Page 1
Draft prETS 300 ???: Month YYYY

Page 2

Temporary document XXX
Joint 3GPP TSG_CN5/ ETSI SPAN 3
5 to 7 September 2000
Bristol

Source:
Chairman SPAN3 Frans Haerens

Title:
Issues Related to Parlay 2.1 Call control Packages

Date:

5 September 2000

Document for:
API Call Control
Agenda item:

1 Introduction

This contribution proposes a number of issues related to the Parlay 2.1 Call control package on the following:

· Interactions between different applications

· Mapping of multimedia methods to SIP

· Synchronisation of callEventNotify and mediaChannelEventNotify

· Detailed remarks

2 Interactions between different applications

Depending on the Parlay package, the following interface classes are defined at the Service Capability Server level: (Multmedia)CallControlManager, (Multimedia)Call, (Multimedia)CallLeg, MultimediaChannel. For each of these classes, a mirror class is defined at the application level.

When than one application is involved in controlling the same call, the instantiation of the various state models must be agreed. This can occur when:

1. more than one application serving the same user (calling or called user) is involved in the same call. E.g. Internet-Phone Application and Pre-paid Application both serving the calling user, or Internet-Phone Application and Click-to-dial both serving the calling user.

2. one (or more) applications serving the calling user and one (or more) applications serving the called user are involved in the same call (assumed that the calling and called user are served by the same Network Operator). E.g. Pre-paid Application serving the calling user and Personal Routing Application serving the called user.

For the interface classes to be implemented by objects at the Parlay Gateway level, it is not clear how many of these instances will exist in the scope of a call in the situations described above.

For the situations where more than one application on behalf of the same user is involved, how many (Multimedia)Call and (Multimedia)CallLeg objects exist ? Is there one Call object with two CallLegs per application involved (refer to option 1 in the figure below) or is there only one Call object with two CallLegs shared by all the applications involved (refer to option 2 in the figure below).

E.g. suppose that a first application is triggered: a Call with one CallLeg object exists. This application creates a second leg and invokes the method RouteCallToDestination.
If now, as a consequence of this RouteReq , a second application is to be triggered, will it communicate with the same CallObject as the first application ? If this is the case, how can the second application know that the second leg already exists ?

[image: image1.wmf] Application 1

Call

CallLeg

CallLeg

 Application 2

Call

CallLeg

CallLeg

OPTION 1

 Application 1

Call

CallLeg

CallLeg

OPTION 2

 Application 2

For the situation where more than one application is involved serving different users, again the question comes up how many (Multimedia)Call objects exist for the call.
Or in other words, is there one call object or two in cascade? Or, in yet other words, does Parlay comply to the half call principle or not?

The same problem needs to be solved when the different applications handle different call control packages as indicated in the following example:

The call control packages are made such that one inherits from the other. A consequence ot his assumpion is that at the gateway side you implement the most complex package and that you deliver the appropriate abstraction to the application (i.e depending on what the application supports).

As an example e.g. suppose application 1 uses the generic call control and application 2 uses the multimedia call control, application 1 will ask the framework to get access to the call manager while application 2 will ask the framework to get access to the multimedia call control manager. As such it is assumed that application1 and 2 get access to the same (most complex) call control manager instance of the gateway, but application 1 get's access to only a limited amount of methods compared to application 2. Within this example suppose that there exist two applications, one working on behalf of an A-user and one working on behalf of a B-user. When party A establishes a call to party B the following may occur. At the originating side application A is triggered and receives a reference to a call object, later on apllication B at the termninating side is triggered, it receives a reference to a call object. Normally two instances of the call object are made, is this assumption correct. Also how many call leg objects are instantiated.

3 Relation of the Parlay State Transition Models to the IN State Models

During the Galway SPAN 3 meeting of October 1999 the point was raised concerning state models of the API and how

these were related to the IN state models. The following scenario was considered and is pictorially explained below:

The question asked was: does each leg associated with the API in a multiparty call have a State model associated with it and how do these state models relate to the O-and T-BCSMs as seen in the IN. The figure above shows the respective CallLegStatemodels in the upper part of the figure that relate to the API view of the legs. It also shows the O and T BCSMS in the lower part of the figure. The left hand side of the figure shows the view that the SCF has of the call, i.e. the states associated with the O-BCSMs. The state models representing the legs defined in the API are probably contained within the Gateway, however this is an implementation option.

The figure above shows thick dotted lines which show the relationship between the CLSMs and the O-BCSMs. Note that CLSM 1 reflects the state of the A party side of the O-BCSMs. The figure also shows that a CallState Model is also provided per call.

It was pointed out that the Call Leg State Models could do with some enhancement to capture Network Operator initiated call actions.

It is proposed that an agreement is obtained.

In Intelligent networks, there is a protocol (INAP) on the one hand, and a model on the other hand, with call segments, legs, a basic call state model , a feature interaction manager.
The connection view model behind the different Parlay Call Control packages is not clear, in fact the specification does not provide one. Also a number of State transition diagrams are missing and as a minimum all the diagrams must be specified at the gateway view of the API interface. Is it correct that figure 5 in section 7.1 on IpCallLeg is the State Diagram of the Application view on the CallLeg object?

4
`Mapping of Multimedia methods to SIP.

In the Multimedia Call Control package, there are some methods concering the opening and closing of multimedia channels (MediaChannelMonitorReq/Res, close). It is not clear how these methods map to the SIP messages. In SIP, the opening or closing of a media channel is requested in an INVITE request. The remote user can accept/reject this channel request via a 200 OK response and finally the requestor confirms the final result. It is not clear which of the SIP messages (INVITE, 200 OK or ACK) map to the Parlay methods. E.g when will Parlay Gateway report that a media channel is opened or closed.

The multimedia operations are also very limited, one can only monitor for opening/closing of channels. At least

One would expect by supporting multimedia functionality that you can manipulate the media. I.e consider an application that allows a user to address a streaming server.

The intention of the application is to distribute a stored video under control of user A to a list of other users.

 +------------+

 user A <-> | application|------------------------> streaming server

 +------------+ |

 | |

 Signalling path | |

 ! +--------------------+ |--bearer path

 userB --!---- | Call control SCS | |

 | +--------------------+ |

 +--+

 A possible scenario to achieve this would be as next:

 A-user surfs to a web page hosted by the application

 User A fills out the numbers of all participants

 The application will do next sequence for each participant:

 -createcall()

 -routeReq()

To allow to set up a bearer from each participant to the streaming server there is a need to pass the Ip-address and port of the streaming server in the routeReq. In this respect it is also unclear what is meant by opening/closing of mediachannels when a SIP user requests the establishment of a bi-directional stream in the SIP invite, the called user can reject or change the attributes. When is in parlay a media stream considered as opened ? Is it the intention that counts or the finally agreed streams ?

5
Synchronisation of callEventNotify and mediaChannelEventNotify (multi monitors).

Suppose an application monitors an incoming call event (via enableCallNotification) and also monitors the opening of a media channel (via enableMediaChannelNotification). When a new incoming call arrives, the callControlManager at the Parlay Gateway level reports the incoming call event via callEventNotify to the application. Then the application has to return to the callControlManager so that the latter can report the media channel event via mediaChannelEventNotify. How will the synchronisation be done between these two asynchronous notifications ?

Suppose you have two applications, one using enableCallNotification and one using enableMediaChannelNotifications. Whatis the priority between these two applications ? I.e which one will be triggered first. It is assumed that both cannot control the call simultaneously. This is however somewhat suggested by a sequence diagram in parlay i.e. barring for media combined with call routing, alternative 2.

6
Detailed remarks.

6.1
Interface class “Call”, method “getMoreDialledDigitsReq()”.

The case where the “network indicates a new call” is unclear. It can even be asked whether this type of behaviour from the part of the network is appropriate.

6.2
Interface class “AppCall”, method “routeRes()”.

This method only reports on the status of the call after that call has already progressed quite far in its setup. This means that the application has no opportunity to take some actions at e.g. the point where the call comes in “alerting” phase.

6.3
Interface class “CallLeg”, method “route()”.

Editorial: It seems to be a convention to suffix the asynchronous methods with Req/Res/Err. Why is this convention not followed for the method “route()”, which is clearly asynchronous? It is also recommended that different mnemonics for the methods are used even when the are applicable in different object classes.

6.4
Interface class “CallLeg”, method “getLastRedirectedAddress()”.

There is a naming inconsistency between the method name and the parameter name. The method mentions redirectedAddress, whereas the parameter mentions redirectingAddress.

Is the “lastRedirectedAddress” equal to the “connectedAddress” ?

6.5
Interface class “UIManager”, method “createUICall()”.

A reference is made to an “implementation”. Does this refer to an existing implementation? In our opinion, the Parlay specifications should not refer to any implementation.

6.6
Interface class “UI”, method “release()”.

Although this method is not specifically part of the “UICall” interface class, it can, via the mechanism of inheritance, be invoked on an object that implements the “UICall” interface class.

The question is: what would be the result of such invocation. If the result would be that the user interaction is released, but the call is not (this is the behaviour we are expecting), then the method “release()” has exactly the same result as the method “abortActionReq()”, making the latter method redundant.

6.7
Interface class “AppUI”, method “sendInfoRes()”.

In the explanatory text, the method “sendInfoCall_Req()” is mentioned (twice). This should probably be replaced by “sendInfoReq()”.

CLSM1

CSM

SCF

T

T

O

O

CLSM2

CLSM3

* Contact:
Frans Haerens

Alcatel Bell Belgium
Tel:
+32 3 240 9034

Fax:
+32 3 240 9820

E-mail: frans.haerens@alcatel.be

D:\API\Bristol\Tdoc\TD2callcontrol.doc

_1029226005.doc

CallLeg

CallLeg

CallLeg

CallLeg

CallLeg

Call

 Application 1

OPTION 1

Call

CallLeg

Call

 Application 2

OPTION 2

 Application 2

 Application 1

1/1

