N5-000074

3GPP N5 session

Cardiff

13-14 May, 2000

Source:

Siemens

Title:

Update of "Addition of Data Session Control SCF"
Agenda Item:

Document for:
Approval

Introduction

After a phone conference with interested parties the following changes are introduced:

· setAdviceOfCharge added
· setDataSessionChargePlan added

· small corrections in the STD

4
Open Service Architecture

The concepts and Architecture of the Open Service Architecture are described within [2]. Within this stage 2 document several Service Capability Features are identified. However for OSA API Release 99, the set of addressed Service Capability Features are limited to the following:

Framework SCFs

Service Discovery SCF

Trust and Security Management SCFs (Initial Contact SCF and Authentication SCF)

Integrity Management SCFs (Load Manager SCF, Fault Manager SCF, OAM SCF, Heart Beat SCF)

Call Control SCF

User Interaction SCFs

Generic User Interaction SCF

Call User Interaction SCF

Network User Location SCF

User Status SCF

Terminal Capabilities SCF

Data Session SCF

The Framework API contains interfaces between the Application Server – Framework and between Network Service Capability Server (SCS) – Framework. For Release 99, the Framework API is restricted to the interface between Application Server – Framework.

The User Profiles are limited to the Terminal Capabilities for OSA R’99. Therefore, only limited functionality is available for the security within OSA R’99. The Framework & Network SCSs provide the following security mechanisms for OSA R’99:

Checking the subscriber’s registration to the SCS feature

Checking the subscriber’s activation of the SCS feature

Checking the subscriber’s privacy settings of the SCS feature
The purpose of the OSA API is to shield the complexity of the network, its protocols and specific implementation from the applications. This means that applications do not have to be aware of the network nodes a Service Capability Server interacts with in order to provide the Service Capability Features to the application. The specific underlying network and its protocols are transparent to the application.
For example, an application that has subscribed to the Network User Location SCF does not have to know whether the SCS provides location reports to the application based on information from the CSE or HLR. Similarly, the application does not have to know whether a message offered to the SCS for delivery to a terminal is actually sent by the SCS to the terminal via a WGP/WPP or SMS-C. It is the Service Capability Server that is capable of deciding how the message is to be sent. The OSA concept therefore leads to a shift of logic on dealing with the network from the applications to the Service Capability Servers.
6
Class diagrams

Class diagrams are specified in UML: interface classes are shown as interface names within shaded rectangular boxes; relationships and generalizations as lines connecting pairs of interface classes.

All OSA interface classes should be packaged into the org.threegpp.osa module. Further sub-packaging is an implementation decision, but this section proposes a way to do it. Using this recommended packaging, a top-down approach is followed in the subsequent sections. Note that UML packaging is only a logical packaging and does not necessarily reflects IDL packaging.
6.1
Class diagrams common across OSA

All application and framework interfaces inherit from IpOsa interface. Network Service Capability Features on the other hand inherit from the common IpService interface. The corresponding interfaces that must be implemented by the application (e.g. for API callbacks) are denoted as 'Application Interface'.

[image: image1.wmf]IpService

setCallback()

<<Interface>>

IpOsa

(

from

org.threegpp.osa)

<<Interface>>

Figure 6-1: OSA base interfaces

6.1.1
Base OSA interface

All application and framework interfaces inherit from the following interface.

<<Interface>>

IpOsa

6.1.2
Generic Service Capability Feature interface

All Network SCF’s interfaces inherit from the following interface.

<<Interface>>

IpService

setCallback(appInterface : in IpOsaRef) : TpResult

6.3
Data Session Control

The Data Session Control provides a means to control per data session basis the establishment of a new data session. This means espcially in the GPRS context that the establishment of a PDP session is modelled not the attach/detach mode. Change of terminal location is assumed to be managed by the underlying network and is therefore not part of the model. The underlying assumption is that a terminal initiates a data session and the application can reject the request for data session establishment, can continue the establishment or can continue and change the destination as requested by the terminal.

The modelling is hold similar to the Generic Call Control but assuming a simpler underlying state model. An IpDataSessionManager and IpData Session object are the interfaces used by the application, whereas the IpAppDataSessionManager and the IpAppDataSession interfaces are implemented by the application.

[image: image2.wmf]Pdscs

Pappdscs

Figure 6‑x: Data Session Control Packages
[image: image3.emf]IpOSA

<<Interface>>

IpService

setCallback()

<<Interface>>

IpAppDataSessionManager

dataSessionAborted()

dataSessionEventNotify()

dataSessionNotificationContinued()

dataSessionNotificationInterrupted()

(from Pappdscs)

<<Interface>>

IpAppDataSession

dataSessionFaultDetected()

superviseDataSessionErr()

superviseDataSessionRes()

connectErr()

connectRes()

(from Pappdscs)

<<Interface>>

10..n10..n

IpDataSessionManager

enableDataSessionNotification()

disableDataSessionNotification()

(from Pdscs)

<<Interface>>

1

1

<<uses>>

IpDataSession

connectReq()

release()

superviseDataSessionReq()

setDataSessionChargePlan()

setAdviceOfCharge()

(from Pdscs)

<<Interface>>

1

1

<<uses>>

10..n10..n

Figure 6-x: Data Session Control Class diagram Interface Classes

This section contains the detailed interface specifications of the interfaces shown in the Generic Call Control Class diagram.

6.3.1
Interface Classes

6.3.1.1
IpAppDataSessionControlManager

<<Interface>>

IpAppDataControlManager

dataSessionAborted(dataSessionID : in TpSessionID) : TpResult

dataSessionEventNotify(dataSessionReference : in TpdataSessionIdentifier , eventInfo : in TpDataSessionEventInfo , assignmentID : in TpAssignmentID , appInterface : out IpAppdataSessionRefRef) : TpResult

dataSessionNotificationContinued() : TpResult

dataSessionNotificationInterrupted(): TpResult

6.3.1.2
IpDataSessionControlManager

<<Interface>>

IpDataSessionControlManager

enableDataSessionNotification(appInterface : in IpAppDataSessionControlManagerRef , eventCriteria : in TpDataSessionEventCriteria , assignmentID : out TpAssignmentIDRef) : TpResult

disableDataSessionNotification(assignmentID : in TpAssignmentID) : TpResult

6.3.1.3
IpAppDataSession

<<Interface>>

IpAppDataSession

connectRes(dataSessionID : in TpSessionID , eventReport : in TpDataSessionEventReport, assignmentID : in TpAssignmentID) : TpResult

connectErr(dataSessionID : in TpSessionID , errorIndication : in TpDataSessionError, assignmentID : in TpAssignmentID) : TpResult

superviseDataSessionRes(dataSessionID : in TpSessionID , report : in TpDataSessionSuperviseReport, usedVolume : in TpDataSessionSuperviseVolume) : TpResult

superviseDataSessionErr(dataSessionID : in TpSessionID , errorIndication : in TpDataSessionError) : TpResult

dataSessionFaultDetected(dataSessionID : in TpSessionID , fault : in TpDataSessionFault) : TpResult

6.3.1.4
IpDataSession

<<Interface>>

IpDataSession

connectReq(dataSessionID : in TpSessionID , responseRequested : in TpDataSessionReportRequestSet , targetAddress : in TpAddress , originatingAddress: in TpAddress, assignmentID : out TpAssignmentIDRef) : TpResult

release(dataSessionID : in TpSessionID , cause : in TpDataSessionReleaseCause) : TpResult

superviseDataSessionReq(dataSessionID : in TpSessionID, treatment : in TpDataSessionSuperviseTreatment , bytes : in TpDataSessionSuperviseVolume) : TpResult
setDataSessionChargePlan(dataSessionID: in TpSessionID, dataSessionChargePlan: in TpDataSessionChargePlan): TpResult

setAdviceOfCharge(dataSessionID : in TpSessionID, aoCInfo : in TpAoCInfo): TpResult

7
State Transition Diagrams

This section contains the State Transition Diagrams for the objects that implement the interfaces on the gateway side. The State Transition Diagrams show the behaviour of these objects. For each state the methods that can be invoked by the application are shown. Methods not shown for a specific state are not relevant for that state and will return an exception. Apart from the methods that can be invoked by the application also events internal to the gateway or related to network events are shown together with the resulting event or action performed by the gateway. These internal events are shown between quotation marks.

7.2.2
Data Session

[image: image5.wmf]IDLE

ESTABLISHED

"data session ended" / release ^dataSessionFaultDetected, connectErr,

connectRes.P_DATA_SESSION_REPORT_DISCONNECT

superviseDataSessionReq

superviseDataSessionReq

"Setup"[MonitorMode= Interrupt]

^IpAppDataSessionControlManager.dataSes

sionEventNotify(P_EVENT_DSCS_SETUP)

"data session established"[MonitorMode= interrupt]

^IpAppDataSessionControlManager.IpAppDataSessionE

ventNotify(P_EVENT_DSCS_ESTABLISHED)

connectReq

"data session not

established" / release

^dataSessionFaultDetected

setDataSessionChargePlan

setAdviceOfCharge

setDataSessionChargePlan

setAdviceOfCharge

 Figure 7-11: State Transition Diagram for Data Session

7.2.2.1
IDLE State

The data sesssion object is in the IDLE state on reception of an DataSessionEventNotify with event name "Setup". The application can decide to supervise the data session (leading to IDLE), to release the data session immediately (leading to the final state) or to establish the data connection with the requested address or another application-provided address (leading to ESTABLISHED).

7.2.2.2
ESTABLISHED State

In this state the application is waiting for reports from the network. Possible actions are setAdviceOfCharge(), setDataSessionChargePlab(), superviseDataSessionReq() and release().

8
Data Definitions

8.1
Common Data definitions

The constants and types defined in the following sections are defined in the org.threegpp.osa package.

8.1.1
Primitive Data Types

Type Name
Description

TpBoolean
Defines a Boolean data type.

TpInt32
Defines a signed 32 bit integer.

TpFloat
Defines a single precision float

TpString
Defines a string, comprising length and data.

8.1.2
Structured data types classification

Many different structured data types are used in OSA and a classification/clarification is required.

8.1.2.1
Structures made of data elements

This describes data types that can be considered as classes (in Java or C++) or structures (C++, IDL). The goal of these data types is to group pieces of information into a logical unit. Example: an TAddress data type may be defined in IDL as:

struct TpAddress {

 TpAddressPlan Plan;

 TpString AddrString;

 TpString Name;

 TpAddressPresentation Presentation;

 TpAddressScreening Screening;

 TpString SubAddressString;

 };

8.1.2.2
Tagged choice of data elements (i.e.: Free unions)

This describes a data type, which actually evaluates to one of a choice of a number of data elements. This data element contains two parts: a tag data type (the tag part) which is used to identify the chosen data type, and the chosen data type itself (the union part). This form of data type is also referred to as a tagged union.

This data type can be implemented in IDL as a union with a switch statement for the tag part, and a set or case statements for the union part.

Example: The TCallError data type may be defined in IDL as:

union TpCallError switch (TCallErrorType) {

 case CALL_ERROR_UNDEFINED:

 TpCallErrorInfoDefault
CallErrorUndefined;

 case CALL_ERROR_ROUTING_ABORTED:

 TpCallErrorInfoRoutingAborted
CallErrorRoutingAborted;

 case CALL_ERROR_CALL_ABANDONED:

 TpCallErrorInfoCallAbandoned
CallErrorCallAbandoned;

 case CALL_ERROR_INVALID_ADDRESS:

 TpCallErrorInfoInvalidAddress
CallErrorInvalidAddress;

 case CALL_ERROR_INVALID_STATE:

 TpCallErrorInfoDefault
CallErrorInvalidState;

 case CALL_ERROR_INVALID_CRITERIA:

 TpCallErrorInfoDefault
CallErrorInvalidCriteria;

};

8.1.2.3
Collection of data elements

This describes a data type, which comprises an ordered or unordered collection of data elements of the same type. The number of data elements in the collection is always know and can be implicit (IDL) or may appear as an integer inside a structure depending on the language used. This data type can be implemented in IDL as a sequence.

Example:

typedef sequence<SessionID> SessionIDSet;
8.1.2.4
References

This describes a reference (or pointer) to a data type. This is primarily used to describe 'out' method parameters.

This data type may be implemented (for example, in C++) as a pointer. However, in some languages it may not be necessary for 'out' parameters to be implemented as pointers.

Example: The TAddressRef data type may be defined in C++ as:

typedef TAddress *TAddressRef;
8.1.3
Interface Definitions

8.1.3.1
IpOsa

Defines the address of an IpOsa Interface.

8.1.3.2
IpOsaRef

Defines a Reference to type IpOsa

8.1.3.3
IpOsaRefRef

Defines a Reference to type IpOsaRef

8.1.3.4
IpService

Defines the address of an IpService Interface.

8.1.3.5
IpServiceRef

Defines a Reference to type IpService

8.1.3.6
IpServiceRefRef

Defines a Reference to type IpServiceRef

8.1.4
Non primitive and structured type types definition

8.1.4.1
TpAssignmentID

This data type is identical to a TpInt32. It specifies a number which identifies an individual event notification enabled by the application or OSA service capability feature.

8.1.4.2
TpSessionID

Defines a network unique session ID. OSA uses this ID to identify sessions within an object implementing an interface capable of handling multiple sessions. For the different OSA service capability features, the sessionIDs are unique only in the context of a manager instantiation (e.g., within the context of one generic call control manager). As such if an application creates two instances of the same SCF manager it shall use different instantiations of the callback objects which implement the callback interfaces.

The session ID is identical to a TpInt32 type.

8.1.4.3
TpSessionIDSet

Defines a collection of data elements of TpSessionID.

8.1.4.4
TpDuration

This data type is a TpInt32 representing a time interval in milliseconds. A value of "-1" defines infinite duration and value of "-2" represents default duration.

8.1.4.5
TpResult

Defines the structure of data elements that specifies the result of a method call.

Structure Member Name
Structure Member Type

ResultType
TpResultType

ResultFacility
TpResultFacility

ResultInfo
TpResultInfo

8.1.4.6
TpResultType

Defines whether the method was successful or not.

Name
Value
Description

P_RESULT_FAILURE
0
Method failed

P_RESULT_SUCCESS
1
Method was successful

8.1.4.7
TpResultFacility

Defines the facility code of a result. In Release 99 of the OSA API, only P_RESULT_FACILITY_UNDEFINED must be used.

Name
Value
Description

P_RESULT_FACILITY_UNDEFINED
0
Undefined

8.1.4.8
TpResultInfo

Defines further information relating to the result of the method, such as error codes.

Name
Value
Description

P_RESULT_INFO_UNDEFINED
0000h
No further information present

P_INVALID_APPLICATION_ID
0001h
Invalid application ID

P_INVALID_CLIENT_CAPABILITY
0002h
Invalid client capability

P_INVALID_AGREEMENT_TEXT
0003h
Invalid agreement text

P_INVALID_SIGNING_ALGORITHM
0004h
Invalid signing algorithm

P_INVALID_INTERFACE_ID
0005h
Invalid interface ID

P_INVALID_SERVICE_ID
0006h
Invalid service capability feature ID

P_INVALID_EVENT_TYPE
0007h
Invalid event type

P_SERVICE_NOT_ENABLED
0008h
The service capability feature ID does not correspond to a SCF that has been enabled

P_INVALID_ASSIGNMENT_ID
0009h
The assignment ID does not correspond to one of the valid assignment IDs

P_INVALID_PARAMETER
000Ah
The method has been called with an invalid parameter

P_INVALID_PARAMETER_VALUE
000Bh
A method parameter has an invalid value

P_PARAMETER_MISSING
000Ch
A required parameter has not been specified in the method call

P_RESOURCES_UNAVAILABLE
000Dh
The required resources in the network are not available

P_TASK_REFUSED
000Eh
The requested method has been refused

P_TASK_CANCELLED
000Fh
The requested method has been cancelled

P_INVALID_DATE_TIME_FORMAT
0010h
Invalid date and time format provided

P_NO_CALLBACK_ADDRESS_SET
0011h
The requested method has been refused because no callback address is set

P_INVALID_TERMINATION_TEXT
0012h
Invalid termination text

P_INVALID_SERVICE_TOKEN
0013h
The service capability feature token does not correspond to a token that had been issued, or the issued token has expired

P_INVALID_AUTHENTICATION
0014h
The client has not been correctly authenticated

P_INVALID_SERVICE_PROPERTY
0015h
Invalid service capability feature property

P_METHOD_NOT_SUPPORTED
001Bh
The method is not allowed or supported within the context of the current SCF agreement.

General security errors

P_USER_NOT_SUBSCRIBED

0030h
A service (or application) is unauthorised to access information and request SCFs with regards to users that are not subscribed to it.

P_APPLICATION_NOT_ACTIVATED
0031h
A service (or application) is unauthorised to access information and request SCFs with regards to its subscribed users that have deactivated that particular service (or application).

P_USER_PRIVACY
0032h
A service (or application) is unauthorised to access information and request an SCF with regards to its subscribed users that have set their privacy flag regarding that particular SCF.

P_GCCS_SERVICE_INFORMATION_MISSING
0100h
Information relating to the Call Control SCF could not be found

P_GCCS_SERVICE_FAULT_ENCOUNTERED
0101h
Fault detected in the Call Control SCF

P_GCCS_UNEXPECTED_SEQUENCE
0102h
Unexpected sequence of methods, i.e., the sequence does not match the specified state diagrams for the call or the call leg.

P_GCCS_INVALID_ADDDRESS
0103h
Invalid address specified

P_GCCS_INVALID_STATE
0104h
Invalid state specified

P_GCCS_INVALID_CRITERIA
0105h
Invalid criteria specified

P_GCCS_INVALID_NETWORK_STATE
0106h
Although the sequence of method calls is allowed by the OSA gateway, the underlying protocol can not support it.

E.g., in some protocols some methods are only allowed by the protocol, when the call processing is suspended, e.g., after reporting an event that was monitored in interrupt mode.

P_GCCS_NETWORK_DEASSIGN
0107h
The relation between the network and the OSA gateway is terminated. Therefore, the gateway can no longer influence the call. This can happen after the last requested report is sent to the application.

To prevent this error, the application should ensure that it has requested events which are not yet reported.

P_GUIS_INVALID_CRITERIA
0300h
Invalid criteria specified

P_GUIS_ILLEGAL_ID
0301h
Information id specified is invalid

P_GUIS_ID_NOT_FOUND
0302h
A legal information id is not known to the User Interaction SCF

P_GUIS_ILLEGAL_RANGE
0303h
The values for minimum and maximum collection length are out of range.

P_GUIS_INVALID_COLLECTION_CRITERIA
0304h
Invalid collection criteria specified

P_GUIS_NETWORK_DEASSIGN
0305h
The relation between the network and the OSA gateway is terminated. Therefore, the gateway can no longer perform UI operations. This can happen after the last requested report is sent to the application.

To prevent this error, the application should ensure that it has requested events which are not yet reported.

P_GUIS_INVALID_NETWORK_STATE
0306h
Although the sequence of method calls is allowed by the OSA gateway, the underlying protocol can not support it.

E.g., in some protocols some methods are only allowed by the protocol, when the call processing is suspended, e.g., after reporting an event that was monitored in interrupt mode.

P_DSCS_SERVICE_INFORMATION_MISSING
0400h
Information relating to the Data Session Control SCF could not be found

P_DSCS_SERVICE_FAULT_ENCOUNTERED
0401h
Fault detected in the Call Control SCF

P_DSCS_UNEXPECTED_SEQUENCE
0402h
Unexpected sequence of methods, i.e., the sequence does not match the specified state diagrams for the data session.

P_DSCS_INVALID_ADDDRESS
0403h
Invalid address specified

P_DSCS_INVALID_STATE
0404h
Invalid state specified

P_DSCS_INVALID_CRITERIA
0405h
Invalid criteria specified

P_DSCS_INVALID_NETWORK_STATE
0406h
Although the sequence of method calls is allowed by the OSA gateway, the underlying protocol can not support it.

8.1.4.9
TpDate

This data type is identical to a TpString. It specifies the data in accordance with International Standard ISO 8601. This is defined as the string of characters in the following format:

YYYY-MM-DD
where the date is specified as:

YYYY
four digits year

MM
two digits month

DD
two digits day

The date elements are separated by a hyphen character (-).

Example:

The 4 December 1998, is encoded as the string:

1998-12-04

8.1.4.10

This data type is identical to a TpString. It specifies the time in accordance with International Standard ISO 8601. This is defined as the string of characters in the following format:

HH:MM:SS.mmm
or

HH:MM:SS.mmmZ
where the time is specified as:

HH
two digits hours (24h notation)

MM
two digits minutes

SS
two digits seconds

mmm
three digits fractions of a second (i.e. milliseconds)

The time elements are separated by a colon character (:).The date and time are separated by a space. Optionally, a capital letter Z may be appended to the time field to indicate Universal Time (UTC). Otherwise, local time is assumed.

Example

For local time, 10:30 and 15 seconds is encoded as the string:

10:30:15.000

or in UTC it would be:

10:30:15.000Z

8.1.4.11
TpDateAndTime

This data type is identical to a TpString. It specifies the data and time in accordance with International Standard ISO 8601. This is defined as the string of characters in the following format:

HH:MM:SS.mmm
or

YYYY-MM-DD HH:MM:SS.mmmZ
where the date is specified as:

YYYY
four digits year

MM
two digits month

DD
two digits day

The date elements are separated by a hyphen character (-).

The time is specified as:

HH
two digits hours (24h notation)

MM
two digits minutes

SS
two digits seconds

mmm
three digits fractions of a second (i.e. milliseconds)

A colon character separates the time elements (:). The date and time are separated by a space. Optionally, a capital letter Z may be appended to the time field to indicate Universal Time (UTC). Otherwise, local time is assumed.

Example

The 4 December 1998, at 10:30 and 15 seconds is encoded as the string:

10:30:15.000

for local time, or in UTC it would be:

10:30:15.000Z

8.1.4.12
TpAddress

Defines the structure of data elements that specifies an address.

Structure Member Name
Structure Member Type

Plan
TpAddressPlan

AddrString
TpString

Name
TpString

Presentation
TpAddressPresentation

Screening
TpAddressScreening

SubAddressString
TpString

8.1.4.13
TpAddressSet

Defines a collection of TpAddress elements.

8.1.4.14
TpAddressPlan

Defines the address plan (or numbering plan) used. It is also used to indicate whether an address is actually defined in a Address data element.

Name
Value
Description

P_ADDRESS_PLAN_NOT_PRESENT
-1
No Address Present

P_ADDRESS_PLAN_UNDEFINED
0
Undefined

P_ADDRESS_PLAN_IP
1
IP

P_ADDRESS_PLAN_MULTICAST
2
Multicast

P_ADDRESS_PLAN_UNICAST
3
Unicast

P_ADDRESS_PLAN_E164
4
E.164

P_ADDRESS_PLAN_E164_MOBILE
5
E.164 Mobile

P_ADDRESS_PLAN_AESA
6
AESA

P_ADDRESS_PLAN_URL
7
URL

P_ADDRESS_PLAN_NSAP
8
NSAP

P_ADDRESS_PLAN_SMTP
9
SMTP

P_ADDRESS_PLAN_X400
11
X.400

8.1.4.15
TpAddressPresentation

Defines whether an address can be presented to an end user.
Name
Value
Description

P_ADDRESS_PRESENTATION_UNDEFINED
0
Undefined

P_ADDRESS_PRESENTATION_ALLOWED
1
Presentation Allowed

P_ADDRESS_PRESENTATION_RESTRICTED
2
Presentation Restricted

P_ADDRESS_PRESENTATION_ADDRESS_NOT_AVAILABLE
3
Address not available for presentation

8.1.4.16
TpAddressScreening

Defines whether an address has been screened by the application.
Name
Value
Description

P_ADDRESS_SCREENING_UNDEFINED
0
Undefined

P_ADDRESS_SCREENING_USER_VERIFIED_PASSED
1
user provided address
verified and passed

P_ADDRESS_SCREENING_USER_NOT_VERIFIED
2
user provided address
not verified

P_ADDRESS_SCREENING_USER_VERIFIED_FAILED
3
user provided address
verified and failed

P_ADDRESS_SCREENING_NETWORK
4
Network provided address

8.1.4.17
TpAddressError

Defines the reasons why an address is invalid.
Name
Value
Description

P_ADDRESS_INVALID_UNDEFINED
0
Undefined error

P_ADDRESS_INVALID_MISSING
1
Mandatory address not present

P_ADDRESS_INVALID_MISSING_ELEMENT
2
Mandatory address element not present

P_ADDRESS_INVALID_OUT_OF_RANGE
3
Address is outside of the valid range

P_ADDRESS_INVALID_INCOMPLETE
4
Address is incomplete

P_ADDRESS_INVALID_CANNOT_DECODE
5
Address cannot be decoded

8.1.4.18
TpURL

This data type is identical to a TpString and contains a URL address. The usage of this type is distinct of TpAddress, which can also hold an URL. The latter contains a user address which can be specified in many ways: IP, mail, URL, X.300, E164. On the other hand, the TpURL type does not hold the address of a user and always represents a URL. This type is used in user interaction and defines the URL of the text or stream to be sent to an end-user. It is therefore inappropriate to use a general address here.

8.1.4.19
TpPrice

This data type is identical to a TpString. It specifies price information, which is used in user interaction when an announcement is being played and additional information is given to the user. This is defined as the string of characters (digits) in the following format:

DDDDDD.DD
8.2
Framework Data Definitions

This section provides the framework specific data definitions necessary to support the OSA interface specification.

This document is written using Hypertext link, to aid navigation through the data structures. Underlined text represents Hypertext links.

The general format of a data definition specification is the following:

Data type, that shows the name of the data type.

Description, that describes the data type.

Tabular specification, that specifies the data types and values of the data type.

Example, if relevant, shown to illustrate the data type.

8.2.1
Common Framework Data Definitions

8.2.1.2
TpClientAppID

This is an identifier for the client application. It is used to identify the client to the framework. This data type is identical to TpString and is defined as a string of characters that uniquely identifies the application. The content of this string shall be unique for each OSA API implementation (or unique for a network operators domain). This unique identifier shall be negotiated with the OSA operator and the application shall use it to identify itself.

8.2.1.3
TpClientAppIDList

This data type defines a Numbered Set of Data Elements

 of type TpClientAppID.

8.2.1.4
TpEntOpID

This data type is identical to TpString and identifies an enterprise operator. In conjunction with the application it uniquely identifies the enterprise operator which uses a particular OSA Service Capability Feature.

8.2.1.5
TpEntOpIDList

This data type defines a Numbered Set of Data Elements
 of type TpEntOpID.

8.2.1.6
TpService

This data type is a Sequence_of_Data_Elements which describes a registered SCFs. It is a structured type which consists of:

Sequence Element

Name
Sequence Element

Type
Documentation

ServiceID
TpServiceID

ServicePropertyList
TpServicePropertyList

8.2.1.7
TpServiceList

This data type defines a Numbered Set of Data Elements

 of type TpService.

8.2.1.8
TpServiceDescription

This data type is a Sequence_of_Data_Elements which describes a registered SCF. It is a structured data type which consists of:

Sequence Element

Name
Sequence Element

Type
Documentation

ServiceTypeName
TpServiceTypeName

ServicePropertyList
TpServicePropertyList

8.2.1.9
TpServiceID

This data type is identical to a TpString, and is defined as a string of characters that uniquely identifies an instance of a SCF interface. The string is automatically generated by the Framework, and comprises a TpUniqueServiceNumber, TpServiceNameString, and a number of relevant TpServiceSpecString, which are concatenated using a forward separator (/) as the separation character.

8.2.1.10
TpServiceIDList

This data type defines a Numbered Set of Data Elements

 of type TpServiceID.

8.2.1.11
TpServiceIDRef

Defines a Reference to type TpServiceId.

8.2.1.12
TpServiceNameString

This data type is identical to a TpString, and is defined as a string of characters that uniquely identifies the name of an SCF interface. Other Network operator specific capabilities may also be used, but should be preceded by the string "SP_".The following values are defined for OSA release 99.

Character String Value
Description

NULL
An empty (NULL) string indicates no SCF name

P_CALL_CONTROL
The name of the Call Control SCF

P_USER_INTERACTION
The name of the User Interaction SCFs

P_TERMINAL_CAPABILITIES
The name of the Terminal Capabilities SCF

P_USER_LOCATION
The name of the Network User Location SCF

P_USER_STATUS
The name of the User Status SCF

P_DATA_SESSION_CONTROL
The name of the Data Session Control SCF

8.2.1.13
TpServiceSpecString

This data type is identical to a TpString, and is defined as a string of characters that uniquely identifies the name of an SCF specialisation interface. Other network operator specific capabilities may also be used, but should be preceded by the string "SP_".The following values are defined for OSA release 99.

Character String Value
Description

NULL
An empty (NULL) string indicates no SCF specialisation

P_CALL
The Call specialisation of the of the User Interaction SCF

8.2.1.14
TpUniqueServiceNumber

This data type is identical to a TpString, and is defined as a string of characters that represents a unique number that is used to build the service ID (refer to TpServiceID).

8.2.1.15
TpPropertyStruct

This data type is a Sequence_of_Data_Elements which describes an SCF property. It consists of:

Sequence Element

Name
Sequence Element

Type
Documentation

ServicePropertyName
TpServiceTypeName

ServicePropertyMode
TpServicePropertyMode

ServicePropertyTypeName
TpServicePropertyTypeName

8.2.1.16
TpPropertyStructList

This data type defines a Numbered Set of Data Elements

 of type TpPropertyStruct.

8.2.1.17
TpServicePropertyMode

This type is left as a placeholder but is not used in release 99.This defines SCF property modes.

Name
Value
Documentation

NORMAL
0
The value of the corresponding SCF property type may optionally be provided

MANDATORY
1
The value of the corresponding SCF property type must be provided at service registration time

READONLY
2
The value of the corresponding SCF property type is optional, but once given a value it may not be modified

MANDATORY_READONLY
3
The value of the corresponding SCF property type must be provided and subsequently it may not be modified.

8.2.1.18
TpServicePropertyTypeName

This data type is identical to TpString and describes a valid SCF property name. The valid SCF property names are listed in the SCF data definition.

8.2.1.19
TpServicePropertyName

This data type is identical to TpString.

8.2.1.20
TpServicePropertyNameList

This data type defines a Numbered Set of Data Elements

 of type TpServicePropertyName.

8.2.1.21
TpServicePropertyValue

This data type is identical to TpString and describes a valid value of a SCF property. The valid SCF property values are given in the SCF data definition.

8.2.1.22
TpServicePropertyValueList

This data type defines a Numbered Set of Data Elements

 of type TpServicePropertyValue
8.2.1.23
TpServiceProperty

This data type is a Sequence_of_Data_Elements which describes an “SCF property”. It is a structured data type which consists of:

Sequence Element

Name
Sequence Element

Type
Documentation

ServicePropertyName
TpServicePropertyName

ServicePropertyValueList
TpServicePropertyValueList

ServicePropertyMode
TpServicePropertyMode

8.2.1.24
TpServicePropertyList

This data type defines a Numbered Set of Data Elements

 of type TpServiceProperty.

8.2.1.25
TpServiceTypeDescription

This type is left as a placeholder but is not used in release 99.

This data type is a Sequence_of_Data_Elements which describes an SCF type. It is a structured data type. It consists of:

Sequence Element

Name
Sequence Element

Type
Documentation

PropertyStructList
TpPropertyStructList
a sequence of property name and property mode tuples associated with the SCF type

ServiceTypeNameList
TpServiceTypeNameList
the names of the super types of the associated SCF type

EnabledOrDisabled
TpBoolean
an indication whether the SCF type is enabled or disabled

8.2.1.26
TpServiceTypeName

This data type is identical to TpString and describes a valid SCF type name.
8.2.1.27
TpServiceTypeNameList

This data type defines a Numbered Set of Data Elements

 of type TpServiceTypeName.

8.2.2
Trust and Security Management Data Definitions

8.2.2.1
TpAccessType

This data type is identical to a TpString. This identifies the type of access interface requested by the client application. If they request P_ACCESS, then a reference to the IpAccess interface is returned. (Network operators can define their own access interfaces to satisfy client requirements for different types of access. These can be selected using the TpAccessType, but should be preceded by the string "SP_". The following values are defined for OSA release 99:

String Value
Description

NULL
An empty (NULL) string indicates the default access type

P_ACCESS
Access using the OSA Access Interfaces: IpAccess and IpAppAccess

8.2.2.2
TpAuthType

This data type is identical to a TpString. It identifies the type of authentication mechanism requested by the client. It provides Network operators and client's with the opportunity to use an alternative to the OSA Authentication interface, e.g. CORBA Security. OSA Authentication is the default authentication method. Other Network operator specific capabilities may also be used, but should be preceded by the string “SP_”. The following values are defined for OSA release 99:

String Value
Description

NULL
An empty (NULL) string indicates the default authentication method: OSA Authentication.

P_AUTHENTICATION
Authenticate using the OSA Authentication Interfaces: IpAuthentication and IpAppAuthentication

8.2.2.3
TpAuthCapability

This data type is identical to a TpString, and is defined as a string of characters that identify the authentication capabilities that could be supported by the OSA. Other Network operator specific capabilities may also be used, but should be preceded by the string "SP_". Capabilities may be concatenated, using commas (,) as the separation character. The following values are defined for OSA release 99.

String Value
Description

NULL
An empty (NULL) string indicates no client capabilities.

P_DES_56
A simple transfer of secret information that is shared between the client application and the framework with protection against interception on the link provided by the DES algorithm with a 56bit shared secret key

P_RSA_512
A public-key cryptography system providing authentication without prior exchange of secrets using 512 bit keys

P_RSA_1024
A public-key cryptography system providing authentication without prior exchange of secrets using 1024bit keys

8.2.2.4
TpAuthCapabilityList

This data type is identical to a TpString. It is a string of multiple TpAuthCapability concatenated using a comma (,)as the separation character.

8.2.2.5
TpInterfaceName

This data type is identical to a TpString, and is defined as a string of characters that identify the names of the framework SCFs that are be supported by the OSA API. Other Network operator specific SCFs may also be used, but should be preceded by the string "SP_".The following values are defined for OSA release 99.

Character String Value
Description

NULL
An empty (NULL) string indicates no interface.

P_DISCOVERY
The name for the Discovery interface.

P_OAM
The name for the OA&M interface.

P_TRUST_AND_SECURITY_MANAGEMENT
The name for the Trust and Security Management interface

P_INTEGRITY_MANAGEMENT
The name for the Integrity Management interface.

8.2.2.6
TpServiceAccessControl

This is Sequence of Data Elements containing the access control policy information controlling access to the service capability feature, and the trustLevel that the Network operator has assigned to the client application.

Sequence Element Name
Sequence Element Type

Policy
TpString

TrustLevel
TpString

The policy parameter indicates whether access has been granted or denied. If granted then the parameter trustLevel must also have a value.

The trustLevel parameter indicates the trust level that the Network operator has assigned to the client application.

8.2.2.7
TpServiceToken

This data type is identical to a TpString, and identifies a selected SCF. This is a free format text token returned by the framework, which can be signed as part of a service agreement. This will contain Network operator specific information relating to the service level agreement. The serviceToken has a limited lifetime, which is the same as the lifetime of the service agreement in normal conditions. If something goes wrong the serviceToken expires, and any method accepting the serviceToken will return an error code (P_INVALID_SERVICE_TOKEN). Service Tokens will automatically expire if the client or framework invokes the endAccess method on the other's corresponding access interface.

8.2.2.8
TpSignatureAndServiceMgr

This is a Sequence of Data Elements containing the digital signature of the framework for the service agreement, and a reference to the SCF manager interface of the SCF.

Sequence Element Name
Sequence Element Type

DigitalSignature
TpStringRef

ServiceMgrInterface
IpServiceRef

The digitalSignature is the signed version of a hash of the service token and agreement text given by the client application.

The ServiceMgrInterface is a reference to the SCF manager interface for the selected SCF.

8.2.2.9
TpSigningAlgorithm

This data type is identical to a TpString, and is defined as a string of characters that identify the signing algorithm that must be used. Other Network operator specific capabilities may also be used, but should be preceded by the string "SP_". The following values are defined for OSA release 99.

String Value
Description

NULL
An empty (NULL) string indicates no signing algorithm is required

P_MD5_RSA_512
MD5 takes an input message of arbitrary length and produces as output a 128-bit message digest of the input. This is then encrypted with the private key under the RSA public-key cryptography system using a 512 bit key.

P_MD5_RSA_1024
MD5 takes an input message of arbitrary length and produces as output a 128-bit message digest of the input. This is then encrypted with the private key under the RSA public- key cryptography system using a 1024 bit key

8.2.3
Integrity Management Data Definitions

8.2.3.1
TpActivityTestRes

This type is identical to TpString and is an implementation specific result. The values in this data type are framework provider specific.

8.2.3.2
TpFaultStatsRecord

This defines the set of records to be returned giving fault information for the requested time period.

Sequence Element Name
Sequence Element Type

Period
TpTimeInterval

FaultRecords
TpFaultStatsSet

8.2.3.3
TpFaultStatsSet
This defines the sequence of data elements which provide the statistics on a per fault type basis.

Sequence Element Name
Sequence Element Type

Fault
TpInterfaceFault

Occurrences
TpInt32

MaxDuration
TpInt32

TotalDuration
TpInt32

NumberOfClientsAffected
TpInt32

Occurrences is the number of separate instances of this fault during the period. MaxDuration and TotalDuration are the number of seconds duration of the longest fault and the cumulative total during the period. NumberOfClientsAffected is the number of clients informed of the fault by the framework.
8.2.3.4
TpActivityTestID

This data type is identical to a TpInt32, and is used as a token to match activity test requests with their results..

8.2.3.5
TpInterfaceFault

Defines the cause of the interface fault detected.

Name
Value
Description

INTERFACE_FAULT_UNDEFINED
0
Undefined

INTERFACE_FAULT_LOCAL_FAILURE
1
A fault in the local API software or hardware has been detected

INTERFACE_FAULT_GATEWAY_FAILURE
2
A fault in the gateway API software or hardware has been detected

INTERFACE_FAULT_PROTOCOL_ERROR
3
An error in the protocol used on the client-gateway link has been detected

8.2.3.6
TpSvcUnavailReason

Defines the reason why a SCF is unavailable.

Name
Value
Description

SERVICE_UNAVAILABLE_UNDEFINED
0
Undefined

SERVICE_UNAVAILABLE_LOCAL_FAILURE
1
The Local API software or hardware has failed

SERVICE_UNAVAILABLE_GATEWAY_FAILURE
2
The gateway API software or hardware has failed

SERVICE_UNAVAILABLE_OVERLOADED
3
The SCF is fully overloaded

SERVICE_UNAVAILABLE_CLOSED
4
The SCF has closed itself (e.g. to protect from fraud or malicious attack)

8.2.3.7
TpAPIUnavailReason

Defines the reason why the API is unavailable.

Name
Value
Description

API_UNAVAILABLE_UNDEFINED
0
Undefined

API_UNAVAILABLE_LOCAL_FAILURE
1
The Local API software or hardware has failed

API_UNAVAILABLE_GATEWAY_FAILURE
2
The gateway API software or hardware has failed

API_UNAVAILABLE_OVERLOADED
3
The gateway is fully overloaded

API_UNAVAILABLE_CLOSED
4
The gateway has closed itself (e.g. to protect from fraud or malicious attack)

API_UNAVAILABLE_PROTOCOL_FAILURE
5
The protocol used on the client-gateway link has failed

8.2.3.8
TpLoadLevel

Defines the Sequence of Data Elements that specify load level values.

Name
Value
Description

LOAD_LEVEL_NORMAL
0
Normal load

LOAD_LEVEL_OVERLOAD
1
Overload

LOAD_LEVEL_SEVERE_OVERLOAD
2
Severe Overload

8.2.3.9
TpLoadThreshold

Defines the Sequence of Data Elements that specify the load threshold value. The actual load threshold value is application and SCF dependent, so is their relationship with load level.

Sequence Element Name
Sequence Element Type

LoadThreshold
TpFloat

8.2.3.10
TpLoadInitVal

Defines the Sequence of Data Elements that specify the pair of load level and associated load threshold value.

Sequence Element Name
Sequence Element Type

LoadLevel
TpLoadLevel

LoadThreshold
TpLoadThreshold

8.2.3.11
TpTimeInterval

Defines the Sequence of Data Elements that specify a time interval.

Sequence Element Name
Sequence Element Type

StartTime
TpDateAndTime

StopTime
TpDateAndTime

8.2.3.12
TpLoadPolicy

Defines the load balancing policy.

Sequence Element Name
Sequence Element Type

LoadPolicy
TpString

8.2.3.13
TpLoadStatistic

Defines the Sequence of Data Elements that specify the load statistic record at given timestamp.

Sequence Element Name
Sequence Element Type

ServiceID
TpServiceID

LoadValue
TpFloat

LoadLevel
TpLoadLevel

TimeStamp
TpDateAndTime

LoadValue is expressed in percentage.

8.2.3.14
TpLoadStatList

Defines a Numbered Set of Data Elements of TpLoadStatistic.

8.2.3.15
TpLoadStatusError

Defines the error code for getting the load status.

Name
Value
Description

LOAD_STATUS_ERROR_UNDEFINED
0
Undefined error

LOAD_STATUS_ERROR_UNAVAILABLE
1
Unable to get the load status

8.2.3.16
TpLoadStatisticError

Defines the Sequence of Data Elements that specify the error for getting the load status at given timestamp.

Sequence Element Name
Sequence Element Type

ServiceID
TpServiceID

LoadStatusError
TpFloat

TimeStamp
TpDateAndTime

8.2.3.17
TpLoadStatisticErrorList

Defines a Numbered Set of Data Elements of .*

8.x
Data Session Control Data Definitions

The constants and types defined in the following sections are defined in the org.threegpp.osa.dscs package.

8.3.1
Interface definitions

8.3.1.1
IpAppDataSession

Defines the address of an IpAppDataSession Interface.

8.3.1.2
IpAppDataSessionRef

Defines a Reference to type IpAppDataSession
8.3.1.3
IpAppDataSessionRefRef

Defines a Reference to type IpAppDataSessionRef.

8.3.1.4
IpAppDataSessionControlManager

Defines the address of an IpAppDataSessionControlManager Interface.

8.3.1.5
IpAppDataSessionControlManagerRef

Defines a Reference to type IpAppDataSessionControlManager.

8.3.1.6
IpDataSession

Defines the address of an IpDataSession Interface.

8.3.1.7
IpDataSessionRef

Defines a Reference to type IpDataSession.

8.3.1.8
IpDataSessionRefRef

Defines a Reference to type IpDataSessionRef.

8.3.1.9
IpDataSessionControlManager

Defines the address of an IpDataSessionManager Interface.

8.3.1.10
IpDataSessionManagerRef

Defines a Reference to type IpDataSessionControlManager.

8.3.2
Event Notification data definitions

8.3.2.1
TpDataSessionEventName

Defines the names of events being notified with a new call request. The following events are supported. The values may be combined by a logical 'OR' function when requesting the notifications. Additional events that can be requested / received during the call process are found in the TpDataSessionReportType data-type.

Name
Value
Description

P_EVENT_NAME_UNDEFINED
0
Undefined

P_EVENT_DSCS_SETUP
1
The data session is going to be setup.

P_EVENT_DSCS_ESTABLISHED
2
The data session is established by the network.

TpDataSessionMonitorMode

Defines the mode that the call will monitor for events, or the mode that the call is in following a detected event.

Name
Value
Description

P_DATA_SESSION_MONITOR_MODE_INTERRUPT
0
The data session event is intercepted by the data session control service and data session establishment is interrupted. The application is notified of the event and data session establishement resumes following an appropriate API call or network event (such as a data session release)

P_DATA_SESSION_MONITOR_MODE_NOTIFY
1
The data session event is detected by the data session control service but not intercepted. The application is notified of the event and data session establishment continues

P_DATA_SESSION_MONITOR_MODE_DO_NOT_MONITOR
2
Do not monitor for the event

TpDataSessionEventCriteria

Defines the Sequence of Data Elements that specify the criteria for a event notification.

Of the addresses only the Plan and the AddrString are used for the purpose of matching the notifications against the criteria.

Sequence Element Name
Sequence Element Type
Description

DestinationAddress
TpAddressRange
Defines the destination address or address range for which the notification is requested.

OriginatingAddress
TpAddressRange
Defines the origination address or a address range for which the notification is requested.

DataSessionEventName
TpDataSessionEventName
Name of the event(s)

MonitorMode
TpDataSessionMonitorMode
Defines the mode that the Data Session is in following the notification.
Monitor mode P_DATA_SESSION_MONITOR_MODE_DO_NOT_MONITOR is not a legal value here.

TpDataSessionEventInfo

Defines the Sequence of Data Elements that specify the information returned to the application in a Data Session event notification.

Sequence Element Name
Sequence Element Type

DestinationAddress
TpAddress

OriginatingAddress
TpAddress

DataSessionEventName
TpDataSessionEventName

MonitorMode
TpDataSessionMonitorMode

Data Session Control Type Definitions
TpAoCInfo

Defines the Sequence of Data Elements that specify the two sets of Advice of Charge parameters. (The sequence is introduced for future extensibility reason).
Sequence Element Name
Sequence Element Type

AoCSet
TpAoCInfoSet

TpAoCInfoSet

Defines Defines the Sequence of Data Elements that specify one set of Advice Of Charge information to be sent to the terminal.

Sequence Element Name
Sequence Element Type
Description

ChargeOrderType
TpDataSessionChargeOrderType
Charge order

Currency
TpString

Currency unit according to ISO-4217 (for valid currencies see TpDataSessionChargePlan)

TpDataSessionChargePlan
Defines the Sequence of Data Elements that specify the charge plan for the call according to the current tariff.

Sequence Element Name
Sequence Element Type
Description

ChargeOrderType
TpDataSessionChargeOrderType
Charge order

Currency
TpString

Currency unit according to ISO-4217:1995

AdditionalInfo
TpString
Descriptive string which is sent to the billing system without prior evaluation. Could be included in the ticket.

Valid Currencies are:

ADP, AED, AFA, ALL, AMD, ANG, AON, AOR, ARS, ATS, AUD, AWG, AZM, BAM,

BBD, BDT, BEF, BGL, BGN, BHD, BIF, BMD, BND, BOB, BOV, BRL, BSD, BTN,

BWP, BYB, BZD, CAD, CDF, CHF, CLF, CLP, CNY, COP, CRC, CUP, CVE, CYP,

CZK, DEM, DJF, DKK, DOP, DZD, ECS, ECV, EEK, EGP, ERN, ESP, ETB, EUR,

FIM, FJD, FKP, FRF, GBP, GEL, GHC, GIP, GMD, GNF, GRD, GTQ, GWP, GYD,

HKD, HNL, HRK, HTG, HUF, IDR, IEP, ILS, INR, IQD, IRR, ISK, ITL, JMD,

JOD, JPY, KES, KGS, KHR, KMF, KPW, KRW, KWD, KYD, KZT, LAK, LBP, LKR,

LRD, LSL, LTL, LUF, LVL, LYD, MAD, MDL, MGF, MKD, MMK, MNT, MOP, MRO,

MTL, MUR, MVR, MWK, MXN, MXV, MYR, MZM, NAD, NGN, NIO, NLG, NOK, NPR,

NZD, OMR, PAB, PEN, PGK, PHP, PKR, PLN, PTE, PYG, QAR, ROL, RUB, RUR,

RWF, SAR, SBD, SCR, SDD, SEK, SGD, SHP, SIT, SKK, SLL, SOS, SRG, STD,

SVC, SYP, SZL, THB, TJR, TMM, TND, TOP, TPE, TRL, TTD, TWD, TZS, UAH,

UGX, USD, USN, USS, UYU, UZS, VEB, VND, VUV, WST, XAF, XAG, XAU, XBA,

XBB, XBC, XBD, XCD, XDR, XFO, XFU, XOF, XPD, XPF, XPT, XTS, XXX, YER,

YUM, ZAL, ZAR, ZMK, ZRN, ZWD.

XXX is used for transactions where no currency is involved.

TpDataSessionChargeOrderType

Defines the Tagged Choice of Data Elements that specify the charge plan for the call.

Tag Element Type

TpDataSessionChargeOrderCategory

Tag Element Value
Choice Element Type
Choice Element Name

P_DATA_SESSION_CHARGE_AMOUNT
TpInt32
ChargeAmount

P_DATA_SESSION_CHARGE_PER_VOLUME
TpInt32
ChargePerKiloBytes

P_DATA_SESSION_CHARGE_NETWORK
TpString
NetworkCharge

TpDataSessionChargeOrderCategory

Name
Value
Description

P_DATA_SESSION_CHARGE_AMOUNT
0
ChargeAmount (in currency units * 0.0001)

P_DATA_SESSION_CHARGE_PER_VOLUME
1
ChargePerKiloByte (in currency units * 0.0001)

P_DATA_SESSION_CHARGE_NETWORK
2
NetworkCharge (operator specific charge plan specification, e.g. charging table name / charging table entry)

TpDataSessionIdentifier

Defines the Sequence of Data Elements that unambiguously specify the Data Session object

Sequence Element Name
Sequence Element Type
Sequence Element Description

DataSessionReference
IpDataSessionRef
This element specifies the interface reference for the Data Session object.

DataSessionSessionID
TpSessionID
This element specifies the data session ID of the Data Session.

TpDataSessionError

Defines the Sequence of Data Elements that specify the additional information relating to acall error.

Sequence Element Name
Sequence Element Type

ErrorTime
TpDateAndTime

ErrorType
TpDataSessionErrorType

AdditionalErrorInfo
TpDataSessionAdditionalErrorInfo

TpDataSessionAdditionalErrorInfo

Defines the Tagged Choice of Data Elements that specify additional Data Session error and Data Session error specific information.

Tag Element Type

TpDataSessionErrorType

Tag Element Value
Choice Element Type
Choice Element Name

P_DATA_SESSION_ERROR_UNDEFINED
NULL
Undefined

P_DATA_SESSION_ERROR_INVALID_ADDRESS
TpAddressError
DataSessionErrorInvalidAddress

P_DATA_SESSION_ERROR_INVALID_STATE
NULL
Undefined

TpDataSessionErrorType

Defines a specific Data Session error.

Name
Value
Description

P_DATA_SESSION_ERROR_UNDEFINED
0
Undefined; the method failed or was refused, but no specific reason can be given.

P_DATA_SESSION_ERROR_INVALID_ADDRESS
1
The operation failed because an invalid address was given

P_DATA_SESSION_ERROR_INVALID_STATE
2
The data session was not in a valid state for the requested operation

TpDataSessionFault

Defines the cause of the data session fault detected.

Name
Value
Description

P_DATA_SESSION_FAULT_UNDEFINED
0
Undefined

P_DATA_SESION_USER_ABORTED
1
User has finalised the data session before any message could be sent by the application

P_DATA_SESSION_TIMEOUT_ON_RELEASE
2
This fault occurs when the final report has been sent to the application, but the application did not explicitly release data session object, within a specified time.

The timer value is operator specific.

P_DATA_SESSION_TIMEOUT_ON_INTERRUPT
3
This fault occurs when the application did not instruct the gateway how to handle the call within a specified time, after the gateway reported an event that was requested by the application in interrupt mode.

The timer value is operator specific.

TpDataSessionReleaseCause

Defines the Sequence of Data Elements that specify the cause of the release of a data session.
Sequence Element Name
Sequence Element Type

Value
TpInt32

Location
TpInt32

Note: the Value and Location are specified as in ITU-T recommendation Q.850.

TpDataSessionSuperviseVolume

Defines the Sequence of Data Elements that specify the amount of volume that is allowed to be transmitted for the specific connection.

Sequence Element Name
Sequence Element Type
Sequence Element Description

VolumeQuantity
TpInt32
This data type is identical to a TpInt32, and defines the quantity of the granted volume that can be transmitted for the specific connection.

VolumeUnit
TpInt32
This data type is identical to a TpInt32, and defines the unit of the granted volume that can be transmitted for the specific connection.

Unit must be specified as 10^n number of bytes, where

n denotes the power.

When the unit is for example in kilobytes, VolumeUnit must be set to 3.

TpDataSessionSuperviseReport

Defines the responses from the data session control service for calls that are supervised. The values may be combined by a logical 'OR' function.

Name
Value
Description

P_DATA_SESSION_SUPERVISE_VOLUME_REACHED
01h
The maximum volume has been reached.

P_DATA_SESSION_SUPERVISE_DATA_SESSION_ENDED
02h
The data session has ended, either due to data session party to reach of maximum volume or calling or called release.

P_DATA_SESSION_SUPERVISE_MESSAGE_SENT
04h
A warning message has been sent.

TpDataSessionSuperviseTreatment

Defines the treatment of the call by the data session control service when the supervised volume is reached. The values may be combined by a logical 'OR' function.

Name
Value
Description

P_DATA_SESSION_SUPERVISE_RELEASE
01h
Release the data session when the data session supervision volume is reached.

P_DATA_SESSION_SUPERVISE_RESPOND
02h
Notify the application when the call supervision volume is reached.

P_DATA_SESSION_SUPERVISE_INFORM
04h
Send a warning message to the originating party when the maximum volume is reached. If data session release is requested, then the data session will be released following the message after an administered time period

TpDataSessionReport

Defines the Sequence of Data Elements that specify the data session report specific information.
Sequence Element Name
Sequence Element Type

MonitorMode
TpDataSessionMonitorMode

DataSessionEventTime
TpDateAndTime

DataSessionReportType
TpDataSessionReportType

AdditionalReportInfo
TpDataSessionAdditionalReportInfo

TpDataSessionAdditionalReportInfo

Defines the Tagged Choice of Data Elements that specify additional data session report information for certain types of reports.

Tag Element Type

TpDataSessionReportType

Tag Element Value
Choice Element Type
Choice Element Name

P_DATA_SESSION_REPORT_UNDEFINED
NULL
Undefined

P_DATA_SESSION_REPORT_CONNECTED
NULL
Undefined

P_DATA_SESSION_REPORT_DISCONNECT
TpDataSessionReleaseCause
DataSessionDisconnect

TpDataSessionReportRequest

Defines the Sequence of Data Elements that specify the criteria relating to data session report requests.

Sequence Element Name
Sequence Element Type

MonitorMode
TpDataSessionMonitorMode

DataSessionReportType
TpDataSessionReportType

TpDataSessionReportRequestSet

Defines a Numbered Set of Data Elements of TpDataSessionReportRequest.

TpDataSessionReportType

Defines a specific data session event report type.

Name
Value
Description

P_DATA_SESSION_REPORT_UNDEFINED
0
Undefined

P_DATA_SESSION_REPORT_CONNECTED
1
Data session established.

P_DATA_SESSION_REPORT_DISCONNECT
2
Data session disconnect requested by data session party

TpDataSessionEventCriteriaResultSetRef

Defines a refernce to TpDataSessionEventCriteriaResultSet.

TpDataSessionEventCriteriaResultSet

Defines a set of TpDataSessionEventCriteriaResult.

TpDataSessionEventCriteriaResult

Defines a sequence of data elements that specify a requested call event notification criteria with the associated assignmentID.

Sequence Element Name
Sequence Element Type
Sequence Element Description

EventCriteria
TpDataSessionEventCriteria
The event criteria that were specified by the application.

AssignmentID
TpInt32
The associated assignementID. This can be used to disable the notification.

9
IDL Interface Definitions

The OSA API definitions have been divided into several CORBA modules. The common data definitions are placed in the root module while each of the specific service capability feature API definitions are being assigned their own module directly under that root. Each specific SCF functions, like User Status, have their data and interface definitions collocated. This structure has the advantage that explicit scoping is kept to a minimum.

The IDLs defined for the specific SCFs assumes that the OSA common definitions (interfaces and data) are provided in the org.threegpp.osa module within a file name called OSA.idl

Module Name
Description
IDL file name

org.threegpp.osa
Common data/interface definitions
OSA.idl

org.threegpp.osa.mm
Common mobility data definitions (root)
MM.idl

org.threegpp.osa.mm.ul
Network User Location (UL)
MMul.idl

org.threegpp.osa.mm.us
User Status (US)
MMus.idl

org.threegpp.osa.cc
Call Control
CC.idl

org.threegpp.osa.ui
User Interaction
UI.idl

org.threegpp.osa.termcap
Terminal Capabilities
TERMCAP.idl

org.threegpp.osa.dsc
Data Session Control
dsc.idl

9.1
Generic IDL

module org {

module threegpp {

module osa {

 /**/

 // Primitive data types

 /**/

 typedef boolean TpBoolean; // Defines a Boolean data type

 typedef long TpInt32; // Defines a signed 32 bit integer

 typedef float TpFloat; // Defines a single precision real number.

 typedef string TpString; // Defines a string comprising length and data.

 // Primitive based OSA datatypes

 typedef TpInt32 TpDuration; // This data type is a TpInt32 representing a

 // time interval in milliseconds. A value of "-1" defines

 // infinite duration and a value of "-2" represents default

 // duration.

 typedef TpInt32 TpSessionID; // Defines a network unique session ID. OSA

 // uses this ID to identify sessions, e.g. call or call leg

 // sessions, within an object implementing an interface

 // capable of handling multiple sessions. For the different

 // OSA service capability feature, the sessionIDs are unique

 // only in the context of a manager instantiation (e.g., within

 // the context of one generic call control manager). As such

 // if an application creates two instances of the same SCF

 // manager it shall use different instantiations of the

 // callback objects which implement the callback interfaces.

 typedef TpInt32 TpAssignmentID; // This data type is identical to a TpInt32. It

 // specifies a number which identifies an individual

 // event notification enabled by the application or

 // OSA service capability feature.

 typedef sequence<TpSessionID> TpSessionIDSet;

 // Defines the general OSA exception values

 enum TpGeneralExceptionType {

 P_RESULT_INFO_UNDEFINED, // No further information present

 P_INVALID_APPLICATION_ID, // Invalid application ID

 P_INVALID_CLIENT_CAPABILITY,// Invalid client capability

 P_INVALID_AGREEMENT_TEXT, // Invalid agreement text

 P_INVALID_SIGNING_ALGORITHM,// Invalid signing algorithm

 P_INVALID_INTERFACE_NAME, // Invalid interface name

 P_INVALID_SERVICE_ID, // Invalid service capability feature ID

 P_INVALID_EVENT_TYPE, // Invalid event type

 P_SERVICE_NOT_ENABLED, // The SCF ID does not correspond

 // to a SCF that has been enabled

 P_INVALID_ASSIGNMENT_ID, // The assignment ID does not

 // correspond to one of the valid assignment IDs

 P_INVALID_PARAMETER, // The method has been called with an

 // invalid parameter

 P_INVALID_PARAMETER_VALUE, // A method parameter has an invalid value

 P_PARAMETER_MISSING, // A required parameter has not been

 // specified in the method call

 P_RESOURCES_UNAVAILABLE, // The required resources in the

 // network are not available

 P_TASK_REFUSED, // The requested method has been refused

 P_TASK_CANCELLED, // The requested method has been cancelled

 P_INVALID_DATE_TIME_FORMAT, // Invalid date and time format provided

 P_NO_CALLBACK_ADDRESS_SET, // The requested method has been refused

 // because no callback address is set

 P_INVALID_TERMINATION_TEXT, // Invalid termination text

 P_INVALID_SERVICE_TOKEN, // The SCF token does not correspond to a

 // token that had been issued, or the issued token

 // has expired.

 P_INVALID_AUTHENTICATION, // The client has not been correctly authenticated

 P_INVALID_SERVICE_PROPERTY, // Invalid service capability feature property.

 P_METHOD_NOT_SUPPORTED // The method is not allowed or supported within

 // the context of the current SCF agreement.

 };

 exception TpGeneralException {

 TpGeneralExceptionType exceptionType;

 };

 // Defines the GCCS OSA exception values

 enum TpGCCSExceptionType {

 P_GCCS_SERVICE_INFORMATION_MISSING,// Information relating to the Call

 // Control SCF could not be found

 P_GCCS_SERVICE_FAULT_ENCOUNTERED, // Fault detected in the Call Control SCF

 P_GCCS_UNEXPECTED_SEQUENCE, // Unexpected sequence of methods, i.e.,

 // the sequence does not match the specified

 // state diagrams for the call or the call leg.

 P_GCCS_INVALID_ADDDRESS, // Invalid address specified

 P_GCCS_INVALID_STATE, // Invalid state specified

 P_GCCS_INVALID_CRITERIA, // Invalid criteria specified

 P_GCCS_INVALID_NETWORK_STATE,// Although the sequence of method calls is

 // allowed by the OSA gateway, the underlying

 // protocol can not support it. E.g., in some

 // protocols some methods are only allowed by

 // the protocol, when the call processing is

 // suspended, e.g., after reporting an event

 // that was monitored in interrupt mode.

 P_GCCS_NETWORK_DEASSIGN // The relation between the network and the OSA

 // gateway is terminated. Therefore, the gateway

 // can no longer influence the call. This can happen

 // after the last requested report is sent to the

 // application. To prevent this error, the application

 // should ensure that it has requested events which

 // are not yet reported.

 };

 exception TpGCCSException {

 TpGCCSExceptionType exceptionType;

 };

 // Defined the GUIS OSA exception values

 enum TpGUISExceptionType {

 P_GUIS_INVALID_CRITERIA, // Invalid criteria specified

 P_GUIS_ILLEGAL_ID, // Information id specified is invalid

 P_GUIS_ID_NOT_FOUND, // A legal information id is not known to the User

 // Interaction SCF

 P_GUIS_ILLEGAL_RANGE, // The values for minimum and maximum collection

 // length are out of range.

 P_GUIS_INVALID_COLLECTION_CRITERIA, // Invalid collection criteria specified

 P_GUIS_NETWORK_DEASSIGN, // The relation between the network and the OSA

 // gateway is terminated. Therefore, the gateway

 // can no longer perform UI operations. This can

 // happen after the last requested report is sent

 // to the application. To prevent this error, the

 /// application should ensure that it has requested

 // events which are not yet reported.

 P_GUIS_INVALID_NETWORK_STATE // Although the sequence of method calls is

 // allowed by the OSA gateway, the underlying

 // protocol can not support it. E.g., in some

 // protocols some methods are only allowed by

 // the protocol, when the call processing is

 // suspended, e.g., after reporting an event

 // that was monitored in interrupt mode.

 };

 exception TpGUISException {

 TpGUISExceptionType exceptionType;

 };

 /**/

 /********************* Date and Time related data definitions *************/

 /**/

 // This data type is identical to a TpString. It specifies the data in

 // accordance with International Standard ISO 8601. This is defined as the

 // string of characters in the following format:

 // YYYY-MM-DD

 // where the date is specified as:

 // YYYY four digits year

 // MM two digits month

 // DD two digits day

 // The date elements are separated by a hyphen character (-).

 typedef TpString TpDate;

 // This data type is identical to a TpString. It specifies the time in accordance

 // with International Standard ISO 8601. This is defined as the string of

 // characters in the following format:

 // HH:MM:SS.mmm

 // or

 // HH:MM:SS.mmmZ

 // where the time is specified as:

 // HH two digits hours (24h notation)

 // MM two digits minutes

 // SS two digits seconds

 // mmm three digits fractions of a second (i.e. milliseconds)

 // The time elements are separated by a colon character (:).The date and time

 // are separated by a space. Optionally, a capital letter Z may be appended

 // to the time field to indicate Universal Time (UTC). Otherwise, local time

 // is assumed.

 typedef TpString TpTime;

 // This data type is identical to TpString. It specifies the data and time

 // in accordance with International Standard ISO 8601. This is defined as the

 // string of characters in the following format:

 //

 // YYYY-MM-DD HH:MM:SS.mmm

 // or YYYY-MM-DD HH:MM:SS.mmmZ

 //

 // Example:

 // The 4 December 1998, at 10:30 and 15 seconds is encoded as the string:

 // 1998-12-04 10:30:15.000

 // for local time, or in UTC it would be:

 // 1998-12-04 10:30:15.000Z

 typedef TpString TpDateAndTime;

 /**/

 // Address related data definitons

 /**/

 // Defines whether an address can be presented to an end user

 enum TpAddressPresentation {

 P_ADDRESS_PRESENTATION_UNDEFINED, // Undefined

 P_ADDRESS_PRESENTATION_ALLOWED, // Presentation Allowed

 P_ADDRESS_PRESENTATION_RESTRICTED, // Presentation Restricted

 P_ADDRESS_PRESENTATION_ADDRESS_NOT_AVAILABLE // Address not available for

 // presentation

 };

 // Defines whether an address has been screened by the application

 enum TpAddressScreening {

 P_ADDRESS_SCREENING_UNDEFINED, // Undefined

 P_ADDRESS_SCREENING_USER_VERIFIED_PASSED, // user provided address verified

 // and passed

 P_ADDRESS_SCREENING_USER_NOT_VERIFIED, // user provided address not verified

 P_ADDRESS_SCREENING_USER_VERIFIED_FAILED, // user provided address verified and

 // failed

 P_ADDRESS_SCREENING_NETWORK // Network provided address

 };

 // Defines the address plan (or numbering plan) used. It is also used to indicate

 // whether an address is actually defined in a TAddress data element

 enum TpAddressPlan {

 P_ADDRESS_PLAN_NOT_PRESENT, // No Address Present

 P_ADDRESS_PLAN_UNDEFINED, // Undefined

 P_ADDRESS_PLAN_IP, // IP

 P_ADDRESS_PLAN_MULTICAST, // Multicast

 P_ADDRESS_PLAN_UNICAST, // Unicast

 P_ADDRESS_PLAN_E164, // E.164

 P_ADDRESS_PLAN_E164_MOBILE, // E.164 Mobile

 P_ADDRESS_PLAN_AESA, // AESA

 P_ADDRESS_PLAN_URL, // URL

 P_ADDRESS_PLAN_NSAP, // NSAP

 P_ADDRESS_PLAN_SMTP, // SMTP

 P_ADDRESS_PLAN_NOT_USED,

 P_ADDRESS_PLAN_X400 // X.400

 };

 // Defines the reasons why an address is invalid.

 enum TpAddressError {

 P_ADDRESS_INVALID_UNDEFINED, // Undefined error

 P_ADDRESS_INVALID_MISSING, // Mandatory address not present

 P_ADDRESS_INVALID_MISSING_ELEMENT, // Mandatory address element not present

 P_ADDRESS_INVALID_OUT_OF_RANGE, // Address is outside of the valid range

 P_ADDRESS_INVALID_INCOMPLETE, // Address is incomplete

 P_ADDRESS_INVALID_CANNOT_DECODE // Address cannot be decoded

 };

 // Defines the structure of data elements that specifies an address

 struct TpAddress {

 TpAddressPlan Plan;

 TpString Addrstring;

 TpString Name;

 TpAddressPresentation Presentation;

 TpAddressScreening Screening;

 TpString SubAddressString;

 };

 // Defined a collection of TpAddress elements

 typedef sequence<TpAddress> TpAddressSet;

 // This data type is identical to a TpString and contains a URL address.

 typedef TpString TpURL;

 // This data type is identical to a TpString. It specifies price information.

 // This is defined as the string of characters (digits) in the following format:

 // DDDDDD.DD

 typedef TpString TpPrice;

 /**/

 // base OSA interface

 /**/

 // All application, framework and service capability features interfaces inherit

 // from the following interface. This API Base Interface does not provide any

 // additional methods.

 interface IpOsa {

 };

 // All service capability feature interfaces inherit from the following interface.

 interface IpService : IpOsa {

 // This method specifies the reference address of the callback interface

 // that a SCF uses to invoke methods on the application.

 void setCallback(in IpOsa appInterface) raises (TpGeneralException);

 };

};};};
9.2
Framework IDL

9.2.1
Common Data Types for the Framework

#include <OSA.idl>

module org{

 module threegpp{

 module osa{

 module fw{

typedef TpString
 TpClientAppID; // Identifies the client appl to the framework.

typedef sequence
 <TpClientAppID> TpClientAppIDList;

typedef TpString TpEntOpID;

typedef sequence
 < TpEntOpID >
 TpEntOpIDList;

typedef TpString

TpServiceID;
// A string of characters, generated

// automatically by the Framework and

// comprising a TpUniqueServiceNumber,

// TpServiceNameString, and a number of

// relevant TpServiceSpecString,

// concatenated using a forward

// separator (/), that uniquely

// identifies an instance of a

// SCF interface.

typedef sequence <TpServiceID>

TpServiceIDList;

typedef TpString

TpServiceNameString;

// Uniquely identifies the name

// of a SCF interface. For

// OSA release 99 the following

// values have been defined:

// NULL (no SCF name),

// P_CALL_CONTROL,

// P_USER_INTERACTION,

// P_USER_LOCATION,

//P_TERMINAL_CAPABILITIES,

// P_USER_STATUS and

// P_DATA_SESSION_CONTROL

typedef TpString

TpServiceSpecString;

// Uniquely identifies the name

// of a SCF specialisation

// interface. For OSA release 99

// the following values have

// been defined: NULL (no

// SCF specialisation) and

// P_CALL.

typedef TpString

TpUniqueServiceNumber;

// A string of characters that

// represents a unique number.

enum TpServicePropertyMode {

NORMAL,

// The value of the corresponding SCF property

// type may optionally be provided.

MANDATORY,

// The value of the corresponding SCF property

// type must be provided at SCF registration.

READONLY,

// The value of the corresponding SCF property

// is optional, nut once given a value it may not be

// modified.

MANDATORY_READONLY

// The value of the corresponding SCF property

// type must be provided and may not be modified

// subsequently.

};

typedef TpString

TpServicePropertyTypeName;

typedef TpString

TpServicePropertyName;

typedef sequence <TpServicePropertyName>
TpServicePropertyNameList;

typedef TpString

TpServicePropertyValue;

typedef sequence <TpServicePropertyValue>
TpServicePropertyValueList;

struct TpServiceProperty {

// Describes a SCF property

TpServicePropertyName

ServicePropertyName;

TpServicePropertyValueList
ServicePropertyValueList;

TpServicePropertyMode

ServicePropertyMode;

};

typedef sequence <TpServiceProperty>

TpServicePropertyList;

typedef TpString

TpServiceTypeName;

typedef sequence <TpServiceTypeName>

TpServiceTypeNameList;

struct TpService {

// Describes a registered SCF.

TpServiceID

ServiceID;

TpServicePropertyList
ServicePropertyList;

};

typedef sequence <TpService>
TpServiceList;

struct TpServiceDescription {

// Describes the properties of a registered SCF.

TpServiceTypeName
ServiceTypeName;

TpServicePropertyList
ServicePropertyList;

};

struct TpPropertyStruct {

// Describes a SCF property.

TpServiceTypeName

ServicePropertyName;

TpServicePropertyMode

ServicePropertyMode;

TpServicePropertyTypeName
ServicePropertyTypeName;

};

typedef sequence <TpPropertyStruct>
TpPropertyStructList;

struct TpServiceTypeDescription {

// Describes a SCF type.

TpPropertyStructList

PropertyStructList;

TpServiceTypeNameList

ServiceTypeNameList;

TpBoolean

EnabledOrDisabled;

};

};};};};

9.x
Data Session Control

9.3.1
Data Types for Data Session Control

// source file: dsc.idl

// Data Session Control Data description

#ifndef __OSA_DSC_DEFINED

#define __OSA_DSC_DEFINED

//#include <OSA.idl>

module org {

 module threegpp {

 module osa {

 module dsc {

#include <OSA.idl>

 interface IpDataSessionControlManager; // forward definition

 interface IpDataSession; // forward definition

 interface IpAppDataSessionControlManager; // forward definition

 interface IpAppDataSession; // forward definition

const TpInt32 P_EVENT_NAME_UNDEFINED = 0; // Undefined

const TpInt32 P_EVENT_DSCS_ESTABLISHED_ = 1; // Data Session established

typedef TpInt32 TpDataSessionEventName; /*Defines the names of event being notified. */

 enum TpDataSessionChargeOrderCategory {

P_DATA_SESSION_CHARGE_AMOUNT,

 P_DATA_SESSION_CHARGE_PER_VOLUME,

P_DATA_SESSION_CHARGE_NETWORK

};

union TpDataSessionChargeOrderType switch(TpDataSessionChargeOrderCategory){

case P_DATA_SESSION_CHARGE_AMOUNT: TpInt32 ChargeAmount;

case P_DATA_SESSION_CHARGE_PER_VOLUME: TpInt32 ChargePerKiloBytes;

case P_DATA_SESSION_CHARGE_NETWORK: TpString NetworkCharge;

};

struct TpAoCInfoSet {

TpDataSessionChargeOrderType ChargeOrderType;

TpString Currency;

};

 struct TpAoCInfo {

TpAoCInfoSet AoCSet;

};

struct TpDataSessionChargePlan {

TpDataSessionChargeOrderType ChargeOrderType;

TpString Currency;

TpString AdditionalInfo;

};

struct TpDataSessionEventCriteria {

 TpAddressRange DestinationLowerAddress;
 /*Destination address range*/

 TpAddressRange OriginationLowerAddress;
 /*Origination address range */

 TpDataSessionEventName DataSessionEventName; /*Name of the event(s) */

 };

/* Defines the mode that the data session will monitor for events, or the mode that the data session is in following a detected event. */

enum TpDataSessionMonitorMode {

P_DATA_SESSION_MONITOR_MODE_INTERRUPT, /* The data session event is intercepted by the data session control SCF and data session establishment is interrupted. The application is notified of the event and data session establishment resumes following an appropriate API call or network event (such as a data session release) */

P_DATA_SESSION_MONITOR_MODE_NOTIFY, /* The data session event is detected by the data session control SCF but not intercepted. The application is notified of the event data session establishment continues */

P_DATA_SESSION_MONITOR_MODE_DO_NOT_MONITOR /* Do not monitor for the event */

};

 struct TpDataSessionEventInfo {

 TpAddress DestinationAddress;

 TpAddress OriginatingAddress;

 TpDataSessionEventName DataSessionEventName;

 TpDataSessionMonitorMode MonitorMode;

 };

/* Defines the Sequence of Data Elements that specify the cause of the release of a call.*/

struct TpDataSessionReleaseCause {

TpInt32 Value;

TpInt32 Location;

};

/* Defines a specific data session error. */

enum TpDataSessionErrorType {

P_DATA_SESSION_ERROR_UNDEFINED, /* Undefined */

P_DATA_SESSION_ERROR_INVALID_ADDRESS, /* The operation failed because an invalid address was given */

P_DATA_SESSION_ERROR_INVALID_STATE /* The data session was not in a valid state for the requested operation */

};

/* Defines the Tagged Choice of Data Elements that specify additional data session error and data session error specific information. */

union TpDataSessionAdditionalErrorInfo switch(TpDataSessionErrorType) {

case P_DATA_SESSION_ERROR_INVALID_ADDRESS: TpAddressError DataSessionErrorInvalidAddress;

};

/* Defines the Sequence of Data Elements that specify the additional information relating to an undefined data session error. */

struct TpDataSessionError {

TpDataSessionAdditionalErrorInfo AdditionalErrorInfo;

TpDataSessionErrorType ErrorType;

TpDateAndTime ErrorTime;

};

/* Defines the cause of the Data Session fault detected. */

enum TpDataSessionFault {

P_DATA_SESSION_FAULT_UNDEFINED, /* Undefined */

P_DATA_SESSION_FAULT_USER_ABORTED, /* User has finalised the data session before any message could be sent by the application. */

P_DATA_SESSION_TIMEOUT_ON_RELEASE, /* Final report has been sent to the application, but the application did not explicitly release data session object, within a specified time. */

P_DATA_SESSION_TIMEOUT_ON_INTERRUPT /* Application did not instruct the gateway how to handle the data session within a specified time, after the gateway reported an event that was requested by the application in interrupt mode.*/

};

/* Defines a specific data session event report type. */

enum TpDataSessionReportType {

P_DATA_SESSION_REPORT_UNDEFINED, /* Undefined */

P_DATA_SESSION_REPORT_CONNECTED, /* Data session established*/

P_DATA_SESSION_REPORT_DISCONNECT /* data session disconnect requested by data session party */

};

/* Defines the Tagged Choice of Data Elements that specify additional data session report information. */

union TpDataSessionAdditionalReportInfo switch(TpDataSessionReportType) {

case P_DATA_SESSION_REPORT_DISCONNECT: TpDataSessionReleaseCause DataSessionDisconnect;

};

struct TpDataSessionReport {

TpDataSessionMonitorMode MonitorMode;

TpDateAndTime DataSessionEventTime;

 TpDataSessionReportType DataSessionReportType;

TpDataSessionAdditionalReportInfo AdditionalReportInfo;

};

/* Defines the Sequence of Data Elements that specify the criteria relating to Data Session report requests. */

struct TpDataSessionReportRequest {

TpDataSessionMonitorMode MonitorMode;

 TpDataSessionReportType DataSessionReportType;

};

/* Defines a Numbered Set of Data Elements of TpDataSessionReportRequest. */

 typedef sequence <TpDataSessionReportRequest> TpDataSessionReportRequestSet;

const TpInt32 P_DATA_SESSION_SUPERVISE_VOLUME_REACHED = 1; /* The Data Session supervision volume has been reached. */

const TpInt32 P_DATA_SESSION_SUPERVISE_DATA_SESSION_ENDED = 2; /* The data session has ended, either due to reach of maximum volume or calling or called party release. */

const TpInt32 P_DATA_SESSION_SUPERVISE_MESSAGE_SENT = 4; /* A warning message has been sent. */

/* Defines the responses from the data session control SCF for data sessions that are supervised:*/

typedef TpInt32 TpDataSessionSuperviseReport;

const TpInt32 P_DATA_SESSION_SUPERVISE_RELEASE = 1; /* Release the Data Session when the Data Session supervision volume has been reached. */

const TpInt32 P_DATA_SESSION_SUPERVISE_RESPOND = 2; /* Notify the application when the data session supervision volume has been reached. */

const TpInt32 P_DATA_SESSION_SUPERVISE_INFORM = 4; /* Send a warning message to the originating party when the maximum volume is reached. If data session release is requested, then the data session will be released following the message after an administered time period */

/* Defines the following treatment of the data session by the data session control SCF when the maximum volume has been reached.*/

typedef TpInt32 TpDataSessionSuperviseTreatment;

/* Defines the Sequence of Data Elements that specify the amount of volume that is allowed to be transmitted for the specific connection. */

struct TpDataSessionSuperviseVolume {

TpInt32 VolumeQuantity; /* Qantity of the granted volume that can be transmitted for the specific connection. */

TpInt32 VolumeUnit; /* Unit of the granted volume that can be transmitted for the specific connection. */

};

/* Define the possible Exceptions. */

const TpInt32 P_DSCS_SERVICE_INFORMATION_MISSING = 1024;

const TpInt32 P_DSCS_SERVICE_FAULT_ENCOUNTERED = 1025;

const TpInt32 P_DSCS_UNEXPECTED_SEQUENCE = 1026;

const TpInt32 P_DSCS_INVALID_ADDDRESS = 1027;

const TpInt32 P_DSCS_INVALID_STATE = 1028;

const TpInt32 P_DSCS_INVALID_CRITERIA = 1029;

const TpInt32 P_DSCS_INVALID_NETWORK_STATE = 1030;

exception TpDSCSException {

TpInt32 exceptionType;

};

 /* Sequence of Data Elements that unambiguously specify the Data Session object */

 struct TpDataSessionIdentifier {

 IpDataSession DataSessionReference;

 TpSessionID DataSessionSessionID;

 };

 /* This interface is the SCF manager' interface for Data Session Control. */

 interface IpDataSessionControlManager : IpService {

 /* This method is used to enable data session notifications. */

 void enableDataSessionNotification (

 in IpAppDataSessionControlManager appInterface,

 in TpDataSessionEventCriteria eventCriteria,

 out TpAssignmentID assignmentID

)

 raises (TpDSCSException, TpGeneralException);

 /* This method is used by the application to disable data session notifications.*/

 void disableDataSessionNotification (

 in TpAssignmentID assignmentID

)

 raises (TpDSCSException, TpGeneralException);

 };

 /* This interface provides the means to control a data session. */

 interface IpDataSession : IpService {

 /* This method requests connection of the data session to the destination party.*/

 void connectReq (

 in TpSessionID dataSessionID,

 in TpDataSessionReportRequestSet responseRequested,

 in TpAddress targetAddress,

 in TpAddress originatingAddress,

 out TpAssignmentID assignmentID

)

 raises (TpDSCSException, TpGeneralException);

 /* This method requests the release of the data session and associated objects.*/

 void release (

 in TpSessionID dataSessionID,

 in TpDataSessionReleaseCause cause

)

 raises (TpDSCSException, TpGeneralException);

 /* The application calls this method to supervise a data session. */

 void superviseDataSessionReq (

 in TpSessionID dataSessionID,

in TpDataSessionSuperviseTreatment treatment,

 in TpDataSessionSuperviseVolume bytes

)

 raises (TpDSCSException, TpGeneralException);

 };

 /* The data session control manager application interface provides the

 application data session control management functions to the data session control

 SCF. */

 interface IpAppDataSessionControlManager : IpOsa {

 void dataSessionAborted (

 in TpSessionID dataSessionReference

)

 raises (TpDSCSException, TpGeneralException);

 /* This method notifies the application of the arrival of a data session-related event. */

 void dataSessionEventNotify (

 in TpDataSessionIdentifier dataSessionReference,

 in TpDataSessionEventInfo eventInfo,

 in TpAssignmentID assignmentID,

 out IpAppDataSession appInterface

)

 raises (TpDSCSException, TpGeneralException);

/* This method indicates to the application that all event notifications

 are resumed.*/

void dataSessionNotificationContinued()

 raises (TpDSCSException, TpGeneralException);

/* This method indicates to the application that all event notifications

 are temporarely iterrupted.*/

void dataSessionNotificationInterrupted()

 raises (TpDSCSException, TpGeneralException);

 };

 /* The application side of the data session interface is used to handle data session

 request responses and state reports. */

 interface IpAppDataSession : IpOsa {

 /* This method indicates that the request to route the data session to the

 destination was successful.*/

 void connectRes (

 in TpSessionID dataSessionSessionID,

 in TpDataSessionReport eventReport,

 in TpAssignmentID assignmentID

)

 raises (TpDSCSException, TpGeneralException);

 /* This method indicates that the request to connect the data session to the

 destination party was unsuccessful. */

 void connectErr (

 in TpSessionID dataSessionSessionID,

 in TpDataSessionError errorIndication,

 in TpAssignmentID assignmentID

)

 raises (TpDSCSException, TpGeneralException);

/* This asynchronous method reports a data session supervision event to the application.*/

 void superviseDataSessionRes (

 in TpSessionID dataSessionSessionID,

 in TpDataSessionSuperviseReport report,

 in TpDataSessionSuperviseVolume usedVolume

)

 raises (TpDSCSException, TpGeneralException);

 /* This asynchronous method reports a data session supervision error to the application.*/

 void superviseDataSessionErr (

 in TpSessionID dataSessionSessionID,

 in TpDataSessionError errorIndication

)

 raises (TpDSCSException, TpGeneralException);

 /* This method indicates to the application that a fault in the network has

 been detected.*/

 void dataSessionFaultDetected (

 in TpSessionID dataSessionSessionID,

 in TpDataSessionFault fault

)

 raises (TpDSCSException, TpGeneralException);

 };

 }; // end module dsc

 }; // end module osa

 }; // end module threegpp

}; // end module org

#endif

// END file dsc.idl

3GPP

_1013322483.doc
[image: image1.emf][image: image2.emf]

IpService

setCallback()

<<Interface>>

IpOsa

(from org.threegpp.osa)

<<Interface>>

