56
38

SPAN- EN SPAN3 ? Part 1 

 Draft V0.0.0 (2000-09)
APIs for Third Party Service Applications

Service Control Feature

Generic Messaging

[image: image1.png]
Reproduction is only permitted for the purpose of standardization work undertaken within ETSI.
The copyright and the foregoing restrictions extend to reproduction in all media.
© European Telecommunications Standards Institute .

All rights reserved.

European Telecommunications Standards Institute

ETSI Secretariat

Postal address

F-06921 Sophia Antipolis Cedex - FRANCE

Office address

650 Route des Lucioles - Sophia Antipolis

Valbonne - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C

Association à but non lucratif enregistrée à la

Sous-Préfecture de Grasse (06) N° 7803/88

X.400

c= fr; a=atlas; p=etsi; s=secretariat

Internet

secretariat@etsi.fr

Reference

APIs for Third Party Service Applications

Keywords

APIs, Interface Classes, Framework, IDL

http://www.etsi.fr

Contents

51.
Scope

2.
References
5
2.1
Normative References
5
2.2
Informative References
5
3.
Definitions, Symbols and Abbreviations
5
3.1
Definitions
5
3.2
Symbols
5
3.3
Abbreviations
5
4.
Introduction
6
4.1
Generic Service Interfaces
6
4.2
Framework Interfaces
6
4.3
Generic Service Data Definitions
6
4.4
Framework Data Definitions
7
4.5
Common Data Definitions
7
4.6
Sequence Transition Diagrams (STDs)
7
4.7
OMG IDL
7
5.0
Generic Messaging SCF
7
6.0
Generic Messaging Service sequence diagrams
8
Open Mailbox
8
Close Mailbox
8
Prepare Mailbox
9
Get Message
10
Get Folder Information
11
7.0
Generic Mesaging Service class diagrams
11
8.0
Interface Specifications
13
8.1
Architecture of the  API specification
15
9.0
The Service Interface Specifications
15
Interface Class
15
Method descriptions
16
Parameter descriptions
16
State Model
16
10.0
Base  Interface
16
Interface Class
16
11.0
Service Interfaces
16
Overview
16
12.0
Generic Service Interface
17
Interface Class
17
13.0
Generic Messaging Service
17
Generic Messaging Manager: Service Interface (IpMessagingManager )
19
Interface Class
19
Generic Messaging Manager: Application Interface (IpAppMessagingManager)
21
Interface Class
21
Generic Mailbox: Service Interface (IpMailbox)
23
Interface Class
23
Generic MailboxFolder: Service Interface (IpMailboxFolder)
27
Interface Class
27
Generic Mailbox Message: Service Interface (IpMessage)
30
Interface Class
30
14.0
State Diagrams
32
14.1
Generic Messaging State diagrams
32
15.0
Generic Messaging Data Definitions
32
15.1
Event notification Definitions
32
15.2
Generic Messaging Data Definitions
33


1. Scope

The scope of this document is to consider the interface specification of an API for accessing Third Party Service Applications. UML techniques have been utilized for this purpose.  This document specifies the Generic Messaging aspects of the interface for ‘Access to Third Party Service provision.  All aspects of Generic Messaging are defined here, these being:

· Sequence Diagrams

· Class Diagrams

· Interface specification plus detailed method descriptions

· State Transition diagrams

· Data definitions

The process by which this task is accomplished is through the use of Object modeling techniques described by the Unified Modeling Language (UML).  UML is a combined tools and  methodology process which results in a comprehensive set of specifications representing, in this case, an interface between client and server applications.  Further information can be found in the latest version of the ITU-T Recommendation Q.65.

The reader should note that this specification has been defined in co-operation with 3GPP CN5 and two industry consortiums, PARLAY and JAIN. 

2. References

2. Normative References

2. Informative References

3. Definitions, Symbols and Abbreviations

3. Definitions

3. Symbols

3. Abbreviations

4. Introduction

This ETSI Standard uses the Unified Modelling Language (UML) to describe access to Third Party Service applications via an API.  The API is divided into a number of separate parts, these being:

· Generic Service Interfaces

· Framework Interfaces

· Service Data Definitions

· Framework Data Definitions

· Common Data Definitions

· Sequence Transition Diagrams

· OMG IDL

The following  text briefly describes each part:

4. Generic Service Interfaces

The API is split into two types of interface class descriptions, Service and Framework.  Framework classes are those that are perceived to be applicable to the interface irrespective of the type of service that is being implemented at a specific moment in time e.g. Authentication.  Whereas Service Interface classes are individual services that may be required by the client or network operator to enable the running of third party applications over the interface e.g. Messaging type service.

Editors Note: This next paragraph will need to be altered in light of new interface descriptions.
There are five parts here which represent the Generic Service Interface Classes, these being; Generic Call Control, Generic User Interaction, Generic Messaging, Mobility and Connectivity Management. 

 Each of these parts defines the interfaces, parameters and state models that form part of the API specification.  UML is used to specify the interface classes.  As such it provides a UML interface class description of the methods (API calls) supported by that interface and the relevant parameters and types.

4. Framework Interfaces

The API is split into two types of interface class descriptions, Service and Framework.  Framework classes are those that are perceived to be applicable to the interface irrespective of the type of service that is being implemented at a specific moment in time e.g. Authentication.  Whereas Service Interface classes are individual services that may be required by the client of network operator to enable the running of  third party applications over the interface e.g. Messaging type service.

Editors Note: This next paragraph may need altering in light of new interface descriptions
The Framework is split into two different sections, the first addressing the Client view representing interfaces ?????? in figure 2.  The second addresses the relationship between the Service and Framework providers indicated by interface 3 in figure 2.  The client to Framework section is split into 5 parts these being; Trust and Security Framework (which includes Authentication), Fault Management, Integrity Management, Service Subscription and Service Discovery.  The Service to framework interface contains all of the same interfaces except for Service Subscription.

4. Generic Service Data Definitions

This section provides the Data Definitions necessary to support the Generic Service interface.  For instance the Generic Call Control Service Data Definitions document describes each of the Data types that were shown in the detailed parameter descriptions made in the ‘Generic Call Control Service Interface’ part and so on.

4. Framework Data Definitions

This section once again provides the Data Definitions necessary to support the Framework interface.

4. Common Data Definitions

This section provides the Data definitions that are common to both the Framework and Generic Service API parameters.

4. Sequence Transition Diagrams (STDs)

This section contains the sequence transition diagrams from each service.  They are used to enhance the understanding of each service in more detail.

4. OMG IDL

The section provides an OMG IDL version of the whole API.  It was felt useful that a working version of the API be produced so that the API could be realisable in the Market place of today. 

It was felt appropriate that this section be represented as an Appendix to the Recommendation.

The interface under consideration can be found represented by IF8 and IF9 in Figure 1:


[image: image2.wmf]SCF

SA-GF

Distributed

Service Logic

IF8

IF9

Figure 1


5.0 Generic Messaging SCF

The following sections describe each aspect of the Generic Messaging Service Capability Feature (SCF). 

The order is as follows:

· The Sequence diagrams give the reader a practical idea of how each of the service capability feature is implemented. 

· The Class relationships section show how each of the interfaces applicable to the SCF, relate to one another 

· The Interface specification section describes in detail each of the interfaces shown within the Class diagram part.

·  The State Transition Diagrams (STD) show the progression of internal processes either in the application, or Gateway.

· The Data definitions section show a detailed expansion of each of the data types associated with the methods within the classes.  Note that some data types are used in other methods and classes and are therefore defined within the Common Data types part of this specification. 

6.0 Generic Messaging Service sequence diagrams

Open Mailbox 

[image: image3.wmf] : 

IpAppLogic

 : 

IpMessagingManager

 : IpMailbox

1: openMailbox()

2: new()

 

1: This message requests the object implementing the IpMessagingManager interface to create an object implementing the IpMailbox interface. 

2: Assuming that the criteria for creating an object implementing the IpMailbox interface is met, message 2 is used to create it. 

Close Mailbox 

[image: image4.wmf] : 

IpAppLogic

 : IpMailbox

1: close ()

 

1: This message requests the object implementing the IpMailbox interface to de-assign. 

Prepare Mailbox 

[image: image5.wmf] : IpAppLogic

 : IpMessagingManager

 : IpAppMessagingManager

1: new()

3: messagingEventNotify()

4: 'forward event'

2: enableMessagingNotification()

 

1: This message is used by the application to create an object implementing the IpAppMessagingManager interface. 

2: This message is used to enable the notification mechanism so that events can be sent to the application.

When new mail, that matches the event criteria set in message 2, arrives a message indicating the presence of new mail (not shown) is directed to the object implementing the IpMessagingManager. 

3: This message is used to pass the new mail event to the object implementing the IpAppMessagingManager interface. 

4: This message is used to forward message 3 to the IpAppLogic. 

Get Message 

[image: image6.wmf] : 

IpAppLogic

 : IpMailboxFolder

 : IpMessage

 : IpAppMessagingManager

4: getMessage()

1: openFolder( )

2: getInfoAmount ()

3: getInfoProperties ()

5: new()

 

1: This message requests a folder to be opened and returns a reference to that folder. 

2: This message requests the number of folder information properties of the opened folder. 

3: This message requests all of the folder information properties. 

4: This message requests a message from the opened mailbox folder. 

5: Assuming that the criteria for creating an object implementing the IpMessage  interface is met, the (internal) message 5 is used to create it.

Get Folder Information 

[image: image7.wmf] : IpAppLogic

 : IpMailboxFolder

1: getInfoAmount ()

2: getInfoProperties ()

3: getInfoProperties ()

 

1: This message requests the number of folder information properties of the specified folder. 

2: This message requests the first set of folder information properties. 

3: This message requests the second set of folder information properties. 

7.0 Generic Mesaging Service class diagrams

The application generic messaging service package in the following figure, labelled PAppGM consists of only one IpAppMessagingManager interface.

The generic messaging service package PGM, consists of one IpMessagingManager interface, zero or more IpMailbox interfaces, zero or more IpMailboxFolder and zero or more IpMessage interfaces.

[image: image8.wmf]PparlayAppGM

PparlayGM


Figure 16 Generic Messaging Package Overview


[image: image9.wmf]IpService

(from 

PparlayGenericService)

<<Interface>>

IpMessagingManager

<<Interface>>

IpMailbox

<<Interface>>

0..*

1

0..*

1

IpMailboxFolder

<<Interface>>

0..*

1

0..*

1

IpMessage

<<Interface>>

 

Figure 17 Generic Messaging Package Overview: Service Interfaces

The class diagram in the following figure shows the interfaces that make up the application generic messaging service package and the generic messaging service package. Communication between these packages is done via the +uses the IpMessagingManager channels. Communication with the IpMailbox and IpMailboxFolder interfaces has to be done via the application logic (not shown).


[image: image10.wmf]Iparlay

(

from 

org.parlay)

<<Interface>>

IpAppMessagingManager

mailboxTerminated()

mailboxFaultDetected()

messagingEventNotify()

messagingNotificationTerminated()

<<Interface>>

IpMessagingManager

openMailbox()

enableMessagingNotification()

disableMessagingNotification()

(

from 

PparlayGM)

<<Interface>>

1

1

1

1

+

uses the 

IpMessagingManager

IpMailbox

close()

lock()

unlock()

getInfoAmount()

getInfoProperties()

setInfoProperties()

openFolder()

createFolder()

remove()

(

from 

PparlayGM)

<<Interface>>

1

0

..*

1

0

..*

IpMessage

getInfoAmount()

getInfoProperties()

setInfoProperties()

remove()

(

from 

PparlayGM)

<<Interface>>

IpMailboxFolder

getInfoAmount()

getInfoProperties()

setInfoProperties()

putMessage()

getMessage()

close()

remove()

(

from 

PparlayGM)

<<Interface>>

1

0

..*

1

0

..*


Figure 18 Generic Messaging Package Overview – Application and Service Interfaces

8.0 Interface Specifications

The general format of an interface specification is described below:

· Interface Class

This is a UML interface class description of the methods supported by that interface, and the relevant parameters and types. The Service and Framework interfaces to capabilities within the network are denoted by classes with name I<name>. The callback interfaces to the applications are denoted by classes with name IApp<name>.

· Method descriptions

Each method (API method “call”) is described. All methods in the API return a value of type TResult, indicating, amongst other things, if the method invocation was sucessfully executed or not.
Both synchronous and asynchronous methods are used in the API. Asynchronous methods are identified by a 'Req' suffix for a method request, and, if applicable, are served by asynchronous methods identified by either a 'Res' or 'Err' suffix for method results and errors, respectively. To handle responses and reports, the developer must implement the relevant IApp<name> interfaces to provide the callback mechanism.

· Parameter descriptions

Each method parameter and its possible values are described. Parameters described as 'in' represent those which must have a value when the method is called. Those described as 'out' are those which contain the return result of the method when the method returns.

· State Model

If relevant, a state model is shown to illustrate the states of the objects which implement the described interface.

8.1 Architecture of the  API specification

The  API is object-oriented and consists of several categories of interfaces as shown in Figure 2.  Phase 1 addressed public interfaces between enterprise-based client applications and  services (interface 2) and the  Framework (interface 1), where: 

·  Service Interfaces offer applications access to a range of network capabilities.

·  Framework Interfaces provide 'surround' capabilities necessary for the Service Interfaces to be open, secure, resilient and manageable. 

In Phase 2, additional public interfaces are introduced to support administrative functions within the enterprise (interfaces 4 & 6) and to permit the supply of  services by third party vendors (interfaces 3 & 5).

The Call Control service interface is represented by interface 2.


[image: image11.wmf]Framework

operator

admin

Enterprise

operator

admin tool

Service

supplier

admin tool

1

1

4

4

3

3

5

5

Not in scope of

this version of

the API

Not in scope of

this version of

the API

Telecom Network

Not in scope of

this version of

the API

Not in scope of

this version of

the API

2

2

6

6

Client

Application

Not in

 scope

of this

API

version


Figure 2  Interfaces

In order to realise the Service and Framework interfaces, it is recognised that categories of resource interfaces are required to facilitate integration of network equipment. The definition of the resource interfaces is not in the scope of the  group at this time. 

9.0 The Service Interface Specifications

This section defines the interfaces, methods and parameters that form a part of the  API specification. The Unified Modelling Language (UML) is used to specify the interface classes. The general format of an interface specification is described below.

Interface Class

This shows a UML interface class description of the methods supported by that interface, and the relevant parameters and types. The Service and Framework interfaces for enterprise-based client applications are denoted by classes with name Ip<name>. The callback interfaces to the applications are denoted by classes with name IpApp<name>.  For the interfaces between a Service and the Framework, the Service interfaces are typically denoted by classes with name IpSvc<name>, while the Framework interfaces are denoted by classes with name IpFw<name>

Method descriptions

Each method (API method “call”) is described. All methods in the  API return a value of type TpResult, indicating, amongst other things, if the method invocation was sucessfully executed or not.
Both synchronous and asynchronous methods are used in the  API. Asynchronous methods are identified by a 'Req' suffix for a method request, and, if applicable, are served by asynchronous methods identified by either a 'Res' or 'Err' suffix for method results and errors, respectively. To handle responses and reports, the application or service developer must implement the relevant IpApp<name> or IpSvc<name> interfaces to provide the callback mechanism.

Parameter descriptions

Each method parameter and its possible values are described. Parameters described as 'in' represent those that must have a value when the method is called. Those described as 'out' are those that contain the return result of the method when the method returns.

State Model

If relevant, a state model is shown to illustrate the states of the objects that implement the described interface.

10.0 Base  Interface

All application, framework and service interfaces inherit from the following interface. This API Base  Interface does not provide any additional methods.

Interface Class

<<Interface>>

IpInterface





11.0 Service Interfaces

Overview

The Service Interfaces provide the interfaces into the capabilities of the underlying network - such as call control, user interaction, messaging, mobility and connectivity management.

The interfaces that are implemented by the services are denoted as 'Service Interface'. The corresponding interfaces that must be implemented by the application (e.g. for API callbacks) are denoted as 'Application Interface'.

12.0 Generic Service Interface

Inherits from the base  interface.

All service interfaces inherit from the following interface.

Interface Class

<<Interface>>

IpService



setCallback(appInterface : in IpInterfaceRef) : TpResult

setCallbackWithSessionID(appInterface : in IpInterfaceRef , sessionID : in TpSessionID) : TpResult

Method

setCallback()

This method specifies the reference address of the callback interface that a service uses to invoke methods on the application.

Parameters

appInterface : in IpInterfaceRef

Specifies a reference to the application interface, which is used for callbacks.

Method

setCallbackWithSessionID()

This method specifies the reference address of the application’s callback interface that a service uses for interactions associated with a specific session ID: e.g. a specific call, or call leg.

Parameters

appInterface : in IpInterfaceRef

Specifies a reference to the application interface, which is used for callbacks.

sessionID : in TpSessionID

Specifies the session for which the service can invoke the application’s callback interface.

13.0 Generic Messaging Service

The Generic Messaging Service interface (GMS) is used by applications to send, store and receive messages. The Phase 2 GMS has voice mail and electronic mail as the messaging mechanisms; no further functionality has been added since Phase 1. The messaging service interface can be used by both.

A messaging system is assumed to have the following entities:

· Mailboxes. This is the application’s main entry point to the messaging system. The framework may or may not need to authenticate an application before it accesses a mailbox

· Folders. A mailbox has at least the inbox and the outbox as folders. The name of the inbox is “INBOX”, and the name of the outbox is “OUTBOX”. These folders may have sub-folders. The names of these sub-folders are appended to their parent’s names with ‘/’ as the delimiter. For instance, if there is a sub-folder in INBOX called ‘Personal’ and a sub-folder in that folder called ‘archive’ then the fully qualified names, which are required for all operations, of the four folders are ‘INBOX’, ‘OUTBOX’, ‘INBOX/Personal’, and ‘INBOX/Personal/archive’. The names are case sensitive. A messaging service may have other folders other than the inbox and the outbox.

· Messages. Messages are stored in folders. Messages usually have properties associated with them.

The GMS is represented by the IpMessagingManager, IpMailbox, IpMailboxFolder and IpMessage interfaces to services provided by the network. To handle responses and reports, the developer must implement IpAppMessagingManager to provide the callback mechanism for the Messaging service manager. 

Generic Messaging Manager: Service Interface (IpMessagingManager )

Inherits from:

IpService 

This interface is the 'service manager' interface for the Generic Messaging Service.
The generic messaging manager interface provides the management functions to the generic messaging service. The application programmer can use this interface to open mailbox objects and also to enable or disable event notifications
Interface Class

<<Interface>>

IpMessagingManager



openMailbox(mailboxID : in TpAddress , authenticationInfo : in TpString , mailboxReference : out TpMailboxIdentifierRef ) :  TpResult 

enableMessagingNotification(appInterface : in IpAppMessagingManagerRef , eventCriteria : in TpMessagingEventCriteria , assignmentID : out TpAssignmentIDRef) :  TpResult 

disableMessagingNotification(assignmentID : in TpAssignmentID) :  TpResult 

Method

openMailbox ()

This method opens a mailbox for the application. The session ID for use by the application is returned. Authentication information may be needed to open the mailbox.
The application can open more than one mailbox at the same time. The application is not allowed to open the same mailbox more than once at the same time.
Parameters

mailboxID : in TpAddress 

Specifies the identity of the mailbox. If the mailbox chosen is invalid, the error code P_GMS_INVALID_MAILBOX is returned. 

authenticationInfo : in TpString 

Authentication information needed for the application to open a mailbox in the messaging system, such as a key or password. If the authentication process is considered strong enough for the application to gain access to the mailbox, then the authentication information will be null. If the authentication information is not valid, the error code P_GMS_INVALID_AUTHENTICATION_INFO is returned. 

mailboxReference : out TpMailboxIdentifierRef 

Specifies the reference to the opened mailbox. 

Method

enableMessagingNotification ()

This method is used to enable messaging notifications so that events can be sent to the application. 

Parameters

appInterface : in IpAppMessagingManagerRef 

If this parameter is set (i.e. not NULL) it specifies a reference to the application interface, which is used for callbacks. If set to NULL, the application interface defaults to the interface specified via the setCallback() method. 

eventCriteria : in TpMessagingEventCriteria 

Specifies the event specific criteria used by the application to define the event required.  

assignmentID : out TpAssignmentIDRef 

Specifies the ID assigned by the generic messaging manager interface for this newly-enabled event notification. 

Method

disableMessagingNotification ()

This method is used by the application to disable call notifications.  

Parameters

assignmentID : in TpAssignmentID 

Specifies the assignment ID given by the generic messaging manager interface when the previous enableNotification() was called. If the assignment ID does not correspond to one of the valid assignment IDs, the framework will return the error code P_INVALID_ASSIGNMENTID. 

Generic Messaging Manager: Application Interface (IpAppMessagingManager) 

Inherits from:

IpInterface 

The client application developer implements the generic messaging manager application interface to handle mailbox termination, mailbox fault and messaging event notifications. 

 Interface Class

<<Interface>>

IpAppMessagingManager



mailboxTerminated(mailbox : in IpMailboxRef , mailboxSessionID : in TpSessionID ) :  TpResult 

mailboxFaultDetected(mailbox : in IpMailboxRef , mailboxSessionID : in TpSessionID , fault : in TpMessagingFault ) :  TpResult 

messagingEventNotify(messagingManager : in IpMessagingManagerRef , eventInfo : in TpMessagingEventInfo , assignmentID : in TpAssignmentID ) :  TpResult 

messagingNotificationTerminated() :  TpResult

Method

mailboxTerminated ()

This method indicates to the application that the mailbox has terminated or closed abnormally. No further communication will be possible between the mailbox and application. 

Parameters

mailbox : in IpMailboxRef 

Specifies the interface of the mailbox that has terminated. 

mailboxSessionID : in TpSessionID 

Specifies the mailbox session ID of the mailbox that has terminated. 

Method

mailboxFaultDetected ()

This method indicates to the application that a fault has been detected in the mailbox. 

Parameters

mailbox : in IpMailboxRef 

Specifies the interface of the mailbox in which the fault has been detected. 

mailboxSessionID : in TpSessionID 

Specifies the mailbox session ID of the mailbox in which the fault has been detected. 

fault : in TpMessagingFault 

Specifies the fault that has been detected. 

Method

messagingEventNotify ()

This method notifies the application of the arrival of a messaging-related event. 

Parameters

messagingManager : in IpMessagingManagerRef 

Specifies the reference to the messaging manager interface to which the notification relates.  

eventInfo : in TpMessagingEventInfo 

Specifies data associated with this event.  

assignmentID : in TpAssignmentID 

Specifies the assignment id which was returned by the enableNotification() method. The application can use assignment id to associate events with event specific criteria and to act accordingly. 

Method

messagingNotificationTerminated ()

This method indicates to the application that all event notifications have been terminated (for example, due to faults detected). 

Generic Mailbox: Service Interface (IpMailbox) 

Inherits from:

IpService 

Interface Class

<<Interface>>

IpMailbox



close(mailboxSessionID : in TpSessionID ) :  TpResult 

lock(mailboxSessionID : in TpSessionID ) :  TpResult 

unlock(mailboxSessionID : in TpSessionID ) :  TpResult 

getInfoAmount(mailboxSessionID : in TpSessionID , numberOfProperties : out TpInt32Ref ) :  TpResult 

getInfoProperties(mailboxSessionID : in TpSessionID , firstProperty : in TpInt32 , numberOfProperties : in TpInt32 , mailboxInfoProperties : out TpMailboxInfoPropertySetRef ) :  TpResult 

setInfoProperties(mailboxSessionID : in TpSessionID , firstProperty : in TpInt32 , mailboxInfoProperties : in TpMailboxInfoPropertySet) :  TpResult 

openFolder(mailboxSessionID : in TpSessionID , folderID : in TpString , folderReference : out TpMailboxFolderIdentifierRef) :  TpResult 

createFolder(mailboxSessionID : in TpSessionID , folderID : in TpString) :  TpResult 

remove(mailboxID : in TpAddress , authenticationInfo : in TpString ) :  TpResult 

Method

close ()

This method closes the mailbox. After closing, the interfaces to the mailbox and any associated folders are automatically de-assigned and are no longer valid. Any open folders will also be automatically closed. 

Parameters

mailboxSessionID : in TpSessionID 

The session ID of the open mailbox previously opened by openMailbox. From now on, the session ID is no longer valid. If by coincidence an identical session ID is returned by a subsequent openMailbox, the session ID will be associated with the new session and has nothing to do with the closed session.  If the session ID is not a valid session ID, the error code P_GMS_INVALID_SESSION_ID is returned. 

Method

lock ()

This method locks the mailbox so that only the requesting application can have access to this mailbox. Updates to the mailbox by other applications or the network are not permitted until the mailbox has been unlocked - attempts to do so result in the error code P_GMS_MAILBOX_LOCKED. When the application exits, however, all mailboxes locked by the application are unlocked automatically.
The service returns an error code P_GMS_LOCKING_LOCKED_MAILBOX when the application attempts to lock a mailbox that is locked.
Parameters

mailboxSessionID : in TpSessionID 

This is the session ID of the open mailbox. If the session ID is not valid, the error code P_GMS_INVALID_SESSION_ID is returned. 

Method

unlock ()

This method unlocks a previously locked mailbox. An error is returned if the mailbox is already unlocked. 

Parameters

mailboxSessionID : in TpSessionID 

This is the session ID of the locked mailbox. If the sessionID does not correspond to a locked mailbox, the error code P_GMS_UNLOCKING_UNLOCKED_MAILBOX is returned. If the application attempts to unlock a mailbox that is already locked by another application, the error code P_GMS_CANNOT_UNLOCK_MAILBOX is returned. 

Method

getInfoAmount ()

This method returns the number of mailbox information properties of the specified mailbox. 

Parameters

mailboxSessionID : in TpSessionID 

This is the session ID of the open mailbox. If the session ID is not a valid session ID, the error code P_GMS_INVALID_SESSION_ID is returned. 

numberOfProperties : out TpInt32Ref 

The number of properties associated with the folder. The number of properties is zero or positive. 

Method

getInfoProperties ()

This method returns the properties of a mailbox. 

Parameters

mailboxSessionID : in TpSessionID 

This is the session ID of the open mailbox. If the session ID is not a valid session ID, the error code P_GMS_INVALID_SESSION_ID is returned. 

firstProperty : in TpInt32 

This is the first property of interest.  This number represents the starting point where the first property of the list to be retrieved from the mailbox is located. Properties are numbered from zero. 

numberOfProperties : in TpInt32 

The number of properties to return. If the value of this parameter is zero, then all properties will be returned. Otherwise, the value must be a positive number. If the number is not positive, the error code P_GMS_NUMBER_NOT_POSITIVE is returned. 

mailboxInfoProperties : out TpMailboxInfoPropertySetRef 

The mailbox information properties (names and values) present in the folder.  

Method

setInfoProperties ()

Sets the properties of a mailbox. 

Parameters

mailboxSessionID : in TpSessionID 

This is the session ID of the open mailbox. If the session ID is not a valid session ID, the error code P_GMS_INVALID_SESSION_ID is returned. 

firstProperty : in TpInt32 

This is the first property of interest.  This number represents the starting point where the first property of the list to be updated in the mailbox is located. Properties are numbered from zero. 

mailboxInfoProperties : in TpMailboxInfoPropertySet 

This specifies the mailbox information properties (names and values) to be set in the mailbox. If the properties cannot be changed, then the error code P_GMS_PROPERTY_NOT_SET is returned.  

Method

openFolder ()

This method opens a folder for the application, and returns a folder session ID and a reference to the interface of the folder opened.
The application can open more than one folder at the same time. The application is not allowed to open the same folder more than once at the same time. If the folder is already open, the error code P_GMS_FOLDER_IS_OPEN is returned.
Parameters

mailboxSessionID : in TpSessionID 

This is the session ID of the open mailbox. 

folderID : in TpString 

Specifies the identity of the folder. If the folder ID given is not present, the error code P_GMS_INVALID_FOLDER_ID is returned. 

folderReference : out TpMailboxFolderIdentifierRef 

Specifies the reference to the opened folder. 

Method

createFolder ()

This method creates a new folder in the mailbox. 

Parameters

mailboxSessionID : in TpSessionID 

This is the session ID of the open mailbox. If the session ID is not a valid session ID, the error code P_GMS_INVALID_SESSION_ID is returned. 

folderID : in TpString 

Specifies the identity of the folder. If the folder ID given is already present, the error code P_GMS_INVALID_FOLDER_ID is returned. 

Method

remove ()

This method removes a mailbox from the messaging system for the application. Authentication information may be needed to remove the mailbox. If the application does not have sufficient privilege to remove the mailbox, the error code P_GMS_INSUFFICIENT_PRIVILEGE is returned. 

Parameters

mailboxID : in TpAddress 

Specifies the identity of the mailbox. If the mailbox chosen is invalid, the error code P_GMS_INVALID_MAILBOX is returned. If the mailbox is locked then the error code P_GMS_MAILBOX_LOCKED is returned. If the mailbox is open then the error code P_GMS_MAILBOX_OPEN is returned. 

authenticationInfo : in TpString 

Authentication information needed for the application to remove a mailbox from the messaging system, such as a key or password. If the authentication process is considered strong enough for the application to gain access to the mailbox, then the authentication information will be null. If the authentication information is not valid, the error code P_GMS_INVALID_AUTHENTICATION_INFO is returned. 

Generic MailboxFolder: Service Interface (IpMailboxFolder) 

Inherits from:

IpService 

Interface Class

<<Interface>>

IpMailboxFolder



getInfoAmount(folderSessionID : in TpSessionID , numberOfProperties : out TpInt32Ref) :  TpResult 

getInfoProperties(folderSessionID : in TpSessionID , firstProperty : in TpInt32 , numberOfProperties : in TpInt32 , folderInfoProperties : out TpFolderInfoPropertySetRef ) :  TpResult 

setInfoProperties(folderSessionID : in TpSessionID , firstProperty : in TpInt32 , folderInfoProperties : in TpFolderInfoPropertySet ) :  TpResult 

putMessage(folderSessionID : in TpSessionID , message : in TpMessage , messageInfoProperties : in TpMessageInfoPropertySet ) :  TpResult 

getMessage(folderSessionID : in TpSessionID , messageID : in TpString , removeMessage : in TpBoolean , message : out TpMessageRef ) :  TpResult 

close(mailboxSessionID : in TpSessionID, folderSessionID : in TpSessionID) :  TpResult 

remove(mailboxSessionID : in TpSessionID , folderID : in TpString ) :  TpResult

Method

getInfoAmount ()

This method returns the number of folder information properties of the specified folder. 

Parameters

folderSessionID : in TpSessionID 

This is the session ID of the open folder. If the session ID is not a valid session ID, the error code P_GMS_INVALID_SESSION_ID is returned. 

numberOfProperties : out TpInt32Ref 

The number of properties associated with the folder. The number of properties is zero or positive. 

Method

getInfoProperties ()

This method returns the properties of a folder. 

Parameters

folderSessionID : in TpSessionID 

This is the session ID of the open folder. If the session ID is not a valid session ID, the error code P_GMS_INVALID_SESSION_ID is returned. 

firstProperty : in TpInt32 

This is the first property of interest.  This number represents the starting point where the first property of the list to be retrieved from the folder is located. Properties are numbered from zero. 

numberOfProperties : in TpInt32 

The number of properties to return. If the value of this parameter is zero, then all properties will be returned. Otherwise, the value must be a positive number. If the number is not positive, the error code P_GMS_NUMBER_NOT_POSITIVE is returned. 

folderInfoProperties : out TpFolderInfoPropertySetRef 

The folder information properties (names and values) present in the folder. Folder properties include parent folder, sub folders, number of messages contained, date created, date last accessed, and read/write access. 

Method

setInfoProperties ()

Sets the properties of a folder. 

Parameters

folderSessionID : in TpSessionID 

This is the session ID of the open folder. If the session ID is not a valid session ID, the error code P_GMS_INVALID_SESSION_ID is returned. 

firstProperty : in TpInt32 

This is the first property of interest.  This number represents the starting point where the first property of the list to be updated in the folder is located. Properties are numbered from zero. 

folderInfoProperties : in TpFolderInfoPropertySet 

This specifies the folder information properties (names and values) to be set in the folder. Folder properties that may be changed include parent folder, sub folders and read/write access. If the properties cannot be changed, then the error code P_GMS_PROPERTY_NOT_SET is returned.  

Method

putMessage ()

This method puts a message into an open mailbox folder. The message and the headers are transferred to the Messaging service. In Phase 2 of the  APIs, the message will be taken as is. No checking is done on the message. Further more, the message is assumed to be a simple message, that is, with no attachments. If the application knows the messaging system and understands the format to send attachments, it can do so. The service will not flag any inconsistencies if the formatting of the message is not correct. 

Parameters

folderSessionID : in TpSessionID 

This is the session ID of the open folder. If the session ID is not a valid session ID, the error code P_GMS_INVALID_SESSION_ID is returned. 

message : in TpMessage 

The message to put into the mailbox.  

messageInfoProperties : in TpMessageInfoPropertySet 

This specifies the message information properties (names and values). 

Method

getMessage ()

This method gets a message from an open mailbox folder. The message ID can be obtained by calling the getFolderInfo and getFolderInfoProperties or embedded in an event notification from the messaging service, with information on the mailbox and notifications contained in that operation. 

Parameters

folderSessionID : in TpSessionID 

This is the session ID of the open folder. If the session ID is not a valid session ID, the error code P_GMS_INVALID_SESSION_ID is returned. 

messageID : in TpString 

Specifies the identity of the message. If the message ID given is not present, the error code P_GMS_INVALID_MESSAGE_ID is returned.  

removeMessage : in TpBoolean 

Specifies whether to remove (TRUE) the message once retrieved or leave a copy in the folder (FALSE). 

message : out TpMessageRef 

The message associated with the messageID. 

Method

close ()

This method closes a specified folder. All subfolders of the folder are also closed. 

Parameters

mailboxSessionID : in TpSessionID
This is the session ID of the open mailbox. If the session ID is not a valid session ID, the error code P_GMS_INVALID_SESSION_ID is returned. 

folderSessionID : in TpSessionID
Specifies the folder session ID of the folder to close. 

Method

remove ()

This method removes a folder from the mailbox. All subfolders of the folder are also removed. The folder must be already closed, otherwise the error code P_GMS_FOLDER_IS_OPEN is returned. If the application does not have sufficient privilege to remove the folder, the error code P_GMS_INSUFFICIENT_PRIVILEGE is returned. 

Parameters

mailboxSessionID : in TpSessionID 

This is the session ID of the open mailbox. If the session ID is not a valid session ID, the error code P_GMS_INVALID_SESSION_ID is returned. 

folderID : in TpString 

Specifies the identity of the folder. If the folder ID given is not present, the error code P_GMS_INVALID_FOLDER_ID is returned.  

Generic Mailbox Message: Service Interface (IpMessage) 

Inherits from:

IpService 

Interface Class

<<Interface>>

IpMessage



getInfoAmount(folderSessionID : in TpSessionID , messageID : in TpString , numberOfProperties : out TpInt32Ref ) :  TpResult 

getInfoProperties(folderSessionID : in TpSessionID , messageID : in TpString , firstProperty : in TpInt32 , numberOfProperties : in TpInt32 , messageInfoProperties : out TpMessageInfoPropertySetRef ) :  TpResult 

setInfoProperties(folderSessionID : in TpSessionID , messageID : in TpString , firstProperty : in TpInt32 , messageInfoProperties : in TpMessageInfoPropertySet ) :  TpResult 

remove(folderSessionID : in TpSessionID , messageID : in TpString ) :  TpResult

Method

getInfoAmount ()

This method returns the number of message information properties of the specified message. 

Parameters

folderSessionID : in TpSessionID 

This is the session ID of the open folder. If the session ID is not a valid session ID, the error code P_GMS_INVALID_SESSION_ID is returned. 

messageID : in TpString 

Specifies the identity of the message. If the message ID given is not present, the error code P_GMS_INVALID_MESSAGE_ID is returned. 

numberOfProperties : out TpInt32Ref 

The number of properties associated with the message. The application can then use the information contained to decide whether to get the message or the message information properties from a mailbox folder. The number of properties is zero or positive. 

Method

getInfoProperties ()

This method returns the properties of a message. 

Parameters

folderSessionID : in TpSessionID 

This is the session ID of the open folder. If the session ID is not a valid session ID, the error code P_GMS_INVALID_SESSION_ID is returned. 

messageID : in TpString 

Specifies the identity of the message. If the message ID given is not present, the error code P_GMS_INVALID_MESSAGE_ID is returned. 

firstProperty : in TpInt32 

This is the first property of interest.  This number represents the starting point where the first property of the list to be retrieved from the message is located. Properties are numbered from zero. 

numberOfProperties : in TpInt32 

The number of properties to return. If the value of this parameter is zero, then all properties will be returned. Otherwise, the value must be a positive number. If the number is not positive, the error code P_GMS_NUMBER_NOT_POSITIVE is returned. 

messageInfoProperties : out TpMessageInfoPropertySetRef 

The message information properties (names and values) present in the message. Message properties include message format, read/unread, sent/unsent, message size, relevant dates and times, subject and addressees. 

Method

setInfoProperties ()

This method sets the properties of a message. 

Parameters

folderSessionID : in TpSessionID 

This is the session ID of the open folder. If the session ID is not a valid session ID, the error code P_GMS_INVALID_SESSION_ID is returned. 

messageID : in TpString 

Specifies the identity of the message. If the message ID given is not present, the error code P_GMS_INVALID_MESSAGE_ID is returned. 

firstProperty : in TpInt32 

This is the first property of interest.  This number represents the starting point where the first property of the list to be retrieved from the message is located. Properties are numbered from zero. 

messageInfoProperties : in TpMessageInfoPropertySet 

This specifies the message information properties (names and values) to be set in the message. Message properties that may be changed include read/unread status, subject and importance. If the properties cannot be changed, then the error code P_GMS_PROPERTY_NOT_SET is returned. 

Method

remove ()

This method removes a message from the open mailbox folder. If the application does not have sufficient privilege to remove the message, the error code P_GMS_INSUFFICIENT_PRIVILEGE is returned. 

Parameters

folderSessionID : in TpSessionID 

This is the session ID of the open folder. If the session ID is not a valid session ID, the error code P_GMS_INVALID_SESSION_ID is returned. 

messageID : in TpString 

Specifies the identity of the message. If the message ID given is not present, the error code P_GMS_INVALID_MESSAGE_ID is returned.

The message ID can be obtained by calling the getFolderInfo and getFolderInfoProperties or embedded in an event notification from the messaging service, with information on the mailbox and notifications contained in that operation. If the message cannot be removed, the error code P_GMS_MESSAGE_NOT_REMOVED is returned.

14.0 State Diagrams

14.1 Generic Messaging State diagrams

Note: At present there are no Generic Messaging State diagrams
15.0 Generic Messaging Data Definitions

This document provides the generic messaging service data definitions necessary to support the  API specification.

15.1  Event notification Definitions

TpMessagingEventName

Defines the name of event being notified. In phase 2 of the  APIs, only the following events are supported.

Name
Value
Description

P_EVENT_GMS_NAME_UNDEFINED
0
Undefined

P_EVENT_GMS_NEW_MESSAGE_ARRIVED
1
GMS -New Message Arrived

TpMessagingEventCriteria

Defines the Tagged Choice of Data Elements that specify the criteria for an event notification to be generated.


Tag Element Type



TpMessagingEventName


Tag Element Value
Choice Element Type
Choice Element Name





P_EVENT_GMS_NEW_MESSAGE_ARRIVED
TpGMSNewMessageArrivedCriteria
EventGMSNewMessage
Arrived

TpGMSNewMessageArrivedCriteria

Defines the Sequence of Data Elements that specify the criteria for a GMS New Message Arrived event.

Sequence Element Name
Sequence Element Type

MailboxID
TpAddress

AuthenticationInfo
TpString

TpMessagingEventInfo

Defines the Tagged Choice of Data Elements that specify the information returned to the application in an event notification.


Tag Element Type



TpMessagingEventName


Tag Element Value
Choice Element Type
Choice Element Name

P_EVENT_GMS_NAME_UNDEFINED
TpString
EventNameUndefined

P_EVENT_GMS_NEW_MESSAGE_ARRIVED
TpGMSNewMessageArrivedInfo
EventGMSNewMessage
Arrived

TpGMSNewMessageArrivedInfo

Defines the Sequence of Data Elements that specify the information returned to the application in a GMS New Message Arrived event.

Sequence Element Name
Sequence Element Type

MailboxID
TpAddress

FolderID
TpString

MessageID
TpString

NumberOfProperties
TpInt32

15.2 Generic Messaging Data Definitions

IpMailbox

Defines the address of an IpMailbox Interface.

IpMailboxRef

Defines a Reference to type IpMailbox.

IpMailboxRefRef

Defines a Reference to type IpMailboxRef.

IpMailboxFolder

Defines the address of an IpMailboxFolder Interface.

IpMailboxFolderRef

Defines a Reference to type IpMailboxFolder.

IpMailboxFolderRefRef

Defines a Reference to type IpMailboxFolderRef
TpFolderInfoProperty

Defines the Tagged Choice of Data Elements that specify the information properties of a folder.


Tag Element Type



TpFolderInfoPropertyName


Tag Element Value
Choice Element Type
Choice Element Name





P_MESSAGING_FOLDER_ID
TpString
MessagingFolderID

P_MESSAGING_FOLDER_MESSAGE
TpString
MessagingFolderMessage

P_MESSAGING_FOLDER_SUBFOLDER
TpString
MessagingFolderSubfolder

P_MESSAGING_FOLDER_DATE_CREATED
TpDateAndTime
MessagingFolderDateCreated

P_MESSAGING_FOLDER_DATE_CHANGED
TpDateAndTime
MessagingFolderDateChanged

TpFolderInfoPropertyName

Defines a specific folder information property name.

Name
Value
Description

P_MESSAGING_FOLDER_UNDEFINED
0
Undefined

P_MESSAGING_FOLDER_ID
1
The fully qualified ID of this folder (i.e. including parent folder ID and mailbox ID)

P_MESSAGING_FOLDER_MESSAGE
2
Indicates the ID of a message

P_MESSAGING_FOLDER_SUBFOLDER
3
The fully qualified ID of a subfolder (i.e. including parent folder ID and mailbox ID)

P_MESSAGING_FOLDER_DATE_CREATED
4
Indicates the date created

P_MESSAGING_FOLDER_DATE_CHANGED
5
Indicates the date last changed

TpFolderInfoPropertySet

Defines a Numbered Set of Data Elements of TpFolderInfoProperty.
TpFolderInfoPropertySetRef

Defines a Reference to type TpFolderInfoPropertySet.

TpMailboxFolderIdentifier

Defines the Sequence of Data Elements that identify a folder. 

Sequence Element Name
Sequence Element Type

Mailbox folder
IpMailboxFolderRef

SessionID
TpSessionID

TpMailboxFolderIdentifierRef

Defines a Reference to type TpMailboxFolderIdentifier.

TpMailboxIdentifier

Defines  Sequence of Data Elements 

 that identify a mailbox. 
 the
Sequence Element Name
Sequence Element Type

Mailbox
IpMailboxRef

SessionID
TpSessionID

TpMailboxIdentifierRef

Defines a Reference to type TpMailboxIdentifier.

TpMailboxInfoProperty 

Defines the Tagged Choice of Data Elements that specify the information properties of a mailbox.


Tag Element Type



TpMailboxInfoPropertyName


Tag Element Value
Choice Element Type
Choice Element Name

P_MESSAGING_MAILBOX_ID
TpAddress
MessagingMailboxID

P_MESSAGING_MAILBOX_OWNER
TpString
MessagingMailboxOwner

P_MESSAGING_MAILBOX_FOLDER
TpString
MessagingMailboxFolder

P_MESSAGING_MAILBOX_DATE_CREATED
TpDateAndTime
MessagingMailboxDateCreated

P_MESSAGING_MAILBOX_DATE_CHANGED
TpDateAndTime
MessagingMailboxDateChanged

TpMailboxInfoPropertyName

Defines a specific mailbox information property name.

Name
Value
Description

P_MESSAGING_MAILBOX_UNDEFINED
0
Undefined

P_MESSAGING_MAILBOX_ID
1
The ID of the Mailbox

P_MESSAGING_MAILBOX_OWNER
2
The owner of the mailbox

P_MESSAGING_MAILBOX_FOLDER
3
The fully qualified ID of a folder (i.e. including parent folder ID and mailbox ID)

P_MESSAGING_MAILBOX_DATE_CREATED
4
Indicates the date created

P_MESSAGING_MAILBOX_DATE_CHANGED
5
Indicates the date last changed

TpMailboxInfoPropertySet

Defines a Numbered Set of Data Elements of TpMailboxInfoProperty.
TpMailboxInfoPropertySetRef

Defines a Reference to type TpMailboxInfoPropertySet
TpMessage

This data type is identical to a TpLongstring, and defines the message content.

TpMessageFormat

Defines the format of a message.

Name
Value
Description

P_MESSAGING_MESSAGE_FORMAT_UNDEFINED
0
Undefined

P_MESSAGING_MESSAGE_FORMAT_TEXT
1
Non-specific text format

P_MESSAGING_MESSAGE_FORMAT_BINARY
2
Non-specific binary format

P_MESSAGING_MESSAGE_FORMAT_UUENCODED
3
UUENCODED format

P_MESSAGING_MESSAGE_FORMAT_MIME
4
MIME format

P_MESSAGING_MESSAGE_FORMAT_WAVE
5
WAVE audio format

P_MESSAGING_MESSAGE_FORMAT_AU
6
AU audio format

TpMessageInfoProperty 

Defines the Tagged Choice of Data Elements that specify the information properties of a message.


Tag Element Type



TpMessageInfoPropertyName


Tag Element Value
Choice Element Type
Choice Element Name





P_MESSAGING_MESSAGE_ID
TpString
MessagingMessageID

P_MESSAGING_MESSAGE_SUBJECT
TpString
MessagingMessageSubject

P_MESSAGING_MESSAGE_DATE_SENT
TpDateAndTime
MessagingMessageDateSent

P_MESSAGING_MESSAGE_DATE_RECEIVED
TpDateAndTime
MessagingMessageDate
Received

P_MESSAGING_MESSAGE_DATE_CHANGED
TpDateAndTime
MessagingMessageDateChanged

P_MESSAGING_MESSAGE_SENT_FROM
TpAddress
MessagingMessageSentFrom

P_MESSAGING_MESSAGE_SENT_TO
TpAddress
MessagingMessageSentTo

P_MESSAGING_MESSAGE_CC_TO
TpAddress
MessagingMessageCCTo

P_MESSAGING_MESSAGE_BCC_TO
TpAddress
MessagingMessageBCCTo

P_MESSAGING_MESSAGE_SIZE
TpInt32
MessagingMessageSize

P_MESSAGING_MESSAGE_PRIORITY
TpMessagePriority
MessagingMessagePriority

P_MESSAGING_MESSAGE_FORMAT
TpMessageFormat
MessagingMessageFormat

P_MESSAGING_MESSAGE_FOLDER
TpString
MessagingMessageFolder

P_MESSAGING_MESSAGE_STATUS
TpMessageStatus
MessagingMessageStatus

TpMessageInfoPropertyName

Defines a specific message information property name.

Name
Value
Description

P_MESSAGING_MESSAGE_UNDEFINED
0
Undefined

P_MESSAGING_MESSAGE_ID
1
The identity of the message

P_MESSAGING_MESSAGE_SUBJECT
2
The subject of the message

P_MESSAGING_MESSAGE_DATE_SENT
3
Indicates the date send

P_MESSAGING_MESSAGE_DATE_RECEIVED
4
Indicates the date received

P_MESSAGING_MESSAGE_DATE_CHANGED
5
Indicates the date last changed

P_MESSAGING_MESSAGE_SENT_FROM
6
Indicates the sender

P_MESSAGING_MESSAGE_SENT_TO
7
Indicates the Sent To addressees

P_MESSAGING_MESSAGE_CC_TO
8
Indicates the Copied To addressees

P_MESSAGING_MESSAGE_BCC_TO
9
Indicates the Copied Blind addressees

P_MESSAGING_MESSAGE_SIZE
10
Indicates the size of the message in bytes

P_MESSAGING_MESSAGE_PRIORITY
11
Indicates the priority of the message

P_MESSAGING_MESSAGE_FORMAT
12
Indicates the format of the message

P_MESSAGING_MESSAGE_FOLDER
13
The fully qualified ID of the folder in which the message is stored

P_MESSAGING_MESSAGE_STATUS
14
The status of the message

TpMessageInfoPropertySet

Defines a Numbered Set of Data Elements of TpMessageInfoProperty.
TpMessageInfoPropertySetRef

Defines a Reference to type TpMessageInfoPropertySet
TpMessagePriority

Defines the priority of a message.

Name
Value
Description

P_MESSAGING_MESSAGE_PRIORITY_UNDEFINED
0
Undefined/Normal

P_MESSAGING_MESSAGE_PRIORITY_HIGH
1
High priority

P_MESSAGING_MESSAGE_PRIORITY_LOW
2
Low priority

TpMessageRef

Defines a Reference to type TpMessage.

TpMessageStatus

Defines the status of a message.

Name
Value
Description

P_MESSAGING_MESSAGE_STATUS_READ_MESSAGE
0
Read message

P_MESSAGING_MESSAGE_STATUS_UNREAD_MESSAGE
1
Unread message

P_MESSAGING_MESSAGE_STATUS_FORWARDED_MESSAGE
2
Forwarded message

P_MESSAGING_MESSAGE_STATUS_REPLIED_TO_MESSAGE
3
Replied to message

P_MESSAGING_MESSAGE_STATUS_SAVED_OR_UNSENT_
MESSAGE
4
Saved or unsent message

P_MESSAGING_MESSAGE_STATUS_NOTIFICATION_THAT_A_MESSAGE_WAS_DELIVERED
5
Notification of a delivered message

P_MESSAGING_MESSAGE_STATUS_NOTIFICATION_THAT_A_MESSAGE_WAS_READ
6
Notification of a read message

P_MESSAGING_MESSAGE_STATUS_NOTIFICATION_THAT_A_MESSAGE_WAS_NOT_DELIVERED
7
Notification of a message that was not delivered

P_MESSAGING_MESSAGE_STATUS_NOTIFICATION_THAT_A_MESSAGE_WAS_NOT_READ
8
Notification of a message that was not read

TpMessagingFault

Defines the cause of the messaging fault detected.

Name
Value
Description

P_MESSAGING_FAULT_UNDEFINED
0
Undefined

PAGE  
38

_1008756603.doc


IpService





(from PparlayGenericService)





<<Interface>>





IpMessagingManager





<<Interface>>





IpMailbox





<<Interface>>





0..*





1





0..*





1





IpMailboxFolder





<<Interface>>





0..*





1





0..*





1





IpMessage





<<Interface>>









_1012117217.doc
[image: image1.emf][image: image2.emf][image: image3.emf][image: image4.emf]

Iparlay





(from org.parlay)





<<Interface>>





IpAppMessagingManager





mailboxTerminated()





mailboxFaultDetected()





messagingEventNotify()





messagingNotificationTerminated()





<<Interface>>





IpMessagingManager





openMailbox()





enableMessagingNotification()





disableMessagingNotification()





(from PparlayGM)





<<Interface>>





1





1





1





1





+uses the IpMessagingManager





IpMailbox





close()





lock()





unlock()





getInfoAmount()





getInfoProperties()





setInfoProperties()





openFolder()





createFolder()





remove()





(from PparlayGM)





<<Interface>>





1





0..*





1





0..*





IpMessage





getInfoAmount()





getInfoProperties()





setInfoProperties()





remove()





(from PparlayGM)





<<Interface>>





IpMailboxFolder





getInfoAmount()





getInfoProperties()





setInfoProperties()





putMessage()





getMessage()





close()





remove()





(from PparlayGM)





<<Interface>>





1





0..*





1





0..*









_1014809645.ppt


Framework

operator

admin

Enterprise

operator

admin tool

Service

supplier

admin tool



1

4

3

5

Not in scope of this version of the API

Telecom Network



Not in scope of this version of the API

2

6

Client

Application

Not in

 scope 

of this API version








_1006924015.ppt








SCF

SA-GF

Distributed

Service Logic





IF8





IF9

Figure 1








