3GPP TSG CN WG5
TDoc N5-000xx
Cardiff, UK
13 June ÷ 14 June 2000
Title:
Updates to Call Control and User Interaction resulting from Parlay 2.1

Agenda Item:

Source:
Ericsson
Document for:
Discussion / Decision

1 introduction

This contribution discusses proposed modifications to the Call Control and User Interaction SCS based on updates from the discussions in Parlay 2.1. Most of the Parlay updates originate from discussions in this 3GPP workgroup, but have not yet been shown here.

2 Proposed modifications

2.1 extension of the event Criteria Mechanism

Applications can show their interest in certain network events with the enableCallNotification() method. In case the criteria specified in this method had to be changed (e.g. the application wants to “listen” to a new event for a range of subscribers) the application had to disable the specific collection of criteria set with disableCallNotification() and re-do the enableCallNotification() with the updated criteria. Parlay has now introduced a new operation on the CallControlManager interface (changeCallNotification) for the purpose of changing the criteria. Furthermore, an additional operation called getCriteria() on the CallControlManager is introduced to query the event criteria set with enableCallNotification(). See also below.

The proposal is to introduce these operations also in the TS29.198, this impacts the Interface description of the call ControlManager, the Call Control class diagram and the IDL.

Below the impact on the TS 29.198 is captured:

2.1.1 IpCallControlManager interface

<<Interface>>

IpCallControlManager

enableCallNotification(appInterface : in IpAppCallControlManagerRef , eventCriteria : in TpCallEventCriteria , assignmentID : out TpAssignmentIDRef) : TpResult

disableCallNotification(assignmentID : in TpAssignmentID) : TpResult

changeCallNotification(assignmentID : in TpAssignmentID , eventCriteria : in TpCallEventCriteria) : TpResult

getCriteria(assignmentID : in TpAssignmentID , eventCriteria : out TpCallEventCriteriaResultSet) : TpResult

2.1.2 additional data -types

1.1.1.1 TpCallEventCriteriaResultSet

Defines a set of TpCallEventCriteriaResult.

1.1.1.2 TpCallEventCriteriaResult

Defines a sequence of data elements that specify a requested call event notification criteria with the associated assignmentID.

Sequence Element Name
Sequence Element Type
Sequence Element Description

EventCriteria
TpCallEventCriteria
The event criteria that were specified by the application.

AssignmentID
TpInt32
The associated assignementID. This can be used to disable the notification.

2.2 Merge and Renaming of the routing operations

Based on the fact that the concept of a controlling leg is not general for all kinds of networks (e.g. H.323/ SIP) Parlay decided to merge the routeCallToOrigination and routeCallToDestination operations and rename the merged operation route (i.e. routeReq(), routeRes() and routeErr()).

A minor change is renaming the assignmentID parameter in the routeReq() to callLegSessionID and change the data-type from TpAssignmentID to TpSessionID. The rationale behind this is to have a better reference mechanism to data related to this specific call and call leg for non-OO implementations.

It is desired to reflected this as well in the TS29.198 and impacts the interface description of the IpCall, IpAppCall, the Call Control class diagram, the STD of the IpCall and the IDL.

<<Interface>>

IpCall

routeReq(
callSessionID : in TpSessionID ,
responseRequested : in TpCallReportRequestSet ,
targetAddress : in TpAddress ,
originatingAddress : in TpAddress ,
originalDestinationAddress : in TpAddress ,
redirectingAddress : in TpAddress ,
appInfo : in TpCallAppInfoSet ,
callLegSessionID : out TpSessionIDRef) : TpResult

release(
callSessionID : in TpSessionID ,
cause : in TpCallReleaseCause) : TpResult

deassignCall(
callSessionID : in TpSessionID) : TpResult

getCallInfoReq(
callSessionID : in TpSessionID ,
callInfoRequested : in TpCallInfoType) : TpResult

setCallChargePlan(
callSessionID : in TpSessionID ,
callChargePlan : in TpCallChargePlan) : TpResult

setAdviceOfCharge(
callSessionID : in TpSessionID ,
aOCInfo : in TpAoCInfo ,
tariffSwitch : in TpDuration) : TpResult

superviseCallReq(
callSessionID : in TpSessionID ,
time : in TpDuration ,
treatment : in TpCallSuperviseTreatment) : TpResult

<<Interface>>

IpAppCall

routeRes(callSessionID : in TpSessionID , eventReport : in TpCallReport , callLegSessionID : in TpSessionID) : TpResult

routeErr(callSessionID : in TpSessionID , errorIndication : in TpCallError , callLegSessionID : in TpSessionID) : TpResult

getCallInfoRes(callSessionID : in TpSessionID , callInfoReport : in TpCallInfoReport) : TpResult

getCallInfoErr(callSessionID : in TpSessionID , errorIndication : in TpCallError) : TpResult

superviseCallRes(callSessionID : in TpSessionID , report : in TpCallSuperviseReport , usedTime : in TpDuration) : TpResult

superviseCallErr(callSessionID : in TpSessionID , errorIndication : in TpCallError) : TpResult

callFaultDetected(callSessionID : in TpSessionID , fault : in TpCallFault) : TpResult

callEnded(callSessionID : in TpSessionID , report : in TpCallEndedReport) : TpResult

2.3 Renaming of the call object idle state

Usually an object is in Idle state when it has just been created. In case of the Call object the Idle state reflects that the call has ended and that the application can no longer use the object. The Parlay group has therefore decided to rename the Idle state of the Call object to a more appropriate name “Finished”.

Ericsson would like to propose that this is reflected as well in the TS29.198. It impacts the STD of the IpCall.

2.4 Operation for indicating call end

In case the call was ended e.g. due to disconnect of the calling party, a report was sent by routeCallToDestinationRes() but only when the application had requested to be notified of this event. This meant that in a way the routeCallToDestinationRes() was not only reporting events on the leg for the called party but also events of the calling party that led to end of the call. Furthermore, as a result of this the documentation for the call end indication in the TpCallReportType had become quite extensive in the TS 29.198.

To improve the reporting on call ending, the Parlay group decided to introduce an additional operation, callEnded() on the IpAppCall interface. This operation will be invoked when the call has ended. Furthermore, the operation contains an indication on the reason why the call has been ended. Also the operation will always be invoked when the call has ended and not only when the application has requested it’s interest in this event.

Ericsson would like to propose that this is reflected as well in the TS29.198. It impacts the interface description of the IpAppCall, the Call Control class diagram, the STD of the IpCall. In addition a new data-type, TpCallEndedReport needs to be introduced, other data-types need to be changed and the IDL needs to be updated. Furthermore this has impact on S2 and a CR needs to be written.

Changes in the TS 29.198 are reflected below:

2.4.1 IpAppCall interface description updates

<<Interface>>

IpAppCall

routeRes(callSessionID : in TpSessionID , eventReport : in TpCallReport , assignmentID : in TpAssignmentID) : TpResult

routeErr(callSessionID : in TpSessionID , errorIndication : in TpCallError , assignmentID : in TpAssignmentID) : TpResult

getCallInfoRes(callSessionID : in TpSessionID , callInfoReport : in TpCallInfoReport) : TpResult

getCallInfoErr(callSessionID : in TpSessionID , errorIndication : in TpCallError) : TpResult

superviseCallRes(callSessionID : in TpSessionID , report : in TpCallSuperviseReport , usedTime : in TpDuration) : TpResult

superviseCallErr(callSessionID : in TpSessionID , errorIndication : in TpCallError) : TpResult

callFaultDetected(callSessionID : in TpSessionID , fault : in TpCallFault) : TpResult

callEnded(callSessionID : in TpSessionID , report : in TpCallEndedReport) : TpResult

2.4.2 Call Control Class diagram updates

The class diagram below reflects updates from 2.1, 2.2 and 2.4:

[image: image1.wmf]IpCall

routeReq()

release()

deassignCall()

getCallInfoReq()

setCallChargePlan()

superviseCallReq()

setAdviceOfCharge()

<<Interface>>

IpAppCallControlManager

callAborted()

callEventNotify()

callNotificationInterrupted()

callNotificationContinued()

<<Interface>>

IpAppCall

routeRes()

routeErr()

getCallInfoRes()

getCallInfoErr()

superviseCallRes()

superviseCallErr()

callFaultDetected()

callEnded()

<<Interface>>

IpOSA

<<Interface>>

IpCallControlManage

r

enableCallNotification()

disableCallNotification()

changeCallNotification()

getCriteria()

<<Interface>>

<<

uses>>

<<

uses>>

1

0

..n

1

..1

0

..n

2.4.3 Call object STD

The state diagram below reflects updates from 2.1, 2.2 and 2.4:

[image: image2.wmf]Network Released

Finished

Application

Released

release

deassignCall

timeout ^callFaultDetected("timeout on release")

Active

1 Party in

Call

2 Parties in

Call

1 Party in

Call

IpAppCallControlManager.callEventNotify

2 Parties in

Call

setCallChargePlan

getCallInfoReq

superviseCallReq

setAdviceOfCharge

routeReq[number of routing requests < 2]

"disconnect from called party"[monitor mode = interrupt] ^routeRes,

getCallInfoRes, superviseCallRes

"answer"

"connection to called party unsuccessful"[monitor mode = interrupt] ^routeRes

"routing aborted or invalid address" ^routeErr

deassignCall

[no reports requested with getCallInfoReq AND

superviseCallReq]

"requested information ready" ^getCallInfoRes,

superviseCallRes

release

"requested information ready"

^getCallInfoRes, superviseCallRes

[no reports requested with

getCallInfoReq AND

superviseCallReq]

In state Idle a timer mechanism should

prevent that the object keeps occupying

resources. In case the timer expires, the

object should be destroyed and

callFaultDetected should be reported to

the application.

deassignCall

release

"call ends : calling party abandoned" ^callEnded

"call ends : called party disconnects"[monitor for this event] ^callEnded, routeRes(party disconnect)

"call supervision event" ^superviseCallRes

"network event received for which was monitored ^routeRes

"call ends : calling party disconnects" ^callEnded

"fault detected"[fault cannot be communicated with network event] ^callFaultDetected

"call ends: called party disconnects"[no monitor for this event] ^callEnded

2.4.4 TpCallEndedReport data-type

TpCallEndedReport

Defines the Sequence of Data Elements that specify the reason for the call ending.
Sequence Element Name
Sequence Element Type

CallLegSessionID
TpSessionID
The leg that initiated the release of the call.

If the call release was not initiated by the leg, then this value is set to –1.

Cause
TpCallReleaseCause
The cause of the call ending.

2.4.5 Impact on other data-types

1.1.1.3 TpCallAdditionalErrorInfo

Defines the Tagged Choice of Data Elements that specify additional call error and call error specific information. This is also used to specify call leg errors and information errors.

Tag Element Type

TpCallErrorType

Tag Element Value
Choice Element Type
Choice Element Name

P_CALL_ERROR_UNDEFINED
NULL
Undefined

P_CALL_ERROR_ROUTING_ABORTED
TpCallReleaseCause
CallErrorRoutingAborted

P_CALL_ERROR_CALL_ABANDONED
TpCallReleaseCause
CallErrorCallAbandoned

P_CALL_ERROR_INVALID_ADDRESS
TpAddressError
CallErrorInvalidAddress

P_CALL_ERROR_INVALID_STATE
NULL
Undefined

P_CALL_ERROR_INVALID_CRITERIA
NULL
Undefined

Note that the P_CALL_ERROR_INVALID_CRITERIA indication has also been removed. The rationale for this is that invalid criteria should be checked at invokation of operations and in case there are invalid parameters an exceptoin should be thrown. I.e. it is not necessary to report this back with the a-synchronous Err operations.

1.1.1.4 TpCallErrorType

Defines a specific call error.

Name
Value
Description

P_CALL_ERROR_UNDEFINED
0
Undefined; the method failed or was refused, but no specific reason can be given.

P_CALL_ERROR_ROUTING_ABORTED
1
Call routing failed and was aborted by the network. Rerouting is possible.

P_CALL_ERROR_CALL_ABANDONED
2
The requested operation failed because the originating party abandoned the call before the operation was completed

P_CALL_ERROR_INVALID_ADDRESS
1
The operation failed because an invalid address was given

P_CALL_ERROR_INVALID_STATE
2
The call was not in a valid state for the requested operation

P_CALL_ERROR_INVALID_CRITERIA
5
Invalid criteria were specified for the requested operation

Note that the P_CALL_ERROR_INVALID_CRITERIA indication has also been removed. The rationale for this is that invalid criteria should be checked at invokation of operations and in case there are invalid parameters an exceptoin should be thrown. I.e. it is not necessary to report this back with the a-synchronous Err operations.
1.1.1.5 TpCallFault

Defines the cause of the call fault detected.

Name
Value
Description

P_CALL_FAULT_UNDEFINED
0
Undefined

P_CALL_FAULT_USER_ABORTED
1
This fault occurs when a call is has been triggered by the network but the user has finalised the call before any message could be sent by the application.

P_CALL_TIMEOUT_ON_RELEASE
1
This fault occurs when the final report has been sent to the application, but the application did not explicitly release or deassign the call object, within a specified time.

The timer value is operator specific.

P_CALL_TIMEOUT_ON_INTERRUPT
2
This fault occurs when the application did not instruct the gateway how to handle the call within a specified time, after the gateway reported an event that was requested by the application in interrupt mode.

The timer value is operator specific.

1.1.1.6 TpCallAdditionalReportInfo

Defines the Tagged Choice of Data Elements that specify additional call report information for certain types of reports..

Tag Element Type

TpCallReportType

Tag Element Value
Choice Element Type
Choice Element Name

P_CALL_REPORT_UNDEFINED
NULL
Undefined

P_CALL_REPORT_PROGRESS
NULL
Undefined

P_CALL_REPORT_ALERTING
NULL
Undefined

P_CALL_REPORT_ANSWER
NULL
Undefined

P_CALL_REPORT_REFUSED_BUSY
TpCallReleaseCause
RefusedBusy

P_CALL_REPORT_NO_ANSWER
NULL
Undefined

P_CALL_REPORT_DISCONNECT
TpCallReleaseCause
CallDisconnect

P_CALL_REPORT_REDIRECTED
TpAddress
ForwardAddress

P_CALL_REPORT_SERVICE_CODE
TpCallServiceCode
ServiceCode

P_CALL_REPORT_ROUTING_FAILURE
TpCallReleaseCause
RoutingFailure

P_CALL_REPORT_CALL_ENDED
TpCallReleaseCause
CallEnded

1.1.1.7 TpCallAdditionalReportCriteria

Defines the Tagged Choice of Data Elements that specify specific criteria.

Tag Element Type

TpCallReportType

Tag Element Value
Choice Element Type
Choice Element Name

P_CALL_REPORT_UNDEFINED
NULL
Undefined

P_CALL_REPORT_PROGRESS
NULL
Undefined

P_CALL_REPORT_ALERTING
NULL
Undefined

P_CALL_REPORT_ANSWER
NULL
Undefined

P_CALL_REPORT_REFUSED_BUSY
NULL
Undefined

P_CALL_REPORT_NO_ANSWER
TpDuration
NoAnswerDuration

P_CALL_REPORT_DISCONNECT
NULL
Undefined

P_CALL_REPORT_REDIRECTED
NULL
Undefined

P_CALL_REPORT_SERVICE_CODE
TpCallServiceCode
ServiceCode

P_CALL_REPORT_ROUTING_FAILURE
NULL
Undefined

P_CALL_REPORT_CALL_ENDED
NULL
Undefined

1.1.1.8 TpCallReportType

Defines a specific call event report type.

Name
Value
Description

P_CALL_REPORT_UNDEFINED
0
Undefined

P_CALL_REPORT_PROGRESS
1
Call routing progress event:an indication from the network that progress has been made in routing the call to the requested call party.

P_CALL_REPORT_ALERTING
2
Call is alerting at the call party

P_CALL_REPORT_ANSWER
3
Call answered at address

P_CALL_REPORT_BUSY
4
Called address refused call due to busy

P_CALL_REPORT_NO_ANSWER
5
No answer at called address

P_CALL_REPORT_DISCONNECT
6
The called party has disconnected., but the call still exists (this report is only possible if the application has requested this event in interrupt mode)

P_CALL_REPORT_REDIRECTED
7
Call redirected to new address: an indication from the network that the call has been redirected to a new address.

P_CALL_REPORT_SERVICE_CODE
8
Mid-call service code received

P_CALL_REPORT_ROUTING_FAILURE
9
Call routing failed - re-routing is possible

P_CALL_REPORT_CALL_ENDED
10
Call has ended : an indication from the network that the call has been ended.

For a two-party call this means that either the calling party has disconnected when the call was in progress or the called party has disconnected when the call was in progress while the application had no monitor of type interrupt for this event.
(for an overview of call termination scenarios see the State Transition Diagram)

�Rose:COperation:MDLFilename=I\x3A\x5Cparlay\x5C2.1\x5Cmodel\x5Cparlay21pre1.mdl,OperationID=38B05E460346

�Rose:CParameter:MDLFilename=I\x3A\x5Cparlay\x5C2.1\x5Cmodel\x5Cparlay21pre1.mdl,ParentID=38B05E460346,ParentClass=COperation,ParamName=1

�Rose:CParameter:MDLFilename=I\x3A\x5Cparlay\x5C2.1\x5Cmodel\x5Cparlay21pre1.mdl,ParentID=38B05E460346,ParentClass=COperation,ParamName=2

�Rose:CParameter:MDLFilename=I\x3A\x5Cparlay\x5C2.1\x5Cmodel\x5Cparlay21pre1.mdl,ParentID=38B05E460346,ParentClass=COperation,ParamName=3

�Rose:CParameter:MDLFilename=I\x3A\x5Cparlay\x5C2.1\x5Cmodel\x5Cparlay21pre1.mdl,ParentID=38B05E460346,ParentClass=COperation,ParamName=4

�Rose:CParameter:MDLFilename=I\x3A\x5Cparlay\x5C2.1\x5Cmodel\x5Cparlay21pre1.mdl,ParentID=38B05E460346,ParentClass=COperation,ParamName=5

�Rose:CParameter:MDLFilename=I\x3A\x5Cparlay\x5C2.1\x5Cmodel\x5Cparlay21pre1.mdl,ParentID=38B05E460346,ParentClass=COperation,ParamName=6

�Rose:CParameter:MDLFilename=I\x3A\x5Cparlay\x5C2.1\x5Cmodel\x5Cparlay21pre1.mdl,ParentID=38B05E460346,ParentClass=COperation,ParamName=7

�Rose:CParameter:MDLFilename=I\x3A\x5Cparlay\x5C2.1\x5Cmodel\x5Cparlay21pre1.mdl,ParentID=38B05E460346,ParentClass=COperation,ParamName=8

�Rose:CParameter:MDLFilename=I\x3A\x5Cparlay\x5C2.1\x5Cmodel\x5Cparlay21pre1.mdl,ParentID=38B05E4603E1,ParentClass=COperation,ParamName=1

�Rose:CParameter:MDLFilename=I\x3A\x5Cparlay\x5C2.1\x5Cmodel\x5Cparlay21pre1.mdl,ParentID=38B05E4603E1,ParentClass=COperation,ParamName=2

�Rose:CParameter:MDLFilename=I\x3A\x5Cparlay\x5C2.1\x5Cmodel\x5Cparlay21pre1.mdl,ParentID=38B05E4603E6,ParentClass=COperation,ParamName=1

�Rose:CParameter:MDLFilename=I\x3A\x5Cparlay\x5C2.1\x5Cmodel\x5Cparlay21pre1.mdl,ParentID=38B05E4603E8,ParentClass=COperation,ParamName=1

�Rose:CParameter:MDLFilename=I\x3A\x5Cparlay\x5C2.1\x5Cmodel\x5Cparlay21pre1.mdl,ParentID=38B05E4603E8,ParentClass=COperation,ParamName=2

�Rose:CParameter:MDLFilename=I\x3A\x5Cparlay\x5C2.1\x5Cmodel\x5Cparlay21pre1.mdl,ParentID=38B05E4603EB,ParentClass=COperation,ParamName=1

�Rose:CParameter:MDLFilename=I\x3A\x5Cparlay\x5C2.1\x5Cmodel\x5Cparlay21pre1.mdl,ParentID=38B05E4603EB,ParentClass=COperation,ParamName=2

�Rose:CParameter:MDLFilename=I\x3A\x5Cparlay\x5C2.1\x5Cmodel\x5Cparlay21pre1.mdl,ParentID=38CFA6D4005C,ParentClass=COperation,ParamName=1

�Rose:CParameter:MDLFilename=I\x3A\x5Cparlay\x5C2.1\x5Cmodel\x5Cparlay21pre1.mdl,ParentID=38CFA6D4005C,ParentClass=COperation,ParamName=2

�Rose:CParameter:MDLFilename=I\x3A\x5Cparlay\x5C2.1\x5Cmodel\x5Cparlay21pre1.mdl,ParentID=38CFA6D4005C,ParentClass=COperation,ParamName=3

�Rose:CParameter:MDLFilename=I\x3A\x5Cparlay\x5C2.1\x5Cmodel\x5Cparlay21pre1.mdl,ParentID=38B05E470008,ParentClass=COperation,ParamName=1

�Rose:CParameter:MDLFilename=I\x3A\x5Cparlay\x5C2.1\x5Cmodel\x5Cparlay21pre1.mdl,ParentID=38B05E470008,ParentClass=COperation,ParamName=2

�Rose:CParameter:MDLFilename=I\x3A\x5Cparlay\x5C2.1\x5Cmodel\x5Cparlay21pre1.mdl,ParentID=38B05E470008,ParentClass=COperation,ParamName=3

_1021960320.doc

IpCall

routeReq()

release()

deassignCall()

getCallInfoReq()

setCallChargePlan()

superviseCallReq()

setAdviceOfCharge()

<<Interface>>

IpAppCallControlManager

callAborted()

callEventNotify()

callNotificationInterrupted()

callNotificationContinued()

<<Interface>>

IpAppCall

routeRes()

routeErr()

getCallInfoRes()

getCallInfoErr()

superviseCallRes()

superviseCallErr()

callFaultDetected()

callEnded()

<<Interface>>

 IpOSA

<<Interface>>

IpCallControlManager

enableCallNotification()

disableCallNotification()

changeCallNotification()

getCriteria()

<<Interface>>

<<uses>>

<<uses>>

1

0..n

1..1

0..n

