppMultiMediaCallRefRef 

Specifies a reference to the application interface which implements the callback interface for the new call. 

IpMultiMediaCall 

Inherits from: IpMultiPartyCall 

 Interface Class

<<Interface>>

IpMultiMediaCall



superviseVolumeReq(callSessionID : in TpSessionID , volume : in TpCallSuperviseVolume , treatment : in TpCallSuperviseTreatment ) :  TpResult 

Method

superviseVolumeReq ()

The application calls this method to supervise a call. The application can set a granted data volume this call.
Parameters

callSessionID : in TpSessionID 

Specifies the call session ID of the call. 

volume : in TpCallSuperviseVolume 

Specifies the granted time in milliseconds for the connection.

treatment : in TpCallSuperviseTreatment 

Specifies how the network should react after the granted volume expired. 

IpAppMultiMediaCall 

Inherits from: IpAppMultiPartyCall 

The application multi-media call interface contains the callbacks that will be used from the multi-media call interface for asynchronous results to requests performed by the application. The application should implement this interface.  

 Interface Class

<<Interface>>

IpAppMultiMediaCall



superviseVolumeRes(callSessionID : in TpSessionID , report : in TpCallSuperviseReport , usedVolume : in TpCallSuperviseVolume ) :  TpResult 

superviseVolumeErr(callSessionID : in TpSessionID , errorIndication : in TpCallError ) :  TpResult 

Method

superviseVolumeRes ()

This asynchronous method reports a call supervision event to the application when it has indicated it's interest in these kind of events.
It is also called when the connection is terminated before the supervision event occurs. Furthermore, this method is invoked as a response to the request also when a tariff
switch happens in the network during an active call.
 

Parameters

callSessionID : in TpSessionID 

Specifies the call session ID of the call 

report : in TpCallSuperviseReport 

Specifies the situation which triggered the sending of the call supervision response. 

usedVolume : in TpCallSuperviseVolume 

Specifies the used time for the call supervision (in milliseconds). 

Method

superviseVolumeErr ()

This asynchronous method reports a call supervision error to the application.
Parameters

callSessionID : in TpSessionID 

Specifies the call session ID of the call. 

errorIndication : in TpCallError 

Specifies the error which led to the original request failing. 

IpMultiMediaCallLeg 

Inherits from: IpCallLeg 

The Multi-Media call leg represents the signalling relationship between the call and an address. Associcated with the signalling relationship there can be multiple media channels.

Media channels can be started and stopped by the terminals themselves. The application can monitor on these changes and influence them. 

 Interface Class

<<Interface>>

IpMultiMediaCallLeg



mediaChannelAllow(callLegSessionID : in TpSessionID , channelList : in TpSessionIDSet ) :  TpResult 

mediaChannelMonitorReq(callLegSessionID : in TpSessionID , channelEventCriteria : in TpChannelRequestSet , monitorMode : in TpCallMonitorMode ) :  TpResult 

getMediaChannels(callLegSessionID : in TpSessionID , channels : out TpChannelSetRef ) :  TpResult

Method

mediaChannelAllow ()

This method can be used to allow setup of a media channel that was reported by a mediaChannelMonitor. 

Parameters

callLegSessionID : in TpSessionID 

Specifies the call leg session ID of the call leg. 

channelList : in TpSessionIDSet 

Refers to the channels (sessionIDs) as received in the mediaChannelMonitorRes() or in the mediaChannelEventNotify() that is allowed to be opened. 

Method

mediaChannelMonitorReq ()

With this method the application can set monitors on the opening and closing of media channels. The monitors can either be general or restricted to certain types of codecs.
Monitoring on open can be done in either interrupt of notify mode. In the first case the application has to allow or deny the establishment of the channel with mediaChannelAllow.
Monitoring on close is only allowed in notify mode. 

Parameters

callLegSessionID : in TpSessionID 

Specifies the session ID of the call leg. 

channelEventCriteria : in TpChannelRequestSet 

Specifies the event specific criteria used by the application to define the event required. 

monitorMode : in TpCallMonitorMode 

Specifies the monitor mode in which to monitor. This can be in interrupt or in notify mode. If in interrupt mode the application has to respond with mediaChannelAllow(). 

Method

getMediaChannels ()

This method is used to return all currently open media channels for the leg, 

Parameters

callLegSessionID : in TpSessionID 

This method is used to return all currently open media channels for the leg, 

channels : out TpChannelSetRef 

Specifies all the media channels that are open. 

IpAppMultiMediaCallLeg 

Inherits from: IpAppCallLeg 

The application multi-media call leg interface contains the callbacks that will be called from the multi-media call leg for asynchronous results to requests performed by the application. The application should implement this interface. 

 Interface Class

<<Interface>>

IpAppMultiMediaCallLeg



mediaChannelMonitorRes(callLegSessionID : in TpSessionID , channels : in TpChannelSet , type : in TpChannelEventType ) :  TpResult 

Method

mediaChannelMonitorRes ()

This method is used to inform the application about the media channels that are being opened or closed.
If the corresponding request was done in interrupt mode, the application has to allow or deny the channels using mediaChannelAllow(). 

Parameters

callLegSessionID : in TpSessionID 

Specifies the session ID of the call leg for which the media channels are opened or closed. 

channels : in TpChannelSet 

Specifies all the media channels that are opened. Note that this can be more channels  than requested in the enableMediaNotify, e.g., when faststart is used in H.323. 

type : in TpChannelEventType 

Refers to the type of event on the media channel, i.e., open or close. 

IpMultiMediaChannel 

Inherits from: IpService 

The Multi Media Channel Interface represents a unidirectional data stream associated with a call leg. Currently, the only available method is to close the channel. 

 Interface Class

<<Interface>>

IpMultiMediaChannel



close(channelSessionID : in TpSessionID ) :  TpResult 

Method

close ()

This method can be used to close the multi-media channel.
Parameters

channelSessionID : in TpSessionID 

Specifies the sessionID for the channel. 

14.0 State Diagrams

14.1 Multi-Media Call State diagrams

No State diagrams for Multi-Media have been identified to date
15.0 Multi-Media Call Control Data Definition

This Section provides the Multi-Media call control data definitions necessary to support the  API specification.

This document is written using Hypertext link, to aid navigation through the data structures. Underlined text represents Hypertext links.

The general format of a  data definition specification is described below.

Data Type

This shows the name of the data type.

Description

This describes the data type.

Tabular Specification

This specifies the data types and values of the data type.

Example

If relevant, an example is shown to illustrate the data type.

15.1 Event Notification Data Definitions

Multi-Media Call Control

TpChannelRequestSet

Defines a Numbered Set of Data Elements of  TpChannelRequest
TpChannelRequest

Defines the Sequence of Data Elements that specify the type of channel.

Sequence Element Name
Sequence Element Type

Direction
TpChannelDirection

DataTypeRequest
TpChannelDataTypeRequest

TpChannelDirection

Defines the direction in which the channel is opened (as seen from the leg).

Name
Value
Description

P_INCOMING
0
Incoming to the leg (stream will be received)

P_OUTGOING
1
Outgoing for the leg (stream will be sent)

TpMediaType

Defines the media type of a media stream. The values may be combined by a logical 'OR' function.

Name
Value
Description

P_AUDIO
1
Audio stream

P_VIDEO
2
Video stream

P_DATA
4
Data stream (e.g., T120)

TpChannelDataTypeRequest

Defines the Tagged Choice of Data Elements that specify the media type and associated codecs that are of interest.


Tag Element Type



TpMediaType


Tag Element Value
Choice Element Type
Choice Element Name

P_AUDIO
TpAudioCapabilitiesType
Audio

P_VIDEO
TpVideoCapabilitiesType
Video

P_DATA
TpDataCapabilities
Data

TpAudioCapabilitiesType

Defines the audio codec. The requested capabilities can be indicated by adding the values together (i.e., a logical OR function).E.g., 28 indicates interest in all G.722 codes (4+8+16).

Name
Value
Description

P_G711_64K
1
g.711 on 64k, both alaw and ulaw

P_G711_56K
2
g.711 on 56k, both alaw and ulaw

P_G722_64K
4


P_G722_56K
8


P_G722_48K
16


P_G7231
32


P_G728
64


P_G729
128


P_G729_ANNEX_A
256


P_IS1172
512


P_IS1318
1024


P_G729_ANNEXB
2048


P_G729_ANNEX_A_AND_B
4096


P_G7231_ANNEX_C
8192


P_GSM_FULLRATE
16384


P_GSM_HALFRATE
32768


P_GSM_ENHANCED
65536






TpVideoCapabilitiesType

Defines the video codec. The requested capabilities can be indicated by adding the values together (i.e., a logical OR function). E.g., 3 indicates both H.261 and H.262 codecs.

Name
Value
Description

P_H261
1


P_H262
2


P_H263
4


P_IS11172
8


TpDataCapabilities

A TpInt32 defining the minimum maxBitRate in bit/s. I.e., all data channels whose maxBitRate exceeds this number are reported.

TpChannelEventType

Defines the action performed on the channel.

Name
Value
Description

P_CHANNEL_OPEN
0
The channel is opened

P_CHANNEL_CLOSE
1
The channel is closed.

TpChannelSet

Defines a Numbered Set of Data Elements of TpChannel

TpChannelSetRef

Defines a reference to type TpChannelSet
TpChannel

Defines the Sequence of Data Elements that specify the type of channel.

Sequence Element Name
Sequence Element Type

Direction
TpChannelDirection

DataType
TpChannelDataType

ChannelSessionID
TpSessionID

Channel
IpMMChannel

TpChannelDataType

Defines the type of the reported channel. It is identical to TpChannelDataTypeRequest, only now the values are not used as a mask, but as the actual codec should be indicated for audio and video. For data the actual maximum bitrate is indicated.

15.2 Multi-Media Call Control Data Definitions

IpMultiMediaCall

Defines the address of an IpMultiMediaCall Interface.

IpMultiMediaCallRef

Defines a Reference to type IpMultiMediaCall.

IpMultiMediaCallRefRef

Defines a Reference to type IpMultiMediaCallRef.

IpAppMultiMediaCall

Defines the address of an IpAppMultiMediaCall Interface. 

IpAppMultiMediaCallRef

Defines a Reference to type IpAppMultiMediaCall.

IpMultiMediaCallLeg

Defines the address of an IpMultiMediaCallLeg Interface.

IpMultiMediaCallLegRef

Defines a Reference to type IpMultiMediaCallLeg.

IpAppMultiMediaCallLeg

Defines the address of an IpAppMultiMediaCallLeg Interface. 

IpAppMultiMediaCallLegRef

Defines a Reference to type IpAppMultiMediaCallLeg.

TpMultiMediaCallIdentifierRef

Defines a Reference to type TpMultiMediaCallIdentifier.

TpMultiMediaCallLegIdentifierRef

Defines a Reference to type TpMultiMediaeCallLegIdentifier.

TpMultiMediaCallIdentifier

Defines the Sequence of Data Elements that unambiguously specify the Generic Call object 

Sequence Element Name
Sequence Element Type
Sequence Element Description

MMCallReference
IpMultiMediaCallRef
This element specifies the interface reference for the call object.

MMCallSessionID
TpSessionID
This element specifies the call session ID of the call created.

TpMultiMediaCallLegIdentifier

Defines the Sequence of Data Elements that unambiguously specify the Call Leg object 

Sequence Element Name
Sequence Element Type
Sequence Element Description

MMCallLegReference
IpMultiMediaCallLegRef
This element specifies the interface reference for the callLeg object.

MMCallLegSessionID
TpSessionID
This element specifies the callLeg session ID of the call created.

IpAppMultiMediaCallControlManager

Defines the address of an IpAppMultiMediaCallControlManager Interface. 

IpAppMultiMediaCallControlManagerRef

Defines a Reference to type IpAppMultiMediaCallControlManager.

TpCallSuperviseVolume

Defines the Sequence of Data Elements that specify the amount of volume that is allowed to be transmitted for the specific connection.

Sequence Element Name
Sequence Element Type
Sequence Element Description

VolumeQuantity
TpInt32
This data type is identical to a TpInt32, and defines the quantity of the granted volume that can be transmitted for the specific connection.

VolumeUnit
TpInt32
This data type is identical to a TpInt32, and defines the unit of the granted volume that can be transmitted for the specific connection.

Unit must be specified as 10^n number of bytes, where

n denotes the power.

When the unit is for example in kilobytes, VolumeUnit must be set to 3.

�Rose:CClassDiagram:MDLFilename=C\x3A\x5Cdata\x5CStandardisatie\x5CParlay\x5CParlay\x202.1\x5Cmodel_docs_2_1_pre3\x5Cparlay21pre2.mdl,DiagramID=3925B20901CB


�Rose:CClassDiagram:MDLFilename=C\x3A\x5Cdata\x5CStandardisatie\x5CParlay\x5CParlay\x202.1\x5Cmodel_docs_2_1_pre3\x5Cparlay21pre2.mdl,DiagramID=393D0C4503AE





PAGE  
31

_1006924015.ppt








SCF

SA-GF

Distributed

Service Logic





IF8





IF9

Figure 1








_1014809645.ppt


Framework

operator

admin

Enterprise

operator

admin tool

Service

supplier

admin tool



1

4

3

5

Not in scope of this version of the API

Telecom Network



Not in scope of this version of the API

2

6

Client

Application

Not in

 scope 

of this API version








