56
4

SPAN- EN SPAN3 ? Part 1

 Draft V0.0.0 (2000-09)
APIs for Third Party Service Applications

Service Control Feature

Multi-Party Call Control

[image: image1.png]ETSI

“H

Reproduction is only permitted for the purpose of standardization work undertaken within ETSI.
The copyright and the foregoing restrictions extend to reproduction in all media.
© European Telecommunications Standards Institute .

All rights reserved.

European Telecommunications Standards Institute

ETSI Secretariat

Postal address

F-06921 Sophia Antipolis Cedex - FRANCE

Office address

650 Route des Lucioles - Sophia Antipolis

Valbonne - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C

Association à but non lucratif enregistrée à la

Sous-Préfecture de Grasse (06) N° 7803/88

X.400

c= fr; a=atlas; p=etsi; s=secretariat

Internet

secretariat@etsi.fr

Reference

APIs for Third Party Service Applications

Keywords

APIs, Interface Classes, Framework, IDL

http://www.etsi.fr

Contents

51.
Scope

2.
References
5
2.1
Normative References
5
2.2
Informative References
5
3.
Definitions, Symbols and Abbreviations
5
3.1
Definitions
5
3.2
Symbols
5
3.3
Abbreviations
5
4.
Introduction
6
4.1
Generic Service Interfaces
6
4.2
Framework Interfaces
6
4.3
Generic Service Data Definitions
6
4.4
Framework Data Definitions
7
4.5
Common Data Definitions
7
4.6
Sequence Transition Diagrams (STDs)
7
4.7
OMG IDL
7
5.0
Multi-Party Call Control SCF
7
6.0
Service sequence diagrams
8
Multi-party Call Control Service
9
CallBarring2
9
Complex Card Service
10
Application initiated call setup
12
7.0
Multi-Party Call Control Service class diagrams
14
8.0
Interface Specifications
17
8.1
Architecture of the API specification
19
9.0
The Service Interface Specifications
19
Interface Class
19
Method descriptions
20
Parameter descriptions
20
State Model
20
10.0
Base Interface
20
Interface Class
20
11.0
Service Interfaces
20
Overview
20
12.0
Generic Service Interface
21
Interface Class
21
13.0
Multi-Party Call Control Service
21
IpMultiPartyCallControlManager
22
Interface Class
22
IpAppMultiPartyCallControlManager
22
Interface Class
22
IpMultiPartyCall
22
Interface Class
23
State Diagram
24
IpAppMultiPartyCall
24
Interface Class
24
IpCallLeg
24
Interface Class
24
IpAppCallLeg
27
Interface Class
28
14.0
State Diagrams
30
14.1
Multi-Party Call State diagrams
30
States
30
14.2
Multi-Party Call Leg State Diagram
31
States
32
15.0
Multi-Party Call Control Data Definition
33
Data Type
33
Description
33
Tabular Specification
33
Example
33
6.1
Event Notification Data Definitions
33
Multi-Party Call Control
33
15.1
Milti-Party Call Control Data Definitions
33

1. Scope

The scope of this document is to consider the interface specification of an API for accessing Third Party Service Applications. UML techniques have been utilized for this purpose. This document specifies the Multi-Party Call Control aspects of the interface for ‘Access to Third Party Service provision. All aspects of Call Control are defined here, these being:

· Sequence Diagrams

· Class Diagrams

· Interface specification plus detailed method descriptions

· State Transition diagrams

· Data definitions

The process by which this task is accomplished is through the use of Object modeling techniques described by the Unified Modeling Language (UML). UML is a combined tools and methodology process which results in a comprehensive set of specifications representing, in this case, an interface between client and server applications. Further information can be found in the latest version of the ITU-T Recommendation Q.65.

The reader should note that this specification has been defined in co-operation with 3GPP CN5 and two industry consortiums, PARLAY and JAIN.

2. References

2. Normative References

2. Informative References

3. Definitions, Symbols and Abbreviations

3. Definitions

3. Symbols

3. Abbreviations

4. Introduction

This ETSI Standard uses the Unified Modelling Language (UML) to describe access to Third Party Service applications via an API. The API is divided into a number of separate parts, these being:

· Generic Service Interfaces

· Framework Interfaces

· Service Data Definitions

· Framework Data Definitions

· Common Data Definitions

· Sequence Transition Diagrams

· OMG IDL

The following text briefly describes each part:

4. Generic Service Interfaces

The API is split into two types of interface class descriptions, Service and Framework. Framework classes are those that are perceived to be applicable to the interface irrespective of the type of service that is being implemented at a specific moment in time e.g. Authentication. Whereas Service Interface classes are individual services that may be required by the client or network operator to enable the running of third party applications over the interface e.g. Messaging type service.

Editors Note: This next paragraph will need to be altered in light of new interface descriptions.
There are five parts here which represent the Generic Service Interface Classes, these being; Generic Call Control, Generic User Interaction, Generic Messaging, Mobility and Connectivity Management.

 Each of these parts defines the interfaces, parameters and state models that form part of the API specification. UML is used to specify the interface classes. As such it provides a UML interface class description of the methods (API calls) supported by that interface and the relevant parameters and types.

4. Framework Interfaces

The API is split into two types of interface class descriptions, Service and Framework. Framework classes are those that are perceived to be applicable to the interface irrespective of the type of service that is being implemented at a specific moment in time e.g. Authentication. Whereas Service Interface classes are individual services that may be required by the client of network operator to enable the running of third party applications over the interface e.g. Messaging type service.

Editors Note: This next paragraph may need altering in light of new interface descriptions
The Framework is split into two different sections, the first addressing the Client view representing interfaces ?????? in figure 2. The second addresses the relationship between the Service and Framework providers indicated by interface 3 in figure 2. The client to Framework section is split into 5 parts these being; Trust and Security Framework (which includes Authentication), Fault Management, Integrity Management, Service Subscription and Service Discovery. The Service to framework interface contains all of the same interfaces except for Service Subscription.

4. Generic Service Data Definitions

This section provides the Data Definitions necessary to support the Generic Service interface. For instance the Generic Call Control Service Data Definitions document describes each of the Data types that were shown in the detailed parameter descriptions made in the ‘Generic Call Control Service Interface’ part and so on.

4. Framework Data Definitions

This section once again provides the Data Definitions necessary to support the Framework interface.

4. Common Data Definitions

This section provides the Data definitions that are common to both the Framework and Generic Service API parameters.

4. Sequence Transition Diagrams (STDs)

This section contains the sequence transition diagrams from each service. They are used to enhance the understanding of each service in more detail.

4. OMG IDL

The section provides an OMG IDL version of the whole API. It was felt useful that a working version of the API be produced so that the API could be realisable in the Market place of today.

It was felt appropriate that this section be represented as an Appendix to the Recommendation.

The interface under consideration can be found represented by IF8 and IF9 in Figure 1:

[image: image2.wmf]SCF

SA-GF

Distributed

Service Logic

IF8

IF9

Figure 1

5.0 Multi-Party Call Control SCF

The following sections describe each aspect of the Multi-Party Call Control Service Capability Feature (SCF).

The order is as follows:

· The Sequence diagrams give the reader a practical idea of how each of the service capability feature is implemented.

· The Class relationships section show how each of the interfaces applicable to the SCF, relate to one another

· The Interface specification section describes in detail each of the interfaces shown within the Class diagram part.

· The State Transition Diagrams (STD) show the progression of internal processes either in the application, or Gateway.

· The Data definitions section show a detailed expansion of each of the data types associated with the methods within the classes. Note that some data types are used in other methods and classes and are therefore defined within the Common Data types part of this specification.

6.0 Service sequence diagrams

Multi-party Call Control Service
CallBarring2

The following sequence diagram shows a call barring service, initiated as a result of a prearranged event being received by the framework. Before the call is routed to the destination number, the calling party is asked for a PIN code. The code is rejected and the call is cleared.

[image: image3.wmf] :

IpAppLogic

 :

IpAppMultiPartyCallControlManager

 :

IpAppMultiPartyCall

 :

IpMultiPartyCall

 : (IpUICall)

 :

(IpUIManager)

 : IpMultiPartyCallControlManager

 :

(IpAppUICall)

7: sendInfoAndCollectReq()

8: sendInfoAndCollectRes()

10: sendInfoReq()

11: sendInfoRes()

14: release ()

1: new()

3: callEventNotify()

4: 'forward event'

5: new()

9: 'forward event'

12: 'forward event'

2: enableCallNotification()

6: createUICall()

13: release()

1: This message is used by the application to create an object implementing the IpAppMultiPartyCallControlManager interface.

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts a call barring service, it is likely that all new call events destined for a particular address or address range prompted for a password before the call is allowed to progress.

When a new call, that matches the event criteria, arrives a message (not shown) is directed to the object implementing the IpMultiPartyCallControlManager. Assuming that the criteria for creating an object implementing the IpMultiPartyCall interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create the MultiPartyCall and associated call leg object.

3: This message is used to pass the new call event to the object implementing the IpAppMultiPartyCallControlManager interface.

4: This message is used to forward message 3 to the IpAppMultiPartyLogic.

5: This message is used by the application to create an object implementing the IpAppMultiPartyCall interface. The reference to this object is passed back to the object implementing the IpMultiPartyCallControlManager using the return parameter of the callEventNotify.

6: This message requests the reference of the object implementing the controlling IpCallLeg interface, so that the necessary call barring service dialogue can be established with the calling party.

7: This message is used to create a UICall object that is associated with a leg of the call.

8: The call barring service dialogue is invoked.

9: The result of the dialogue, which in this case is the PIN code, is returned to its callback object.

10: This message is used to forward the previous message to the IpAppLogic

11: Assuming an incorrect PIN is entered, the calling party is informed using additional dialogue of the reason why the call cannot be completed.

12: This message passes the indication that the additional dialogue has been sent.

13: This message is used to forward the previous message to the IpAppLogic.

14: No more UI is required, so the UICall object is released.

15: This message is used by the application to clear the call.

Complex Card Service

The following sequence diagram shows an advanced card service, initiated as a result of a prearranged event being received by the framework. Before the call is made, the calling party is asked for an ID and PIN code. If the ID and PIN code are accepted, the calling party is prompted to enter the address of the destination party. A trigger of '#5' is then set on the controlling leg (the calling party's leg) such that if the calling party enters a '#5' an event will be sent to the application. The call is then routed to the destination party. Sometime during the call the calling party enters '#5' which causes the called leg to be released. The calling party is now prompted to enter the address of a new destination party, to which it is then routed.

[image: image4.wmf] :

IpAppLogic

 : IpAppMultiPartyCallControlManager

 : IpAppMultiPartyCall

 : IpMultiPartyCall

 : (IpUICall)

 :

(IpUIManager)

AppPartyA :

(IpAppMultiPartyCallLeg)

PartyB :

IpCallLeg

 :

IpMultiPartyCallControlManager

PartyA :

IpCallLeg

 :

(IpAppUICall)

20: routeRes ()

19: routeReq ()

6: sendInfoAndCollectReq()

8: sendInfoAndCollectReq()

7: sendInfoAndCollectRes()

9: sendInfoAndCollectRes()

11: eventReportReq ()

12: routeReq ()

13: routeRes ()

1: new()

3: callEventNotify()

4: 'forward event'

5: new()

16: release ()

14: eventReportRes ()

15: getCallLegs()

17: sendInfoAndCollectReq()

18: sendInfoAndCollectRes()

10: setCallback()

2: enableCallNotification()

1: This message is used by the application to create an object implementing the IpAppMultiPartyCallControlManager interface.

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts a call barring service, it is likely that all new call events destined for a particular address or address range result in the caller being prompted for a password before the call is allowed to progress.

When a new call, that matches the event criteria set in message 2, arrives a message (not shown) is directed to the object implementing the IpMultiPartyCallControlManager. Assuming that the criteria for creating an object implementing the IpMultiPartyCall interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg object.

3: This message is used to pass the new call event to the object implementing the IpAppMultiPartyCallControlManager interface.

4: : This message is used to forward message 3 to the IpAppLogic.

5: This message is used by the application to create an object implementing the IpAppMultiPartyCall interface. The reference to this object is passed back to the object implementing the IpMultiPartyCallControlManager using the return parameter of message 3.

6: This message requests the reference of the object implementing the controlling IpCallLeg interface, so that the necessary card service dialogue can be established with the calling party.

7: A UICall object is created and associated with the controlling leg of the call.

8: The initial card service dialogue is invoked using this message.

9: The result of the dialogue, which in this case is the ID and PIN code, is returned to its callback object using this message and eventually forwarded via another message (not shown) to the IpAppLogic.

10: Assuming the correct ID and PIN are entered, the final dialogue is invoked.

11: The result of the dialogue, which in this case is the destination address, is returned and eventually forwarded via another message (not shown) to the IpAppLogic.

12: This message is used to forward the address of the callback object.

13: The trigger for follow-on calls is set.

14: The call is then forward routed to the destination party.

15: This message passes the result of the call being answered to its callback object and is eventually forwarded via another message (not shown) to the IpAppLogic.

16: At some time during the call the calling party enters '#5'. This causes this message to be sent to the object implementing the IpAppCallLeg interface, which forwards this event as a message (not shown) to the IpAppLogic.

17: This causes the application to obtain the reference to the called party, via message 18.

18: This message releases the called party.

19: Another dialogue is invoked using message 20.

20: The result of the dialogue, which in this case is the new destination address is returned and eventually forwarded via another message (not shown) to the IpAppLogic.

21: The call is then forward routed to the new destination party.

22: This message passes the result of the call being answered to its callback object and is eventually forwarded via another message (not shown) to the IpAppLogic.

Application initiated call setup

The following sequence diagram shows an application creating a call between party A and party B. Here, a call is created first. Then party A's call leg is created before triggers are set on it for answer and then routed to the call. On answer, an announcement is played indicating that the call is being set up to party B. While the announcement is being played, party B's call leg is created and then triggers are set on it for answer. On answer the announcement is cancelled and party B is routed to the call.

[image: image5.wmf]PartyB :

IpCallLeg

 : IpMultiPartyCallControlManager

 : IpAppMultiPartyCall

 : IpMultiPartyCall

PartyA :

IpCallLeg

 :

IpAppLogic

4: setCallback()

1: new()

2: createCall()

3: new()

7: eventReportReq ()

 :

(IpAppUICall)

 : (IpUICall)

11: sendInfoReq()

15: eventReportReq ()

18: abortActionReq()

5: createCallLeg()

6: new()

13: createCallLeg()

14: new()

AppPartyA :

(IpAppMultiPartyCallLeg)

AppPartyB :

(IpAppMultiPartyCallLeg)

9: eventReportRes ()

17: eventReportRes ()

8: route ()

16: route ()

12: sendInfoRes()

 :

(IpUIManager)

10: createUICall()

1: This message is used to create an object implementing the IpAppMultiPartyCall interface.

2: This message requests the object implementing the IpMultiPartyCallControlManager interface to create an object implementing the IpMultiPartyCall interface.

3: Assuming that the criteria for creating an object implementing the IpMultiPartyCall interface (e.g. load control values not exceeded) is met it is created.

4: Once the object implementing the IpMultiPartyCall interface is created it is used to pass the reference of the object implementing the IpAppMultiPartyCall interface as the callback reference to the object implementing the IpMultiPartyCall interface.

Note that the reference to the callback interface could already have been passed in the createCall.

5: This message instructs the object implementing the IpMultiPartyCall interface to create a call leg for customer A.

6: Assuming that the criteria for creating an object implementing the IpCallLeg interface is met, message 6 is used to create it.

7: This message requests the call leg for customer A to inform the application when the call leg answers the call.

8: The call is then routed to the originating call leg.

9: Assuming the call is answered, the object implementing party A's IpCallLeg interface passes the result of the call being answered back to its callback object. This message is then forwarded via another message (not shown) to the object implementing the IpAppLogic interface.

10: A UICall object is created and associated with the just created call leg.

11: This message is used to inform party A that the call is being routed to party B.

12: An indication that the dialogue with party A has commenced is returned via message 13 and eventually forwarded via another message (not shown) to the object implementing the IpAppLogic interface.

13: This message instructs the object implementing the IpMultiPartyCall interface to create a call leg for customer B.

14: Assuming that the criteria for creating a second object implementing the IpCallLeg interface is met, it is created.

15: This message requests the call leg for customer B to inform the application when the call leg answers the call.

16: The call is then routed to the call leg.

17: Assuming the call is answered, the object implementing party B's IpCallLeg interface passes the result of the call being answered back to its callback object. This message is then forwarded via another message (not shown) to the object implementing the IpAppLogic interface.

18: This message then instructs the object implementing the IpUICall interface to stop sending announcements to party A.

7.0 Multi-Party Call Control Service class diagrams

The Multi-party Call Control service enhances the functionality of the Generic Call Control Service with leg management. It also allows for multi-party calls to be established, i.e., up to a service specific number of legs can be connected simultaneously to the same call.

The Multi-party Call Control Service is represented by the IpMultiPartyCallControlManager, IpMultiPartyCall, IpCallLeg interfaces that interface to services provided by the network. Some methods are asynchronous, in that they do not lock a thread into waiting whilst a transaction performs. In this way, the client machine can handle many more calls, than one that uses synchronous message calls. To handle responses and reports, the developer must implement IpAppMultiPartyCallManager, IpAppMultiPartyCall and IpAppCallLeg to provide the callback mechanism.

[image: image6.wmf]PparlayMultiParty

Call

PparlayAppMultiParty

Call

Figure 4: Multi-party Call Control overview

The multiparty call control service consists of two packages, one for the interfaces on the application side (PAppMultiPartyCall) and one for interfaces on the service side (PMultiPartyCall).

The class diagrams in the following figures show the interfaces that make up the multi party call control application package and the multi party call control service package.

[image: image7.wmf]IpAppMultiPartyCallControlManager

<<Interface>>

IpAppMultiPartyCall

<<Interface>>

IparlayInterface

(from CommonData)

<<Interface>>

IpAppCallControlManager

callAborted()

callEventNotify()

callNotificationInterrupted()

callNotificationContinued()

callOverloadEncountered()

callOverloadCeased()

(from Generic Call Control Service)

<<Interface>>

IpAppCall

routeRes()

routeErr()

getCallInfoRes()

getCallInfoErr()

superviseCallRes()

superviseCallErr()

callFaultDetected()

getMoreDialledDigitsRes()

getMoreDialledDigitsErr()

callEnded()

(from Generic Call Control Service)

<<Interface>>

IpMultiPartyCallControlManager

<<Interface>>

IpMultiPartyCall

getCallLegs()

createCallLeg()

<<Interface>>

IpCallLeg

route()

eventReportReq()

release()

getInfoReq()

getCall()

attachMedia()

detachMedia()

getLastRedirectedAddress()

<<Interface>>

1

0..n

<<uses>>

1

0..n

IpAppCallLeg

eventReportRes()

eventReportErr()

getInfoRes()

getInfoErr()

<<Interface>>

1

0..n

<<uses>>

1

0..n

<<uses>>

Figure 5: Multi-party Call Control - Application Interfaces

This class diagram shows the interfaces of the multi-party call control application package and their relations to the interfaces of the multi-party call control service package.

[image: image8.wmf]IpMultiPartyCallControlManager

<<Interface>>

IpMultiPartyCall

getCallLegs()

createCallLeg()

<<Interface>>

1

0..n

IpCallLeg

route()

eventReportReq()

release()

getInfoReq()

getCall()

attachMedia()

detachMedia()

getLastRedirectedAddress()

<<Interface>>

1

0..n

IpCall

routeReq()

release()

deassignCall()

getCallInfoReq()

setCallChargePlan()

setAdviceOfCharge()

getMoreDialledDigitsReq()

superviseCallReq()

(from Generic Call Control Service)

<<Interface>>

IpCallControlManager

createCall()

enableCallNotification()

disableCallNotification()

setCallLoadControl()

changeCallNotification()

getCriteria()

(from Generic Call Control Service)

<<Interface>>

IpService

setCallback()

setCallbackWithSessionID()

(from services)

<<Interface>>

Figure 6 Multi-party Call Control - Service Interfaces

This class diagram shows the interfaces of the multi-party call control service package.

8.0 Interface Specifications

The general format of an interface specification is described below:

· Interface Class

This is a UML interface class description of the methods supported by that interface, and the relevant parameters and types. The Service and Framework interfaces to capabilities within the network are denoted by classes with name I<name>. The callback interfaces to the applications are denoted by classes with name IApp<name>.

· Method descriptions

Each method (API method “call”) is described. All methods in the API return a value of type TResult, indicating, amongst other things, if the method invocation was sucessfully executed or not.
Both synchronous and asynchronous methods are used in the API. Asynchronous methods are identified by a 'Req' suffix for a method request, and, if applicable, are served by asynchronous methods identified by either a 'Res' or 'Err' suffix for method results and errors, respectively. To handle responses and reports, the developer must implement the relevant IApp<name> interfaces to provide the callback mechanism.

· Parameter descriptions

Each method parameter and its possible values are described. Parameters described as 'in' represent those which must have a value when the method is called. Those described as 'out' are those which contain the return result of the method when the method returns.

· State Model

If relevant, a state model is shown to illustrate the states of the objects which implement the described interface.

8.1 Architecture of the API specification

The API is object-oriented and consists of several categories of interfaces as shown in Figure 2. Phase 1 addressed public interfaces between enterprise-based client applications and services (interface 2) and the Framework (interface 1), where:

· Service Interfaces offer applications access to a range of network capabilities.

· Framework Interfaces provide 'surround' capabilities necessary for the Service Interfaces to be open, secure, resilient and manageable.

In Phase 2, additional public interfaces are introduced to support administrative functions within the enterprise (interfaces 4 & 6) and to permit the supply of services by third party vendors (interfaces 3 & 5).

The Call Control service interface is represented by interface 2.

[image: image9.wmf]Framework

operator

admin

Enterprise

operator

admin tool

Service

supplier

admin tool

1

1

4

4

3

3

5

5

Not in scope of

this version of

the API

Not in scope of

this version of

the API

Telecom Network

Not in scope of

this version of

the API

Not in scope of

this version of

the API

2

2

6

6

Client

Application

Not in

 scope

of this

API

version

Figure 2 Interfaces

In order to realise the Service and Framework interfaces, it is recognised that categories of resource interfaces are required to facilitate integration of network equipment. The definition of the resource interfaces is not in the scope of the group at this time.

9.0 The Service Interface Specifications

This section defines the interfaces, methods and parameters that form a part of the API specification. The Unified Modelling Language (UML) is used to specify the interface classes. The general format of an interface specification is described below.

Interface Class

This shows a UML interface class description of the methods supported by that interface, and the relevant parameters and types. The Service and Framework interfaces for enterprise-based client applications are denoted by classes with name Ip<name>. The callback interfaces to the applications are denoted by classes with name IpApp<name>. For the interfaces between a Service and the Framework, the Service interfaces are typically denoted by classes with name IpSvc<name>, while the Framework interfaces are denoted by classes with name IpFw<name>

Method descriptions

Each method (API method “call”) is described. All methods in the API return a value of type TpResult, indicating, amongst other things, if the method invocation was sucessfully executed or not.
Both synchronous and asynchronous methods are used in the API. Asynchronous methods are identified by a 'Req' suffix for a method request, and, if applicable, are served by asynchronous methods identified by either a 'Res' or 'Err' suffix for method results and errors, respectively. To handle responses and reports, the application or service developer must implement the relevant IpApp<name> or IpSvc<name> interfaces to provide the callback mechanism.

Parameter descriptions

Each method parameter and its possible values are described. Parameters described as 'in' represent those that must have a value when the method is called. Those described as 'out' are those that contain the return result of the method when the method returns.

State Model

If relevant, a state model is shown to illustrate the states of the objects that implement the described interface.

10.0 Base Interface

All application, framework and service interfaces inherit from the following interface. This API Base Interface does not provide any additional methods.

Interface Class

<<Interface>>

IpInterface

11.0 Service Interfaces

Overview

The Service Interfaces provide the interfaces into the capabilities of the underlying network - such as call control, user interaction, messaging, mobility and connectivity management.

The interfaces that are implemented by the services are denoted as 'Service Interface'. The corresponding interfaces that must be implemented by the application (e.g. for API callbacks) are denoted as 'Application Interface'.

12.0 Generic Service Interface

Inherits from the base interface.

All service interfaces inherit from the following interface.

Interface Class

<<Interface>>

IpService

setCallback(appInterface : in IpInterfaceRef) : TpResult

setCallbackWithSessionID(appInterface : in IpInterfaceRef , sessionID : in TpSessionID) : TpResult

Method

setCallback()

This method specifies the reference address of the callback interface that a service uses to invoke methods on the application.

Parameters

appInterface : in IpInterfaceRef

Specifies a reference to the application interface, which is used for callbacks.

Method

setCallbackWithSessionID()

This method specifies the reference address of the application’s callback interface that a service uses for interactions associated with a specific session ID: e.g. a specific call, or call leg.

Parameters

appInterface : in IpInterfaceRef

Specifies a reference to the application interface, which is used for callbacks.

sessionID : in TpSessionID

Specifies the session for which the service can invoke the application’s callback interface.

13.0 Multi-Party Call Control Service

The Multi-party Call Control service enhances the functionality of the Generic Call Control Service with leg management. It also allows for multi-party calls to be established, i.e., up to a service specific number of legs can be connected simultaneously to the same call.

The Multi-party Call Control Service is represented by the IpMultiPartyCallControlManager, IpMultiPartyCall, IpCallLeg interfaces that interface to services provided by the network. Some methods are asynchronous, in that they do not lock a thread into waiting whilst a transaction performs. In this way, the client machine can handle many more calls, than one that uses synchronous message calls. To handle responses and reports, the developer must implement IpAppMultiPartyCallManager, IpAppMutliPartyCall and IpAppCallLeg to provide the callback mechanism.

IpMultiPartyCallControlManager

Inherits from: IpCallControlManager

This interface is the 'service manager' interface for the Multi-party Call Control Service.

The multi-party call control manager interface provides the management functions to the multi-party call control service. The application programmer can use this interface to provide overload control functionality, create call objects and to enable or disable call-related event notifications.

 Interface Class

<<Interface>>

IpMultiPartyCallControlManager

IpAppMultiPartyCallControlManager

Inherits from: IpAppCallControlManager

The Multi-Party call control manager application interface provides the application call control management functions to the Multi-Party call control service.

 Interface Class

<<Interface>>

IpAppMultiPartyCallControlManager

IpMultiPartyCall

Inherits from: IpCall

The Multi-Party Call provides the possibility to control the call routing, to request information from the call, control the charging of the call, to release the call and to supervise the call.

It also gives the possibiltiy to manage call legs explicitly. Via the legs the application can also influence the media in multi-media calls.

If an application uses the multi-party call control interface it may call the method routeReq several times without disconnecting already connected destination. Therefore, an application may implicitly create more then one passive (destination) call leg. However, there can only be at most one active (controlling) call leg at any time.

In contrast to the conference service it is not possible to move legs to another call object.

 Interface Class

<<Interface>>

IpMultiPartyCall

getCallLegs(callSessionID : in TpSessionID , callLegList : out TpCallLegIdentifierSetRef) : TpResult

createCallLeg(callSessionID : in TpSessionID , appCallLeg : in IpAppCallLegRef , targetAddress : in TpAddress , originatingAddress : in TpAddress , originalCalledAddress : in TpAddress , redirectingAddress : in TpAddress , appInfo : in TpCallAppInfoSet , callLeg : out TpCallLegIdentifierRef) : TpResult

Method

getCallLegs ()

This method requests the identification of the call leg objects associated with the call object. Returns the legs in the order of creation.
Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

callLegList : out TpCallLegIdentifierSetRef

Specifies the call legs associated with the call. The set contains both the sessionIDs and the interface references..

Method

createCallLeg ()

This method requests the creation of a new call leg object The call leg will be associated with the call, but not attached. The call leg can be attached to the call (using attachMedia) when the call leg is in the connected state (i.e. it has been answered).
Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

appCallLeg : in IpAppCallLegRef

Specifies the application interface for callbacks from the call leg created.

targetAddress : in TpAddress

Specifies the destination party to which the call should be routed.

originatingAddress : in TpAddress

Specifies the address of the originating (calling) party.

originalCalledAddress : in TpAddress

Specifies the original address to which the call was initiated.

redirectingAddress : in TpAddress

Specifies the last address from which the call was redirected.

appInfo : in TpCallAppInfoSet

Specifies application-related information pertinent to the call leg (such as alerting method, tele-service type, service identities and interaction indicators).

callLeg : out TpCallLegIdentifierRef

Specifies the interface and sessionID of the call leg created.

State Diagram

IpAppMultiPartyCall

Inherits from: IpAppCall

The Multi-Party call application interface is implemented by the client application developer and is used to handle call request responses and state reports.

 Interface Class

<<Interface>>

IpAppMultiPartyCall

IpCallLeg

Inherits from: IpService

The call leg interface represents the logical call leg associating a call with an address. The call leg tracks it own states and allows charging summaries to be accessed. The leg represents the signalling relationship between the call and an address. A

An application that uses the IpCallLeg interface to set up connections has more control, e.g. by defining leg specific event request and can obtain call leg specific report and events.

 Interface Class

<<Interface>>

IpCallLeg

route(callLegSessionID : in TpSessionID) : TpResult

eventReportReq(callLegSessionID : in TpSessionID , eventReportsRequested : in TpCallReportRequestSet) : TpResult

release(callLegSessionID : in TpSessionID , cause : in TpCallReleaseCause) : TpResult

getInfoReq(callLegSessionID : in TpSessionID , callLegInfoRequested : in TpCallLegInfoType) : TpResult

getCall(callLegSessionID : in TpSessionID , callReference : out TpCallIdentifierRef) : TpResult

attachMedia(callLegSessionID : in TpSessionID) : TpResult

detachMedia(callLegSessionID : in TpSessionID) : TpResult

getLastRedirectedAddress(callLegSessionID : in TpSessionID , redirectingAddress : out TpAddressRef) : TpResult

Method

route ()

This is the leg equivalent to the method routeReq().
There can be multiple legs that are routed with this method. Each of these legs will become a passive leg.
 If the application developer does not want to deal with the redirectingAddress, originalDestinationAddress and originatingAddress than these parameter may be set to unavailable (by setting the plan to P_ADDRESS_PLAN_NOT_PRESENT) for convenience. In this case information provided when routing to the origination will be used if applicable. Otherwise network or gateway provided addresses will be used.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

Method

eventReportReq ()

This asynchronous method sets, clears or changes the criteria for the events that the call leg object will be set to observe.
Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

eventReportsRequested : in TpCallReportRequestSet

Specifies the events that the call leg object will observe and report.

Method

release ()

This method requests the release of the call leg. If successful, the associated address (party) will be released from the call, and the call leg deleted. Note that if the controlling leg is released, the entire call is released.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

cause : in TpCallReleaseCause

Specifies the cause of the release.

Method

getInfoReq ()

This asynchronous method requests information associated with the call leg to be provided at the appropriate time (for example, to calculate charging). Note: in the call leg information must be accessible before the objects of concern are deleted.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

callLegInfoRequested : in TpCallLegInfoType

Specifies the call leg information that is requested.

Method

getCall ()

This method requests the call associated with this call leg.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

callReference : out TpCallIdentifierRef

Specifies the interface and sessionID of the call associated with this call leg.

Method

attachMedia ()

This method requests that the call leg be attached to its call object. This will allow transmission on all associated bearer connections or media channels to and from other parties in the call. The call leg must be in the connected state for this method to complete successfully.
Parameters

callLegSessionID : in TpSessionID

Specifies the sessionID of the call leg to attach to the call.

Method

detachMedia ()

This method will detach the call leg from its call, i.e., this will prevent transmission on any associated bearer connections or media channels to and from other parties in the call. The call leg must be in the connected state for this method to complete successfully.
Parameters

callLegSessionID : in TpSessionID

Specifies the sessionID of the call leg to detach from the call.

Method

getLastRedirectedAddress ()

Queries the last address the leg has been redirected to.

Parameters

callLegSessionID : in TpSessionID

Specifies the call session ID of the call leg.

redirectingAddress : out TpAddressRef

Specifies the last address where the call leg was redirected to.

IpAppCallLeg

Inherits from: IpInterface

The application call leg interface is implemented by the client application developer and is used to handle responses and errors associated with requests on the call leg in order to be able receive leg specific information and events.

 Interface Class

<<Interface>>

IpAppCallLeg

eventReportRes(callLegSessionID : in TpSessionID , eventReport : in TpCallReport) : TpResult

eventReportErr(callLegSessionID : in TpSessionID , errorIndication : in TpCallError) : TpResult

getInfoRes(callLegSessionID : in TpSessionID , callLegInfoReport : in TpCallLegInfoReport) : TpResult

getInfoErr(callLegSessionID : in TpSessionID , errorIndication : in TpCallError) : TpResult

Method

eventReportRes ()

This asynchronous method reports that an event has occurred that was requested to be reported (for example, a mid-call event, the party has requested to disconnect, etc.).
Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

eventReport : in TpCallReport

Specifies the result of the request to route the call to the destination party. It also includes the mode that the call object is in, the call leg generating the report (if applicable) and other related information.

Method

eventReportErr ()

This asynchronous method indicates that the request to manage call leg reports was unsuccessful, and the reason (for example, the parameters were incorrect, the request was refused, etc.).
Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

Method

getInfoRes ()

This asynchronous method reports all the necessary information requested by the application, for example to calculate charging. .
Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

callLegInfoReport : in TpCallLegInfoReport

Specifies the call leg information requested.

Method

getInfoErr ()

This asynchronous method reports that the original request was erroneous, or resulted in an error condition.
Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

14.0 State Diagrams

14.1 Multi-Party Call State diagrams

The state transition diagram shows the application view on the MultiParty Call object. The diagram is an extension to the state diagram of the Call object in the sense that more than 2 parties are allowed to participate in a call.

[image: image10.wmf]Active

2 .. n Parties in Call

1 Party in

Call

Routing to

Destination(s)

routeReq[number active + requested parties < max allowed number

parties in call] / increase number of active + requested parties

Network

Released

setCallChargePlan

superviseCallReq

getCallInfoReq

setAdviceOfCharge

No Parties

Application

Released

Finished

release

deassignCall

setCallChargePlan

superviseCallReq

getCallInfoReq

setAdviceOfCharge

2 .. n Parties in Call

1 Party in

Call

Routing to

Destination(s)

"disconnect from call party"

[monitor mode = interrupt && 2 parties in call]

"answer from called party"

In states:

- No Parties,

- Finished

a timer mechanism should prevent that

the object keeps occupying resources. In

case the timer expires, the object should

be destroyed and callFaultDetected

should be reported to the application.

"requested information ready" ^getCallInfoRes,

superviseCallRes

deassignCall

[no reports requested with getCallInfoReq AND

superviseCallReq]

release

"requested information ready" ^getCallInfoRes, superviseCallRes

[no reports requested with getCallInfoReq AND superviseCallReq]

"call ends" ^callEnded

release

deassignCall

"routing aborted or invalid address" / decrease number of requested + active parties ^routeErr

"network event received that was monitored" ^routeRes

"connection to called party unsuccessful" / decrease number of requested + active parties ^routeRes

"disconnect from called party" ^routeRes, getCallInfoRes(intermediate report)

"call supervision event" ^superviseCallRes

"answer from called party"

"requests failed"[no more outstanding

routeReq operations] ^routeErr

"routing unsuccessfull[not more

outstanding routeReq operations]

^routeRes

"fault detected" ^callFaultDetected

[no reports requested with getCallInfoReq AND superviseCallReq]

release

routeReq

deassign

IpMultiPartyCallControlManager.createCall

IpAppMultiPartyCallControlManager.callEventNotify

IpAppMultiPartyCallControlManager.callEventNotify(answer from called party)

Figure 3 Application view on the MultiParty Call object
 States

No Parties

In this state the Call object has been created. The application can request the gateway for a certain type of charging of the call by calling setCallChargePlan(). The application can request for charging related information by calling getCallInfoReq(). Furthermore the application can request supervision of the call by calling superviseCallReq().

Active

In this state a call between two parties is being setup or present. Refer to the substates for more details
The application can request the gateway for a certain type of charging of the call by calling setCallChargePlan(). The application can request for charging related information by calling getCallInfoReq(). Furthermore the application can request supervision of the call by calling superviseCallReq(). It is also allowed to send Advice of Charge information by calling setAdviceOfCharge().

1 Party in Call

In this state there is one party in the call.
In case the call originated from the network the application can now request a connection to a called party be established by calling the operation routeReq().
In case the called party was reached with route the application can request a connection to a called party be established by calling the operation routeReq().
Otherwise, it depends on the actual number of invoked (and still outstanding or successful) routing requests whether the application can still call the routeReq() operation in order to setup a connection to a called party.
In this state user interaction is possible

2 .. n Parties in Call

In this state a successful connection between at least two parties is established.
In this state user interaction is possible, depending on the underlying network.

Routing to Destination(s)

In this state there is at least one outstanding routeReq.

Network Released

In this state the call has ended and the Gateway collects the possible call information requested with getCallInfoReq() and / or superviseCallReq(). In case the application has not requested additional call related information a transition to the Idle state is made immediately.

Finished

In this state the call has ended and no call related information is to be send to the application. The application can only release the call object. Calling the deassignCall() operation has the same effect. Note that the application has to release the object itself as good OO practice requires that when an object was created on behalf of a certain entity, this entity is also responsible for destroying it when the object is no longer needed.

Application Released

In this state the application has requested to release the Call object and the Gateway collects the possilbe call information requested with getCallInfoReq() and / or superviseCallReq(). In case the application has not requested additional call related information the Call object is destroyed immediately.

14.2 Multi-Party Call Leg State Diagram

[image: image11.wmf]Idle

Routing

Progress

Alerting

Redirected

Connected

Attached

Detached

Failed or

Disconnected

All States

Attached

Detached

EventReportReq

getInfoReq

"call progress event"

^EventReportRes

"answer"

^EventReportRes

"midcall event" ^EventReportRes

"invalid address"

[when routed with routeReq]

^EventReportErr

"disconnect" ^EventReportRes

"routing failed, refused busy or

no answer" ^EventReportRes

"last report"

"call object is destructed"

release

getCall

detachMedia

attachMedia

[when routed with routeReq]

[when routed with route()]

Incoming

"answer from other party"

Progress

Alerting

Redirected

route

only send result

when monitor for

this event was

requested

getLastRedirectedAddress

eventReportReq

getInfoReq

IpMultiPartyCall.routeReq

IpMultiPartyCall.createCallLeg

"incoming call event" ^IpAppMultiPartyCallControlManager.callEventNotify

Figure 4 Application view on the CallLeg object
 States

Incoming

This state is only valid for an incoming Call Leg in case and there is no call established to another party.

Idle

In this state a new CallLeg object has been created and the application has not yet issued a routing request.

Routing

In this state a connection to the call party is being established.

Progress

In this sub-state the network has indicated there is progress in routing the CallLeg.

Alerting

In this sub-state the network has indicated there the terminal of the party is alerting.

Redirected

In this sub-state the network has indicated the call party has redirected calls to another address.

Connected

In this state a connection to the call party is established.
In case the request for the connection was made by either route() or route() on the Call object, the call party is also attached to the Call.
In case the request was made by routeCallLegToOrignation() or route() the call party still needs to be attached to the Call.

Attached

In this sub-state the media of the Call Leg object is attached to a Call object.

Detached

In this sub-state the media of the Call Leg object is not attached to a Call object.

Failed or Disconnected

In this state no connection to the call party could be established or the call party has disconnected.
The reason that no connection could be established can be that an invalid address was specified, the network aborted routing or the call party was busy.

All States

This represents all normal states the CallLeg object can have.

15.0 Multi-Party Call Control Data Definition

This document provides the generic call control data definitions necessary to support the API specification.

This document is written using Hypertext link, to aid navigation through the data structures. Underlined text represents Hypertext links.

The general format of a data definition specification is described below.

Data Type

This shows the name of the data type.

Description

This describes the data type.

Tabular Specification

This specifies the data types and values of the data type.

Example

If relevant, an example is shown to illustrate the data type.

6.1 Event Notification Data Definitions

Multi-Party Call Control

No specific event notification data defined.

15.1 Milti-Party Call Control Data Definitions
IpCallLeg

Defines the address of an IpCallLeg Interface.

IpCallLegRef

Defines a Reference to type IpCallLeg.

IpCallLegRefRef

Defines a Reference to type IpCallLegRef.

IpAppCallLeg

Defines the address of an IpAppCallLeg Interface.

IpAppCallLegRef

Defines a Reference to type IpAppCallLeg.

TpCallLegIdentifierSet

Defines a Numbered Set of Data Elements of TpCallLegIdentifier.
TpCallLegIdentifierSetRef

Defines a Reference to type TpCallLegIdentifierSet.

TpCallLegIdentifierRef

Defines a Reference to type TpCallLegIdentifier.

TpCallLegIdentifier

Defines the Sequence of Data Elements that unambiguously specify the Call Leg object

Sequence Element Name
Sequence Element Type
Sequence Element Description

CallLegReference
IpCallLegRef
This element specifies the interface reference for the callLeg object.

CallLegSessionID
TpSessionID
This element specifies the callLeg session ID.

TpCallLegInfoReport

Defines the Sequence of Data Elements that specify the call leg information requested.

Sequence Element Name
Sequence Element Type
description

CallLegInfoType
TpCallLegInfoType
The type of the call leg.

CallLegStartTime
TpDateAndTime
The time and date when the call leg was started (i.e., the leg was routed).

CallLegConnectedToResourceTime
TpDateAndTime
The date and time when the call leg was connected to the resource. If no resource was connected the time is set to an empty string.

Either this element is valid or the CallConnectedToAddressTime is valid, depending on whether the report is sent as a result of user interaction.

CallLegConnectedToAddressTime
TpDateAndTime
The date and time when the call leg was connected to the destination (i.e., when the destination answered the call). If the destination did not answer, the time is set to an empty string.

Either this element is valid or the CallConnectedToResourceTime is valid, depending on whether the report is sent as a result of user interaction.

CallLegEndTime
TpDateAndTime
The date and time when the call leg was released.

ConnectedAddress
TpAddress
The address of the party associated with the leg. If during the call the connected address was received from the party then this is returned, otherwise the destination address (for legs connected to a destination) or the originating address (for legs connected to the origination) is returned.

CallLegReleaseCause
TpCallReleaseCause
The cause of the termination. May be present with P_CALL_LEG_INFO_RELEASE_CAUSE was specified.

CallAppInfo
TpCallAppInfoSet
Additional information for the leg. May be present with P_CALL_LEG_INFO_APPINFO was specified.

TpCallLegInfoType

Defines the type of call leg information requested and reported. The values may be combined by a logical 'OR' function.

Name
Value
Description

P_CALL_LEG_INFO_UNDEFINED
00h
Undefined

P_CALL_LEG_INFO_TIMES
01h
Relevant call times

P_CALL_LEG_INFO_RELEASE_CAUSE
02h
Call leg release cause

P_CALL_LEG_INFO_ADDRESS
04h
Call leg connected address

P_CALL_LEG_INFO_APPINFO
08h
Call leg application related information

�Rose:CClassDiagram:MDLFilename=C\x3A\x5Cdata\x5CStandardisatie\x5CParlay\x5CParlay\x202.1\x5Cmodel_docs_2_1_pre3\x5Cparlay21pre2.mdl,DiagramID=38FF04A90046

�Rose:CClassDiagram:MDLFilename=C\x3A\x5Cdata\x5CStandardisatie\x5CParlay\x5CParlay\x202.1\x5Cmodel_docs_2_1_pre3\x5Cparlay21pre2.mdl,DiagramID=37BA7ED201B4

�Rose:CClassDiagram:MDLFilename=C\x3A\x5Cdata\x5CStandardisatie\x5CParlay\x5CParlay\x202.1\x5Cmodel_docs_2_1_pre3\x5Cparlay21pre2.mdl,DiagramID=37BA7EE70011

PAGE
4

_1006924015.ppt

SCF

SA-GF

Distributed

Service Logic

IF8

IF9

Figure 1

_1014809645.ppt

Framework

operator

admin

Enterprise

operator

admin tool

Service

supplier

admin tool

1

4

3

5

Not in scope of this version of the API

Telecom Network

Not in scope of this version of the API

2

6

Client

Application

Not in

 scope

of this API version

