

N5-000150

3GPP CN/N5 #5

Bristol

5-7 September 2000

Source:

Nokia

Title:

Simultaneous implementation of OSA and Parlay interfaces (i.e. common namespace)

Agenda Item:

Document for:
Discussion

Simultaneous implementation of OSA and Parlay interfaces

This study present some alternative ways of implementing OSA and Parlay gateway (SCS's) in the same environment using CORBA.

1. Introduction

OSA and Parlay defines a set of CORBA IDL interfaces with identical structure and semantics (for example org.threegpp.osa.cc.IpCall, org.parlay.services.callcontrol.IpCall).

The problem faced with this situation is, that given a CORBA based implementation of OSA and Parlay architecture, what engineering solutions – if any – exist for implementing a Gateway server that can support both OSA and Parlay applications while sharing implementation of the server objects?

Solution must conform to standard CORBA to guarantee interoperability in a heterogeneous environment. Applications must not be affected (e.g. Parlay applications will remain ignorant of OSA interfaces and vice versa).

The topic area has been discussed in the Usenet newsgroup comp.object.corba discussion thread named "Same servant for two identical interfaces from different modules?".

2. Solution Candidates

2.1 Two parallel gateway implementations

(separate namespaces)

A Gateway server consists of two separate sets of server objects, one for OSA and one for Parlay. OSA clients will communicate with the OSA server objects, Parlay clients with the Parlay server objects.

This is technically feasible.

[image: image1.wmf]OSA App Srvr

CORBA Servant

Parlay App Srvr

CORBA Servant

OSA Gateway

CORBA Servant

CORBA Stubs/

OSA GW

CORBA Stubs/

Parlay GW

CORBA Skeletons/

Parlay App

CORBA Skeletons/

OSA App

Parlay Gateway

CORBA Servant

CORBA Skeletons/

OSA GW

CORBA Skeletons/

Parlay GW

CORBA Stubs/

Parlay App

CORBA Stubs/

OSA App

CORBA

ORB

2.2 Delegation using linking to achieve code sharing

(separate namespaces but some of gateway implementation is common)

A Gateway server consists of two "lightweight" servants for each shared CORBA interface (one for OSA and one for Parlay). These servants delegate the actual implementation to a backend object to fulfill the requests. In order to support callbacks from Gateway to the Application, there must be proxies for each used application interface that hide the application's type (OSA or Parlay) from the backend object implementation. The implementation variants for this approach are:

· Share source code for the delegate and compile/link it to both "lightweight" servants

· Share object code for the delegate and link it into the "lightweight" servants

As a consequence, there will be two actual instances of each common Gateway interface, one for each standard.

This is technically feasible. However, the implementation of the OSA and Parlay CORBA servants and the OSA and Parlay application proxies that convert incoming and outgoing requests between OSA/Parlay specific types and the common types used in the backend delegate may be significant. Also, there is a separate object instance for an OSA version of the interface and for a Parlay version of the interface.

[image: image2.wmf]OSA App Srvr

CORBA Servant

Parlay App Srvr

CORBA Servant

OSA Gateway

CORBA Servant

CORBA Stubs/

OSA GW

CORBA Stubs/

Parlay GW

CORBA Skeletons/

Parlay App

CORBA Skeletons/

OSA App

Parlay Gateway

CORBA Servant

CORBA Skeletons/

OSA GW

CORBA Skeletons/

Parlay GW

CORBA Stubs/

Parlay App

CORBA Stubs/

OSA App

CORBA

ORB

Generic Gateway

Delegate

Generic Gateway

Delegate

Generic Gateway

Source/Object Code

2.3 Transparent type aliasing to achieve instance level sharing

(same namespace)

In this approach, the Gateway implements only the OSA interfaces. Special CORBA-conformant mechanisms are used to allow also Parlay clients to use these OSA Gateway services as if they were Parlay Gateway services. Thus, the Gateway ORB, or a mechanism attached to it, performs a mapping for incoming requests using Parlay types/interfaces into the corresponding types/interfaces of OSA and forwards them to the OSA servants. Similar mapping is made from OSA to Parlay types/interfaces in responses and requests from the OSA Gateway to a Parlay client.

This is not technically feasible. This is prohibited by CORBA standard based on the object type being encoded in the object adapter of the server objects (Ref: Usenet discussion with Iona's Chief Architect Steve Vinoski, Michi Henning, and others).

[image: image3.wmf]OSA App Srvr

CORBA Servant

Parlay App Srvr

CORBA Servant

OSA Gateway

CORBA Servant

CORBA Stubs/

OSA GW

CORBA Stubs/

Parlay GW

CORBA Skeletons/

Parlay App

CORBA Skeletons/

OSA App

CORBA Skeletons/

OSA GW

CORBA Stubs/

OSA App

CORBA

ORB

Non-existent

Magic

2.4 Delegation using CORBA to achieve instance level sharing

(separate namespaces but generic gateway implementation)

This approach is a variation from the Reuse at Code Level, except that the delegate is packaged as a CORBA object and the delegation will be done through a CORBA request.

This variant enables both sharing of a single implementation of the backend logic and sharing of a single instance to serve both OSA and Parlay clients. However, as in the "Reuse at Code Level", significant effort must be put into the mapping between an internal set of types and interfaces and the OSA and Parlay types used and expected by clients.

This is technically feasible.

[image: image4.wmf]OSA App Srvr

CORBA Servant

Parlay App Srvr

CORBA Servant

OSA Gateway

CORBA Servant

CORBA Stubs/

OSA GW

CORBA Stubs/

Parlay GW

CORBA Skeletons/

Parlay App

CORBA Skeletons/

OSA App

Parlay Gateway

CORBA Servant

CORBA Skeletons/

OSA GW

CORBA Skeletons/

Parlay GW

CORBA Stubs/

Parlay App

CORBA Stubs/

OSA App

CORBA

ORB

Generic Gateway

CORBA Servant

CORBA Stuvs/

Generic GW

CORBA Stubs/

Generic GW

CORBA Skeletons/

Generic App

CORBA Skeletons/

Generic App

CORBA Skeletons/

Generic GW

CORBA Stubs/

Generic App

CORBA ORB

2.5 Summary

It seems that it is technically possible to support both implementation and even instance level reuse in a Gateway implementation in order to support OSA and Parlay applications simultaneously using variants of the delegation approach. However, this would require significant additional work in order to work (type/interface mapping between OSA/Parlay and internal implementation). This additional work would be required for the sole purpose of overcoming the difference in the modules where the interfaces are defined. Additional complexity and communication overhead would be introduced to the Gateway implementation especially in the CORBA-based delegation approach.

The investigation is in no way exhaustive, and there may be special circumstances that prohibit the use of even those solutions that seem to work (e.g. passing CORBA references around, what happens when a Parlay client requests some Parlay gateway functionality not implemented by the common Gateway implementation, what if the syntax or semantics of the interfaces changes, what if they are slightly different in OSA and Parlay, etc.).

2.6 Conclusion

Based on this study most convenience would be to have exactly same namespace and API definition (in common part) for Parlay, 3GPP and ETSI specifications.

