56
27

SPAN- EN SPAN3 ? Part 1

 Draft V0.0.0 (2000-09)
APIs for Third Party Service Applications

Service Control Feature

Data Session Control

[image: image1.png]
Reproduction is only permitted for the purpose of standardization work undertaken within ETSI.
The copyright and the foregoing restrictions extend to reproduction in all media.
© European Telecommunications Standards Institute .

All rights reserved.

European Telecommunications Standards Institute

ETSI Secretariat

Postal address

F-06921 Sophia Antipolis Cedex - FRANCE

Office address

650 Route des Lucioles - Sophia Antipolis

Valbonne - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C

Association à but non lucratif enregistrée à la

Sous-Préfecture de Grasse (06) N° 7803/88

X.400

c= fr; a=atlas; p=etsi; s=secretariat

Internet

secretariat@etsi.fr

Reference

APIs for Third Party Service Applications

Keywords

APIs, Interface Classes, Framework, IDL

http://www.etsi.fr

Contents

41.
Scope

2.
References
4
2.1
Normative References
4
2.2
Informative References
4
3.
Definitions, Symbols and Abbreviations
4
3.1
Definitions
4
3.2
Symbols
4
3.3
Abbreviations
4
4.
Introduction
5
4.1
Generic Service Interfaces
5
4.2
Framework Interfaces
5
4.3
Generic Service Data Definitions
5
4.4
Framework Data Definitions
6
4.5
Common Data Definitions
6
4.6
Sequence Transition Diagrams (STDs)
6
4.7
OMG IDL
6
5.0
Data Session Control SCF
6
6.0
Data Session Control Service sequence diagrams
7
Enable Data Session Notification
7
Address translation with charging
8
7.0
Data Session Control Service class diagrams
10
8.0
Interface Specifications
11
8.1
Architecture of the API specification
13
9.0
The Service Interface Specifications
13
Interface Class
13
Method descriptions
14
Parameter descriptions
14
State Model
14
10.0
Base Interface
14
Interface Class
14
11.0
Service Interfaces
14
Overview
14
12.0
Generic Service Interface
15
Interface Class
15
13.0
Data Session Control Service
15
23.1
Data Session
16
14.0
State Diagrams
24
14.1
Data Session Control State diagrams
25
23.1.1
Active state
25
23.1.4
Network Released state
26
23.1.5
Finished state
26
23.1.6
Application released state.
26
15.0
Data Session Control Data Definitions
26
15.1
Event Notification data definitions
27

1. Scope

The scope of this document is to consider the interface specification of an API for accessing Third Party Service Applications. UML techniques have been utilized for this purpose. This document specifies the Data Session Control aspects of the interface for ‘Access to Third Party Service provision. All aspects of Data Session Control are defined here, these being:

· Sequence Diagrams

· Class Diagrams

· Interface specification plus detailed method descriptions

· State Transition diagrams

· Data definitions

The process by which this task is accomplished is through the use of Object modeling techniques described by the Unified Modeling Language (UML). UML is a combined tools and methodology process which results in a comprehensive set of specifications representing, in this case, an interface between client and server applications. Further information can be found in the latest version of the ITU-T Recommendation Q.65.

The reader should note that this specification has been defined in co-operation with 3GPP CN5 and two industry consortiums, PARLAY and JAIN.

2. References

2. Normative References

2. Informative References

3. Definitions, Symbols and Abbreviations

3. Definitions

3. Symbols

3. Abbreviations

4. Introduction

This ETSI Standard uses the Unified Modelling Language (UML) to describe access to Third Party Service applications via an API. The API is divided into a number of separate parts, these being:

· Generic Service Interfaces

· Framework Interfaces

· Service Data Definitions

· Framework Data Definitions

· Common Data Definitions

· Sequence Transition Diagrams

· OMG IDL

The following text briefly describes each part:

4. Generic Service Interfaces

The API is split into two types of interface class descriptions, Service and Framework. Framework classes are those that are perceived to be applicable to the interface irrespective of the type of service that is being implemented at a specific moment in time e.g. Authentication. Whereas Service Interface classes are individual services that may be required by the client or network operator to enable the running of third party applications over the interface e.g. Messaging type service.

Editors Note: This next paragraph will need to be altered in light of new interface descriptions.
There are five parts here which represent the Generic Service Interface Classes, these being; Generic Call Control, Generic User Interaction, Generic Messaging, Mobility and Connectivity Management.

 Each of these parts defines the interfaces, parameters and state models that form part of the API specification. UML is used to specify the interface classes. As such it provides a UML interface class description of the methods (API calls) supported by that interface and the relevant parameters and types.

4. Framework Interfaces

The API is split into two types of interface class descriptions, Service and Framework. Framework classes are those that are perceived to be applicable to the interface irrespective of the type of service that is being implemented at a specific moment in time e.g. Authentication. Whereas Service Interface classes are individual services that may be required by the client of network operator to enable the running of third party applications over the interface e.g. Messaging type service.

Editors Note: This next paragraph may need altering in light of new interface descriptions
The Framework is split into two different sections, the first addressing the Client view representing interfaces ?????? in figure 2. The second addresses the relationship between the Service and Framework providers indicated by interface 3 in figure 2. The client to Framework section is split into 5 parts these being; Trust and Security Framework (which includes Authentication), Fault Management, Integrity Management, Service Subscription and Service Discovery. The Service to framework interface contains all of the same interfaces except for Service Subscription.

4. Generic Service Data Definitions

This section provides the Data Definitions necessary to support the Generic Service interface. For instance the Generic Call Control Service Data Definitions document describes each of the Data types that were shown in the detailed parameter descriptions made in the ‘Generic Call Control Service Interface’ part and so on.

4. Framework Data Definitions

This section once again provides the Data Definitions necessary to support the Framework interface.

4. Common Data Definitions

This section provides the Data definitions that are common to both the Framework and Generic Service API parameters.

4. Sequence Transition Diagrams (STDs)

This section contains the sequence transition diagrams from each service. They are used to enhance the understanding of each service in more detail.

4. OMG IDL

The section provides an OMG IDL version of the whole API. It was felt useful that a working version of the API be produced so that the API could be realisable in the Market place of today.

It was felt appropriate that this section be represented as an Appendix to the Recommendation.

The interface under consideration can be found represented by IF8 and IF9 in Figure 1:

[image: image2.wmf]SCF

SA-GF

Distributed

Service Logic

IF8

IF9

Figure 1

5.0 Data Session Control SCF

The following sections describe each aspect of the Data Session Control Service Capability Feature (SCF).

The order is as follows:

· The Sequence diagrams give the reader a practical idea of how each of the service capability feature is implemented.

· The Class relationships section show how each of the interfaces applicable to the SCF, relate to one another

· The Interface specification section describes in detail each of the interfaces shown within the Class diagram part.

· The State Transition Diagrams (STD) show the progression of internal processes either in the application, or Gateway.

· The Data definitions section show a detailed expansion of each of the data types associated with the methods within the classes. Note that some data types are used in other methods and classes and are therefore defined within the Common Data types part of this specification.

6.0 Data Session Control Service sequence diagrams

Enable Data Session Notification

[image: image3.wmf]Application

DataSession

Manager

DataSession

1: enableDataSessionNotification

Figure 12: Enable Data Session Notification

Address translation with charging

[image: image4.wmf]Application

DataSession

Manager

DataSession

2: DataSessionEventNotify()

3: 'translate address'

4: setCallback()

5: superviseDataSessionReq()

6: connectReq()

10: connectRes()

9: superviseDataSessionRes()

7: superviseDataSessionRes()

8: superviseDataSessionReq()

Figure 13: Address translation with charging

7.0 Data Session Control Service class diagrams

The Data Session Control provides a means to control per data session basis the establishment of a new data session. This means espcially in the GPRS context that the establishment of a PDP session is modelled not the attach/detach mode. Change of terminal location is assumed to be managed by the underlying network and is therefore not part of the model. The underlying assumption is that a terminal initiates a data session and the application can reject the request for data session establishment, can continue the establishment or can continue and change the destination as requested by the terminal.

The modelling is hold similar to the Generic Call Control but assuming a simpler underlying state model. An IpDataSessionManager and IpData Session object are the interfaces used by the application, whereas the IpAppDataSessionManager and the IpAppDataSession interfaces are implemented by the application.

[image: image5.wmf]Pdscs

Pappdscs

Figure 6‑14: Data Session Control Packages
[image: image6.emf]IpOSA

<<Interface>>

IpService

setCallback()

<<Interface>>

IpAppDataSessionManager

dataSessionAborted()

dataSessionEventNotify()

dataSessionNotificationContinued()

dataSessionNotificationInterrupted()

(from Pappdscs)

<<Interface>>

IpAppDataSession

dataSessionFaultDetected()

superviseDataSessionErr()

superviseDataSessionRes()

connectErr()

connectRes()

(from Pappdscs)

<<Interface>>

10..n10..n

IpDataSessionManager

enableDataSessionNotification()

disableDataSessionNotification()

(from Pdscs)

<<Interface>>

1

1

<<uses>>

IpDataSession

connectReq()

release()

superviseDataSessionReq()

setDataSessionChargePlan()

setAdviceOfCharge()

(from Pdscs)

<<Interface>>

1

1

<<uses>>

10..n10..n

Figure 6-15: Data Session Control Class diagram Interface Classes

8.0 Interface Specifications

The general format of an interface specification is described below:

· Interface Class

This is a UML interface class description of the methods supported by that interface, and the relevant parameters and types. The Service and Framework interfaces to capabilities within the network are denoted by classes with name I<name>. The callback interfaces to the applications are denoted by classes with name IApp<name>.

· Method descriptions

Each method (API method “call”) is described. All methods in the API return a value of type TResult, indicating, amongst other things, if the method invocation was sucessfully executed or not.
Both synchronous and asynchronous methods are used in the API. Asynchronous methods are identified by a 'Req' suffix for a method request, and, if applicable, are served by asynchronous methods identified by either a 'Res' or 'Err' suffix for method results and errors, respectively. To handle responses and reports, the developer must implement the relevant IApp<name> interfaces to provide the callback mechanism.

· Parameter descriptions

Each method parameter and its possible values are described. Parameters described as 'in' represent those which must have a value when the method is called. Those described as 'out' are those which contain the return result of the method when the method returns.

· State Model

If relevant, a state model is shown to illustrate the states of the objects which implement the described interface.

8.1 Architecture of the API specification

The API is object-oriented and consists of several categories of interfaces as shown in Figure 2. Phase 1 addressed public interfaces between enterprise-based client applications and services (interface 2) and the Framework (interface 1), where:

· Service Interfaces offer applications access to a range of network capabilities.

· Framework Interfaces provide 'surround' capabilities necessary for the Service Interfaces to be open, secure, resilient and manageable.

In Phase 2, additional public interfaces are introduced to support administrative functions within the enterprise (interfaces 4 & 6) and to permit the supply of services by third party vendors (interfaces 3 & 5).

The Call Control service interface is represented by interface 2.

[image: image7.wmf]Framework

operator

admin

Enterprise

operator

admin tool

Service

supplier

admin tool

1

1

4

4

3

3

5

5

Not in scope of

this version of

the API

Not in scope of

this version of

the API

Telecom Network

Not in scope of

this version of

the API

Not in scope of

this version of

the API

2

2

6

6

Client

Application

Not in

 scope

of this

API

version

Figure 2 Interfaces

In order to realise the Service and Framework interfaces, it is recognised that categories of resource interfaces are required to facilitate integration of network equipment. The definition of the resource interfaces is not in the scope of the group at this time.

9.0 The Service Interface Specifications

This section defines the interfaces, methods and parameters that form a part of the API specification. The Unified Modelling Language (UML) is used to specify the interface classes. The general format of an interface specification is described below.

Interface Class

This shows a UML interface class description of the methods supported by that interface, and the relevant parameters and types. The Service and Framework interfaces for enterprise-based client applications are denoted by classes with name Ip<name>. The callback interfaces to the applications are denoted by classes with name IpApp<name>. For the interfaces between a Service and the Framework, the Service interfaces are typically denoted by classes with name IpSvc<name>, while the Framework interfaces are denoted by classes with name IpFw<name>

Method descriptions

Each method (API method “call”) is described. All methods in the API return a value of type TpResult, indicating, amongst other things, if the method invocation was sucessfully executed or not.
Both synchronous and asynchronous methods are used in the API. Asynchronous methods are identified by a 'Req' suffix for a method request, and, if applicable, are served by asynchronous methods identified by either a 'Res' or 'Err' suffix for method results and errors, respectively. To handle responses and reports, the application or service developer must implement the relevant IpApp<name> or IpSvc<name> interfaces to provide the callback mechanism.

Parameter descriptions

Each method parameter and its possible values are described. Parameters described as 'in' represent those that must have a value when the method is called. Those described as 'out' are those that contain the return result of the method when the method returns.

State Model

If relevant, a state model is shown to illustrate the states of the objects that implement the described interface.

10.0 Base Interface

All application, framework and service interfaces inherit from the following interface. This API Base Interface does not provide any additional methods.

Interface Class

<<Interface>>

IpInterface

11.0 Service Interfaces

Overview

The Service Interfaces provide the interfaces into the capabilities of the underlying network - such as call control, user interaction, messaging, mobility and connectivity management.

The interfaces that are implemented by the services are denoted as 'Service Interface'. The corresponding interfaces that must be implemented by the application (e.g. for API callbacks) are denoted as 'Application Interface'.

12.0 Generic Service Interface

Inherits from the base interface.

All service interfaces inherit from the following interface.

Interface Class

<<Interface>>

IpService

setCallback(appInterface : in IpInterfaceRef) : TpResult

setCallbackWithSessionID(appInterface : in IpInterfaceRef , sessionID : in TpSessionID) : TpResult

Method

setCallback()

This method specifies the reference address of the callback interface that a service uses to invoke methods on the application.

Parameters

appInterface : in IpInterfaceRef

Specifies a reference to the application interface, which is used for callbacks.

Method

setCallbackWithSessionID()

This method specifies the reference address of the application’s callback interface that a service uses for interactions associated with a specific session ID: e.g. a specific call, or call leg.

Parameters

appInterface : in IpInterfaceRef

Specifies a reference to the application interface, which is used for callbacks.

sessionID : in TpSessionID

Specifies the session for which the service can invoke the application’s callback interface.

13.0 Data Session Control Service

The Data Session control network service capability feature consists of two interfaces:

1)
Data Session manager, containing management functions for data session related issues;

2)
Data Session, containing methods to control a session.

A session can be controlled by one Data Session Manager only. Data Session Manager can control several sessions.

[image: image8.wmf]1

Data Session

Manager

Data Session

1

n

NOTE:
The term "data session" is used in a broad sense to describe a data connection/session. For example, it comprises a PDP context in GPRS.

Figure 11: Data Session control interfaces usage relationship

The Data Session Control service capability features are described in terms of the methods in the Data Session Control interfaces. Table 2 gives an overview of the Data Session Control methods and to which interfaces these methods belong.

Table 1: Overview of Data Session Control interfaces and their methods

Data Session Manager
Data Session

enableDataSessionNotification
connectReq

disableDataSessionNotification
connectRes

dataSessionNotificationInterrupted
connectErr

dataSessionNotificationContinued
release

dataSessionEventNotify
superviseDataSessionReq

dataSessionAborted
superviseDataSessionRes

superviseDataSessionErr

dataSessionFaultDetected

setAdviceofCharge

setDataSessionChargePlan

The session manager interface provides the management functions to the data session service capability features. The application programmer can use this interface to enable or disable data session-related event notifications.

23.1 Data Session

The Data Session interface provides basic methods for applications to control data sessions.

IpAppDataSessionManager

<<Interface>>

IpAppDataSessionManager

dataSessionAborted(dataSessionID : in TpSessionID) : TpResult

dataSessionEventNotify(dataSessionReference : in TpdataSessionIdentifier , eventInfo : in TpDataSessionEventInfo , assignmentID : in TpAssignmentID , appInterface : out IpAppdataSessionRefRef) : TpResult

dataSessionNotificationContinued() : TpResult

dataSessionNotificationInterrupted(): TpResult

Method

dataSessionEventNotify()

This method notifies the application of the arrival of a data session-related event.

Direction

Network to application

Parameters

dataSessionReference

Specifies the session ID and the reference to the Data Session object to which the notification relates.

eventInfo

Specifies data associated with this event. This data includes the destination address provided by the end-user.

assignmentID

Specifies the assignment id which was returned by the enableDataSessionNotification() method. The application can use assignment ID to associate events with event-specific criteria and to act accordingly.

appInterface

Specifies a reference to the application object which implements the callback interface for the new data session.

Returns

-

Errors

-

Method

dataSessionAborted()

This method indicates to the application that the Data Session object has aborted or terminated abnormally. No further communication will be possible between the Data Session object and the application.

Direction

Network to application

Parameters

dataSessionID

Specifies the session ID of the data session that has aborted or terminated abnormally.

Returns

-

Errors

-

Method

dataSessionNotificationInterrupted()

This method indicates to the application that event notifications will no longer be sent (for example, due to faults detected).

Direction

Network to application

Parameters

-

Returns

-

Errors

-

Method

dataSessionNotificationContinued()

This method indicates to the application that all event notifications will be sent again.

Direction

Network to application

Parameters

-

Returns

-

Errors

-

IpDataSessionManager

<<Interface>>

IpDataSessionManager

enableDataSessionNotification(appInterface : in IpAppDataSessionControlManagerRef , eventCriteria : in TpDataSessionEventCriteria , assignmentID : out TpAssignmentIDRef) : TpResult

disableDataSessionNotification(assignmentID : in TpAssignmentID) : TpResult

Method

enableDataSessionNotification()

This method is used to enable data session-related notifications to be sent to the application.

Direction

Application to network

Parameters

appInterface

If this parameter is set (i.e. not NULL) it specifies a reference to the application interface which is used for callbacks. If set to NULL, the application interface defaults to the interface specified via the setCallback() method.

eventCriteria

Specifies the event specific criteria used by the application to define the event required. Individual addresses or address ranges may be specified for destination and/or origination. Examples of events are "Data Session set up"

Returns

assignmentID

Specifies the ID assigned by the Data Session Manager object for this newly-enabled event notification.

Errors

USER_NOT_SUBSCRIBED

Returned if the end-user is not subscribed to the application

APPLICATION_NOT_ACTIVATED

Returned if the end-user has de-activated the application

USER_PRIVACY_VIOLATION

Returned if the requests violates the end-user's privacy setting

Method

disableDataSessionNotification()

This method is used by the application to disable data session notifications.

Direction

Application to network

Parameters

assignmentID

Specifies the assignment ID given by the data session manager object when the previous enableDataSessionNotification() was done.

Returns

-

Errors

INVALID_ASSIGNMENTID

Returned if the assignment ID does not correspond to one of the valid assignment Ids.

IpAppDataSession

<<Interface>>

IpAppDataSession

connectRes(dataSessionID : in TpSessionID , eventReport : in TpDataSessionEventReport, assignmentID : in TpAssignmentID) : TpResult

connectErr(dataSessionID : in TpSessionID , errorIndication : in TpDataSessionError, assignmentID : in TpAssignmentID) : TpResult

superviseDataSessionRes(dataSessionID : in TpSessionID , report : in TpDataSessionSuperviseReport, usedVolume : in TpDataSessionSuperviseVolume) : TpResult

superviseDataSessionErr(dataSessionID : in TpSessionID , errorIndication : in TpDataSessionError) : TpResult

dataSessionFaultDetected(dataSessionID : in TpSessionID , fault : in TpDataSessionFault) : TpResult

Method
connectRes()

This asynchronous method indicates that the request to connect a data session with the destination party was successful, and indicates the response of the destination party (e.g. connected, disconnected). Direction
Network to application

Parameters
dataSessionID

Specifies the session ID of the data session.

eventReport

Specifies the result of the request to connect the data session. It includes the network event, date and time, monitoring mode and event specific information such as release cause.

Returns
-

Errors
-

Method
connectErr()

This asynchronous method indicates that the request to connect a data session with the destination party was unsuccessful, e.g. an error detected in the network or the data session was abandoned.

Direction
Network to application

Parameters
dataSessionID

Specifies the session ID.

errorIndication

Specifies the error which led to the original request failing.
Returns
-

Errors
-

Method
superviseDataSessionRes()

This asynchronous method reports a data session supervision event to the application.

Direction
Network to application

Parameters
dataSessionID

Specifies the data session.

report

Specifies the situation, which triggered the sending of the data session supervision response.

usedVolume

Specifies the used volume for the data session supervision (in the same unit as specified in the request).

Returns
-

Errors
-

Method
superviseDataSessionErr()

This asynchronous method reports a data session supervision error to the application.

Direction
Network to application

Parameters
dataSessionID

Specifies the data session ID.

errorIndication

Specifies the error which led to the original request failing.

Returns
-

Errors
-

Method
dataSessionFaultDetected()

This method indicates to the application that a fault in the network has been detected which can't be communicated by a network event, e.g., when the user aborts before any establishment method is called by the application.
The system purges the Data Session object. Therefore, the application has no further control of data session processing. No report will be forwarded to the application.

Direction
Network to application

Parameters
dataSessionID

Specifies the data session ID of the Data Session object in which the fault has been detected.

fault

Specifies the fault that has been detected.

Returns
-

Errors
-

IpDataSession

<<Interface>>

IpDataSession

connectReq(dataSessionID : in TpSessionID , responseRequested : in TpDataSessionReportRequestSet , targetAddress : in TpAddress , originatingAddress: in TpAddress, assignmentID : out TpAssignmentIDRef) : TpResult

release(dataSessionID : in TpSessionID , cause : in TpDataSessionReleaseCause) : TpResult

superviseDataSessionReq(dataSessionID : in TpSessionID, treatment : in TpDataSessionSuperviseTreatment , bytes : in TpDataSessionSuperviseVolume) : TpResult

setDataSessionChargePlan(dataSessionID: in TpSessionID, dataSessionChargePlan: in TpDataSessionChargePlan): TpResult

setAdviceOfCharge(dataSessionID : in TpSessionID, aoCInfo : in TpAoCInfo, tariffSwitch : in TpDuration): TpResult

Method

connectReq()

This asynchronous method requests the connection of a data session with the destination party (specified in the parameter TargetAddress). The Data Session object is not automatically deleted if the destination party disconnects from the data session.

Direction

Application to network

Parameters

dataSessionID

Specifies the session ID.

responseRequested

Specifies the set of observed data session events that will result in a connectRes() being generated. targetAddress

Specifies the address of destination party.

assignmentID
Specifies the ID assigned to the request. The same ID will be returned in the connectRes or Err. This allows the application to correlate the request and the result.

Returns

-

Errors

USER_NOT_SUBSCRIBED

Returned if the end-user is not subscribed to the application

APPLICATION_NOT_ACTIVATED

Returned if the end-user has de-activated the application

USER_PRIVACY_VIOLATION

Returned if the requests violates the end-user's privacy setting

Method

release()

This method requests the release of the data session.

Direction

Application to network

Parameters

dataSessionID

Specifies the session.

cause

Specifies the cause of the release.

Returns

-

Errors

-

Method

superviseDataSessionReq()

The application calls this method to supervise a data session. The application can set a granted data volume for this data session. If an application calls this function before it calls a connectReq() or a user interaction function the time measurement will start as soon as the data session is connected. The Data Session object will exist after the data session has been terminated if information is required to be sent to the application at the end of the data session.

Direction

Application to network

Parameters

dataSessionID

Specifies the data session.

treatment

Specifies how the network should react after the granted data volume has been sent.

bytes

Specifies the granted number of bytes that can be transmitted for the data session.

Returns

-

Method
setDataSessionChargePlan()

Allows an application to include charging information in network generated CDR.

Direction
Application to network

Parameters
dataSessionID

Specifies the session ID of the data session.

dataSessionChargePlan

Specifies the charge plan used.

Returns
-

Errors
-

Method
setAdviceOfCharge()

This method allows the application to determine the charging information that will be send to the end-users terminal.

Direction
Application to network

Parameters
dataSessionID

Specifies the session ID of the data session.

aoCInfo

Specifies two sets of Advice of Charge parameter according to GSM

tariffSwitch

Specifies the tariff switch that signifies when the second set of AoC parameters becomes valid.

Returns
-

Errors
-

14.0 State Diagrams

14.1 Data Session Control State diagrams

[image: image9.wmf]Network Released

Finished

Application

Released

release

timeout ^dataSessionFaultDetected(P_DATA_SESSION_TIMEOUT_ON_RELEASE)

Active

Setup

Established

Setup

IpAppDataSessionControlManager.dataSess

ionEventNotify(P_EVENT_DSCS_SETUP)

Established

setDataSessionChargePlan

superviseDataSessionReq

setAdviceOfCharge

connectReq

[no reports requested with

superviseDataSessionReq]

"requested information ready"

^superviseDataSessionRes

release

"requested information ready"

^superviseDataSessionRes

[no reports requested with

superviseDataSessionReq]

In state Finished a timer mechanism should

prevent that the object keeps occupying

resources. In case the timer expires, the

object should be destroyed and

dataSessionFaultDetected should be

reported to the application.

IpAppDataSessionControlManager.dataSessionEventNotify(

P_EVENT_DSCS_ESTABLISHED)

"data session supervision event" ^superviseDataSessionRes

release

"data session ends : party disconnects"[monitor for this event] ^ConnectRes(P_DATA_SESSION_REPORT_DISCONNECT)

"fault detected"[fault cannot be communicated with network event] ^dataSessionFaultDetected

"data session ends: party disconnects"[no monitor for this event]

"connection establishedr" ^connectRes(P_DATA_SESSION_REPORT_CONNECTED)

Figure 7-16: State Transition Diagram for Data Session

23.1.1 Active state

In this state a data connection between two parties is being setup or established (refer to the substates for more details). The application can request the gateway for a certain type of charging by calling setDataSessionChargePlan(), send advice of charge information by calling setAdviceOfCharge(), and request supervision of the data session by calling superviseDataSessionReq().

23.1.2 Setup state

The Setup state is reached after a dataSessionEvebtNotify() indicates to the application that a data session is interested in being connected. If the application is going to connect the two parties by invoking connectReq() it may call the charging or supervision methods before.

23.1.3 Established state

In this state the data connection is established. If supervision has been requested the application expects the corresponding superviseDataSessionRes().

23.1.4 Network Released state

In this state the data session has ended. In the case on a normal user disconnection the transition to this state is indicated to the application by the disconnect report of connectRes(). But this will only happen if the application requested monitoring of the disconnect event before. An abnormal disconnection is indicated by dataSessionFaultDetected(). The application may wait for outstanding superviseDataSessionRes().

23.1.5 Finished state

In this state the data session has ended and no further data session related information is to be send to the application. The application can only release the data session object. If the application fails to invoke release() within a certain period of time the gateway should automatically release the object and send a timeout indication to the application.

23.1.6 Application released state.

In this state the application has released the data session object. If supervision has been requested the gateway will collect the information and send superviseDataRes() to the application.

15.0 Data Session Control Data Definitions

IpAppDataSession

Defines the address of an IpAppDataSession Interface.

IpAppDataSessionRef

Defines a Reference to type IpAppDataSession
IpAppDataSessionRefRef

Defines a Reference to type IpAppDataSessionRef.

IpAppDataSessionControlManager

Defines the address of an IpAppDataSessionControlManager Interface.

IpAppDataSessionControlManagerRef

Defines a Reference to type IpAppDataSessionControlManager.

IpDataSession

Defines the address of an IpDataSession Interface.

IpDataSessionRef

Defines a Reference to type IpDataSession.

IpDataSessionRefRef

Defines a Reference to type IpDataSessionRef.

IpDataSessionControlManager

Defines the address of an IpDataSessionManager Interface.

IpDataSessionManagerRef

Defines a Reference to type IpDataSessionControlManager.

15.1 Event Notification data definitions

TpDataSessionEventName

Defines the names of events being notified with a new call request. The following events are supported. The values may be combined by a logical 'OR' function when requesting the notifications. Additional events that can be requested / received during the call process are found in the TpDataSessionReportType data-type.

Name
Value
Description

P_EVENT_NAME_UNDEFINED
0
Undefined

P_EVENT_DSCS_SETUP
1
The data session is going to be setup.

P_EVENT_DSCS_ESTABLISHED
2
The data session is established by the network.

TpDataSessionMonitorMode

Defines the mode that the call will monitor for events, or the mode that the call is in following a detected event.

Name
Value
Description

P_DATA_SESSION_MONITOR_MODE_INTERRUPT
0
The data session event is intercepted by the data session control service and data session establishment is interrupted. The application is notified of the event and data session establishement resumes following an appropriate API call or network event (such as a data session release)

P_DATA_SESSION_MONITOR_MODE_NOTIFY
1
The data session event is detected by the data session control service but not intercepted. The application is notified of the event and data session establishment continues

P_DATA_SESSION_MONITOR_MODE_DO_NOT_MONITOR
2
Do not monitor for the event

TpDataSessionEventCriteria

Defines the Sequence of Data Elements that specify the criteria for a event notification.

Of the addresses only the Plan and the AddrString are used for the purpose of matching the notifications against the criteria.

Sequence Element Name
Sequence Element Type
Description

DestinationAddress
TpAddressRange
Defines the destination address or address range for which the notification is requested.

OriginatingAddress
TpAddressRange
Defines the origination address or a address range for which the notification is requested.

DataSessionEventName
TpDataSessionEventName
Name of the event(s)

MonitorMode
TpDataSessionMonitorMode
Defines the mode that the Data Session is in following the notification.
Monitor mode P_DATA_SESSION_MONITOR_MODE_DO_NOT_MONITOR is not a legal value here.

TpDataSessionEventInfo

Defines the Sequence of Data Elements that specify the information returned to the application in a Data Session event notification.

Sequence Element Name
Sequence Element Type

DestinationAddress
TpAddress

OriginatingAddress
TpAddress

DataSessionEventName
TpDataSessionEventName

MonitorMode
TpDataSessionMonitorMode

TpDataSessionChargePlan

Defines the Sequence of Data Elements that specify the charge plan for the call.

Sequence Element Name
Sequence Element Type
Description

ChargeOrderType
TpDataSessionChargeOrder
Charge order

Currency
TpString

Currency unit according to ISO-4217:1995

AdditionalInfo
TpString
Descriptive string which is sent to the billing system without prior evaluation. Could be included in the ticket.

Valid Currencies are:

ADP, AED, AFA, ALL, AMD, ANG, AON, AOR, ARS, ATS, AUD, AWG, AZM, BAM,

BBD, BDT, BEF, BGL, BGN, BHD, BIF, BMD, BND, BOB, BOV, BRL, BSD, BTN,

BWP, BYB, BZD, CAD, CDF, CHF, CLF, CLP, CNY, COP, CRC, CUP, CVE, CYP,

CZK, DEM, DJF, DKK, DOP, DZD, ECS, ECV, EEK, EGP, ERN, ESP, ETB, EUR,

FIM, FJD, FKP, FRF, GBP, GEL, GHC, GIP, GMD, GNF, GRD, GTQ, GWP, GYD,

HKD, HNL, HRK, HTG, HUF, IDR, IEP, ILS, INR, IQD, IRR, ISK, ITL, JMD,

JOD, JPY, KES, KGS, KHR, KMF, KPW, KRW, KWD, KYD, KZT, LAK, LBP, LKR,

LRD, LSL, LTL, LUF, LVL, LYD, MAD, MDL, MGF, MKD, MMK, MNT, MOP, MRO,

MTL, MUR, MVR, MWK, MXN, MXV, MYR, MZM, NAD, NGN, NIO, NLG, NOK, NPR,

NZD, OMR, PAB, PEN, PGK, PHP, PKR, PLN, PTE, PYG, QAR, ROL, RUB, RUR,

RWF, SAR, SBD, SCR, SDD, SEK, SGD, SHP, SIT, SKK, SLL, SOS, SRG, STD,

SVC, SYP, SZL, THB, TJR, TMM, TND, TOP, TPE, TRL, TTD, TWD, TZS, UAH,

UGX, USD, USN, USS, UYU, UZS, VEB, VND, VUV, WST, XAF, XAG, XAU, XBA,

XBB, XBC, XBD, XCD, XDR, XFO, XFU, XOF, XPD, XPF, XPT, XTS, XXX, YER,

YUM, ZAL, ZAR, ZMK, ZRN, ZWD.

XXX is used for transactions where no currency is involved.

TpDataSessionChargeOrder

Defines the Tagged Choice of Data Elements that specify the charge plan for the call.

Tag Element Type

TpDataSessionChargeOrderCategory

Tag Element Value
Choice Element Type
Choice Element Name

P_DATA_SESSION_CHARGE_PER_VOLUME
TpChargePerVolume
ChargePerVolume

P_DATA_SESSION_CHARGE_NETWORK
TpString
NetworkCharge

TpDataSessionChargeOrderCategory

Name
Value
Description

P_DATA_SESSION_CHARGE_PER_VOLUME
0
Charge per volume

P_DATA_SESSION_CHARGE_NETWORK
1
Operator specific charge plan specification, e.g. charging table name / charging table entry

TpChargePerVolume
Defines the Sequence of Data Elements that specify the time based charging information. The volume is the sum of uplink and downlink transfer data volumes.
Sequence Element Name
Sequence Element Type
Description

InitialCharge
TpInt32
Initial charge amount (in currency units * 0.0001)

CurrentChargePerKilobyte
TpInt32
Current tariff (in currency units * 0.0001)

NextChargePerKilobyte
TpInt32
Next tariff (in currency units * 0.0001) after tariff switch.

Only used in setAdviceOfCharge()

TpDataSessionIdentifier

Defines the Sequence of Data Elements that unambiguously specify the Data Session object

Sequence Element Name
Sequence Element Type
Sequence Element Description

DataSessionReference
IpDataSessionRef
This element specifies the interface reference for the Data Session object.

DataSessionSessionID
TpSessionID
This element specifies the data session ID of the Data Session.

TpDataSessionError

Defines the Sequence of Data Elements that specify the additional information relating to acall error.

Sequence Element Name
Sequence Element Type

ErrorTime
TpDateAndTime

ErrorType
TpDataSessionErrorType

AdditionalErrorInfo
TpDataSessionAdditionalErrorInfo

TpDataSessionAdditionalErrorInfo

Defines the Tagged Choice of Data Elements that specify additional Data Session error and Data Session error specific information.

Tag Element Type

TpDataSessionErrorType

Tag Element Value
Choice Element Type
Choice Element Name

P_DATA_SESSION_ERROR_UNDEFINED
NULL
Undefined

P_DATA_SESSION_ERROR_INVALID_ADDRESS
TpAddressError
DataSessionErrorInvalidAddress

P_DATA_SESSION_ERROR_INVALID_STATE
NULL
Undefined

TpDataSessionErrorType

Defines a specific Data Session error.

Name
Value
Description

P_DATA_SESSION_ERROR_UNDEFINED
0
Undefined; the method failed or was refused, but no specific reason can be given.

P_DATA_SESSION_ERROR_INVALID_ADDRESS
1
The operation failed because an invalid address was given

P_DATA_SESSION_ERROR_INVALID_STATE
2
The data session was not in a valid state for the requested operation

TpDataSessionFault

Defines the cause of the data session fault detected.

Name
Value
Description

P_DATA_SESSION_FAULT_UNDEFINED
0
Undefined

P_DATA_SESION_USER_ABORTED
1
User has finalised the data session before any message could be sent by the application

P_DATA_SESSION_TIMEOUT_ON_RELEASE
2
This fault occurs when the final report has been sent to the application, but the application did not explicitly release data session object, within a specified time.

The timer value is operator specific.

P_DATA_SESSION_TIMEOUT_ON_INTERRUPT
3
This fault occurs when the application did not instruct the gateway how to handle the call within a specified time, after the gateway reported an event that was requested by the application in interrupt mode.

The timer value is operator specific.

TpDataSessionReleaseCause

Defines the Sequence of Data Elements that specify the cause of the release of a data session.
Sequence Element Name
Sequence Element Type

Value
TpInt32

Location
TpInt32

Note: the Value and Location are specified as in ITU-T recommendation Q.850.

TpDataSessionSuperviseVolume

Defines the Sequence of Data Elements that specify the amount of volume that is allowed to be transmitted for the specific connection.

Sequence Element Name
Sequence Element Type
Sequence Element Description

VolumeQuantity
TpInt32
This data type is identical to a TpInt32, and defines the quantity of the granted volume that can be transmitted for the specific connection. The volume specifies the sum of uplink and downlink transfer data volumes.

VolumeUnit

TpInt32
In Order to enlarge the range of the volume quantity value the exponent of a scaling factor (10^VolumeUnit) is provided.

When the unit is for example in kilobytes, VolumeUnit must be set to 3.

TpDataSessionSuperviseReport

Defines the responses from the data session control service for calls that are supervised. The values may be combined by a logical 'OR' function.

Name
Value
Description

P_DATA_SESSION_SUPERVISE_VOLUME_REACHED
01h
The maximum volume has been reached.

P_DATA_SESSION_SUPERVISE_DATA_SESSION_ENDED
02h
The data session has ended, either due to data session party to reach of maximum volume or calling or called release.

P_DATA_SESSION_SUPERVISE_MESSAGE_SENT
04h
A warning message has been sent.

TpDataSessionSuperviseTreatment

Defines the treatment of the call by the data session control service when the supervised volume is reached. The values may be combined by a logical 'OR' function.

Name
Value
Description

P_DATA_SESSION_SUPERVISE_RELEASE
01h
Release the data session when the data session supervision volume is reached.

P_DATA_SESSION_SUPERVISE_RESPOND
02h
Notify the application when the call supervision volume is reached.

P_DATA_SESSION_SUPERVISE_INFORM
04h
Send a warning message to the originating party when the maximum volume is reached. If data session release is requested, then the data session will be released following the message after an administered time period

TpDataSessionReport

Defines the Sequence of Data Elements that specify the data session report specific information.
Sequence Element Name
Sequence Element Type

MonitorMode
TpDataSessionMonitorMode

DataSessionEventTime
TpDateAndTime

DataSessionReportType
TpDataSessionReportType

AdditionalReportInfo
TpDataSessionAdditionalReportInfo

TpDataSessionAdditionalReportInfo

Defines the Tagged Choice of Data Elements that specify additional data session report information for certain types of reports.

Tag Element Type

TpDataSessionReportType

Tag Element Value
Choice Element Type
Choice Element Name

P_DATA_SESSION_REPORT_UNDEFINED
NULL
Undefined

P_DATA_SESSION_REPORT_CONNECTED
NULL
Undefined

P_DATA_SESSION_REPORT_DISCONNECT
TpDataSessionReleaseCause
DataSessionDisconnect

TpDataSessionReportRequest

Defines the Sequence of Data Elements that specify the criteria relating to data session report requests.

Sequence Element Name
Sequence Element Type

MonitorMode
TpDataSessionMonitorMode

DataSessionReportType
TpDataSessionReportType

TpDataSessionReportRequestSet

Defines a Numbered Set of Data Elements of TpDataSessionReportRequest.

TpDataSessionReportType

Defines a specific data session event report type.

Name
Value
Description

P_DATA_SESSION_REPORT_UNDEFINED
0
Undefined

P_DATA_SESSION_REPORT_CONNECTED
1
Data session established.

P_DATA_SESSION_REPORT_DISCONNECT
2
Data session disconnect requested by data session party

TpDataSessionEventCriteriaResultSetRef

Defines a refernce to TpDataSessionEventCriteriaResultSet.

TpDataSessionEventCriteriaResultSet

Defines a set of TpDataSessionEventCriteriaResult.

TpDataSessionEventCriteriaResult

Defines a sequence of data elements that specify a requested call event notification criteria with the associated assignmentID.

Sequence Element Name
Sequence Element Type
Sequence Element Description

EventCriteria
TpDataSessionEventCriteria
The event criteria that were specified by the application.

AssignmentID
TpInt32
The associated assignementID. This can be used to disable the notification.

PAGE
27

_1021968081.doc
[image: image1.emf]ApplicationDataSession

Manager

DataSession

1: enableDataSessionNotification

_1021974468.doc

Application

DataSession

Manager

DataSession

2: DataSessionEventNotify()

3: 'translate address'

4: setCallback()

5: superviseDataSessionReq()

6: connectReq()

10: connectRes()

9: superviseDataSessionRes()

7: superviseDataSessionRes()

8: superviseDataSessionReq()

_1014809645.ppt

Framework

operator

admin

Enterprise

operator

admin tool

Service

supplier

admin tool

1

4

3

5

Not in scope of this version of the API

Telecom Network

Not in scope of this version of the API

2

6

Client

Application

Not in

 scope

of this API version

_1020588217.doc
1

Data Session

Manager

Data Session

1

n

_1006924015.ppt

SCF

SA-GF

Distributed

Service Logic

IF8

IF9

Figure 1

