19

6
Class diagrams

6.2
Class diagrams for the Framework

This section specifies the class diagrams that define the Framework, and proposes a way to package them.

6.2.1
Top level Framework packages

The top level view of the Framework consists of the following four packages:

[image: image26.wmf]registering service

service registered

registerService

announceServiceAvailability

unregisterService

describeService

Figure 6‑2: Framework top level packages
The first two packages are de-composed in the following way:

[image: image2.wmf]PAppFramework

Consists of

·

PappTrustAndSecurityMgmt

·

PAppIntegrityMgmt

[image: image3.wmf]PFramework

Consists of

·

PServiceDiscovery

·

PTrustAndSecurityMgmt

·

PIntegrityMgmt

For OSA 99 the latter two packages contain only one interface each:

· PFWFramework consists of the Service Registration Interface

· PSvcFramework consists of the Service Factory Interface
The top-level packages are de-composed as described above; between some of the resulting sub-packages there are dependencies, that reflect dependencies between any two classes in the sub-package. The following figure shows all this.

[image: image4.wmf]PAppIntegrityMgmt

PTrustAndSecurityMgmt

PIntegrityMgmt

PAppTrustAndSecurityMgmt

PServiceDiscovery

PAppFramework

PFramework

PFWFramework

PSvcFramework

Figure 6‑3: Framework sub-packages
6.2.2
Service Discovery

[image: image5.wmf]

IpServiceDiscovery

listServiceTypes()

describeServiceType()

discoverService()

listSubscribedServices()

<<Interface>>

Figure 6‑4: Service Discovery Class Diagrams

<<Interface>>

IpServiceDiscovery

listServiceTypes(listTypes: out TpServiceTypeNameListRef) : TpResult

describeServiceType(name: in TpServiceTypeName, serviceTypeDescription: out TpServiceTypeDescriptionRef) : TpResult

discoverService(serviceTypeName: in TpServiceTypeName, desiredPropertyList: in TpServicePropertyList, max: in TpInt32, serviceList: out TpServiceListRef) : TpResult

listSubscribedServices(serviceList: out TpServiceListRef) : TpResult

6.2.3
Trust and Security Management

[image: image6.wmf]IpInitial

initiateAuthentication()

requestAccess()

<<Interface>>

IpAccess

obtainInterface()

obtainInterfaceWithCallback()

accessCheck()

selectService()

signServiceAgreement()

terminateServiceAgreement()

endAccess()

<<Interface>>

IpAppAccess

signServiceAgreement()

terminateServiceAgreement()

terminateAccess()

<<Interface>>

<<uses>>

IpAuthentication

selectAuthMethod()

authenticate()

abortAuthentication()

<<Interface>>

IpAppAuthentication

authenticate()

abortAuthentication()

<<Interface>>

<<uses>>

Figure 6‑5: Trust and Security Management – Application and Framework Class Diagrams

6.2.3.1
IpInitial

<<Interface>>

IpInitial

initiateAuthentication(clientAppID: in TpClientAppID, authType : in TpAuthType, appAuthInterface: in IpOsaRef, fwAuthInterface :out TpFwAuthRef) : TpResult

requestAccess(accessType: in TpAccessType, appAccessInterface; in IpOsaRef, fwAccessInterface: out IpOsaRefRef): TpResult

6.2.3.2
IpAppAuthentication

<<Interface>>

IpAppAuthentication

authenticate(prescribedMethod: in TpAuthCapability, challenge: in TpString, response: out TpStringRef) : TpResult

abortAuthentication() : TpResult

6.2.3.3
IpAuthentication

<<Interface>>

IpAuthentication

selectAuthMethod (authCapability: in TpAuthCapabiltyList, prescribedMethod: out TpAuthCapabilityRef) : TpResult

authenticate (prescribedMethod: in TpAuthCapability, challenge: in TpString, response: out TpStringRef) : TpResult

abortAuthentication() : TpResult

6.2.3.4
IpAccess

<<Interface>>

IpAccess

obtainInterface(interfaceName: in TpInterfaceName, fwInterface: out IpOsaRefRef): TpResult

obtainInterfaceWithCallback(interfaceName: in TpInterfaceName, appInterface: in IpOsaRef, fwInterface: out IpOsaRefRef): TpResult

accessCheck(securityContext:: in TpString, securityDomain: in TpString, group : in TpString, serviceAccessTypes: in TpString, serviceAccessControl: out TpServiceAccessControlRef): TpResult

selectService(serviceID: in TpServiceID, serviceProperties: in TpServicePropertyList, serviceToken: out TpServiceTokenRef): TpResult

signServiceAgreement(serviceToken: in TpServiceToken, agreementText: in TpString, signingAlgorithm: in TpSigningAlgorithm, signatureAndServiceMgr: out TpSignatureAndServiceMgrRef): TpResult

terminateServiceAgreement(serviceToken: in TpServiceToken, terminationText: in TpString, digitalSignature: in TpString): TpResult

endAccess(endAccessProperties: in TpPropertyList) : TpResult

6.2.3.5
IpAppAccess

<<Interface>>

IpAppAccess

signServiceAgreement(serviceToken: in TpServiceToken, agreementText: in TpString, signingAlgorithm: in TpSigningAlgorithm, digitalSignature: out TpStringRef): TpResult

terminateServiceAgreement(serviceToken: in TpServiceToken, terminationText: in TpString, digitalSignature: in TpString): TpResult

terminateAccess(terminationText: in TpString, signingAlgorithm: in TpSigningAlgorithm, digitalSignature: in TpStringRef) : TpResult

6.2.4
Integrity Management

[image: image7.wmf]0..*

IpAppHeartBeatMgmt

enableAppHeartBeat()

disableAppHeartBeat()

changeTimePeriod()

<<Interface>>

IpAppHeartBeat

send()

<<Interface>>

1

IpLoadManager

reportLoad()

queryLoadReq()

queryAppLoadRes()

queryAppLoadErr()

registerLoadController()

unregisterLoadController()

resumeNotification()

suspendNotification()

<<Interface>>

IpAppLoadManager

queryAppLoadManager()

queryLoadRes()

queryLoadErr()

disableLoadControl()

enableLoadControl()

resumeNotification()

suspendNotification()

<<Interface>>

<<uses>>

IpFaultManager

activityTestReq()

appActivityTestRes()

serviceUnavailableInd()

genFaultStatsRecordReq()

<<Interface>>

IpAppFaultManager

activityTestRes()

appActivityTestReq()

fwFaultReportInd()

fwFaultRecoveryInd()

svcUnavailableInd()

genFaultStatsRecordRes()

<<Interface>>

<<uses>>

IpOAM

systemDateTimeQuery()

<<Interface>>

IpAppOAM

systemDateTimeQuery()

<<Interface>>

<<uses>>

IpHeartBeatMgmt

enableHeartBeat()

disableHeartBeat()

changeTimePeriod()

<<Interface>>

<<uses>>

IpHeartBeat

send()

<<Interface>>

<<uses>>

1

0..*

Figure 6‑6: Integrity Management – Application and Framework Class Diagrams

6.2.4.1
IpHeartBeatMgmt

<<Interface>>

IpHeartBeatMgmt

enableHeartBeat(duration: in TpDuration, appInterface: in IpAppHeartBeatRef, session: out TpSessionIDRef) : TpResult

disableHeartBeat(session: in TpSessionID) : TpResult

changeTimePeriod(duration: in TpDuration, session: in TpSessionID) : TpResult

6.2.4.2
IpAppHeartBeatMgmt

<<Interface>>

IpAppHeartBeatMgmt

enableAppHeartBeat(duration: in TpDuration, fwInterface: in IpHeartBeatRef, session: in TpSessionID) : TpResult

disableAppHeartBeat(session: in TpSessionID) : TpResult

changeTimePeriod(duration: TpDuration, session: in TpSessionID) : TpResult

6.2.4.3
IpHeartBeat

<<Interface>>

IpHeartBeat

send(session: in TpSessionID) : TpResult

6.2.4.4
IpAppHeartBeat

<<Interface>>

IpAppHeartBeat

send(session: in TpSessionID) : TpResult

6.2.4.5
IpLoadManager

<<Interface>>

IpLoadManager

reportLoad(requester : in TpClientAppID, loadLevel : in TpLoadLevel) : TpResult

queryLoadReq(requester : in TpClientAppID, serviceIDs: in TpServiceIDList, timeInterval : in TpTimeInterval) : TpResult

queryAppLoadRes(loadStatistics : in TpLoadStatisticList) : TpResult

queryAppLoadErr(loadStatisticsError : in TpLoadStatisticErrorList) : TpResult

registerLoadController(requester : in TpClientAppID, serviceIDs: in TpServiceIDList) : TpResult

unregisterLoadController(requester : in TpClientAppID, serviceIDs: in TpServiceIDList) : TpResult

resumeNotification(serviceIDs: in TpServiceIDList) : TpResult

suspendNotification(serviceIDs: in TpServiceIDList) : TpResult

6.2.4.6
IpAppLoadManager

<<Interface>>

IpAppLoadManager

queryAppLoadReq(serviceIDs: in TpServiceIdList, timeInterval : TpTimeInterval) : TpResult

queryLoadRes(loadStatistics : in TpLoadStatList) : TpResult

queryLoadErr(loadStatisticsError : in TpLoadStatErrList) : TpResult

disableLoadControl(serviceIDs: in TpServiceIdList) : TpResult

enableLoadControl(loadStatistics : in TpLoadStatList) : TpResult

resumeNotification() : TpResult

suspendNotification() : TpResult

6.2.4.7
IpFaultManager

<<Interface>>

IpFaultManager

activityTestReq(activityTestID: in TpActivityTestID, svcID: in TpServiceID, appID: in TpClientAppID): TpResult

appActivityTestRes(activityTestID: in TpActivityTestID, activityTestResult: in TpActivityTestRes): TpResult

svcUnavailableInd(serviceID: in TpServiceID, appID: in TpClientAppID): TpResult

genFaultStatsRecordReq(timePeriod: in TpTimeInterval, serviceIDList: in TpServiceIDList, appID: in TpClientAppID): TpResult

6.2.4.8
IpAppFaultManager

<<Interface>>

IpAppFaultManager

activityTestRes(activityTestID: in TpActivityTestID, activityTestResult: in TpActivityTestRes): TpResult

appActivityTestReq(activityTestID: in TpActivityTestID): TpResult

fwFaultReportInd(fault: in TpInterfaceFault): TpResult

fwFaultRecoveryInd(fault: in TpInterfaceFault): TpResult

svcUnavailableInd(serviceID: in TpServiceID, reason: in TpSvcUnavailReason): TpResult

genFaultStatsRecordRes(faultStatistics: in TpFaultStatsRecord, serviceIDs: in TpServiceIDList): TpResult

6.2.4.9
IpOAM

<<Interface>>

IpOAM

systemDateTimeQuery(clientDateAndTime : in TpDateAndTime, systemDateAndTime: out TpDateAndTimeRef) : TpResult

6.2.4.10
IpAppOAM

<<Interface>>

IpAppOAM

systemDateTimeQuery(clientDateAndTime : in TpDateAndTime, systemDateAndTime: out TpDateAndTimeRef) : TpResult

6.2.5 Service Registration

[image: image1.wmf]PAppFramework

PFramework

PFWFramework

PSvcFramework

Figure 6‑7: Service Registration Class Diagram

[image: image17.wmf]registerService(

serviceTypeName : in

TpServiceTypeName,

servicePropertyList : in

TpServicePropertyList,

serviceID : out

TpServiceID) :

TpResult

IpServiceRegistration

<<Interface>>

announceServiceAvailability(

serviceID : in

TpServiceID,

serviceFactoryRef : in

IpOSA) :

TpResult

unregisterService(

serviceID : in

TpServiceID) :

TpResult

describeService(

serviceID : in

TpServiceID,

serviceDescription : out

TpServiceDescription) :

TpResult

6.2.6 Service Factory

[image: image18.wmf]registerService()

announceServiceAvailability()

unregisterService()

describeService()

IpServiceRegistration

<<Interface>>

Figure 6‑8: Service Factory Class Diagram

[image: image19.wmf]IpSvcFactory

getServiceManager(application : in

TpClientAppID,

serviceManager : out

IpOSA) :

TpResult

<<Interface>>

7
State Transition Diagrams

This section contains the State Transition Diagrams for the objects that implement the interfaces on the gateway side. The State Transition Diagrams show the behaviour of these objects. For each state the methods that can be invoked by the application are shown. Methods not shown for a specific state are not relevant for that state and will return an exception. Apart from the methods that can be invoked by the application also events internal to the gateway or related to network events are shown together with the resulting event or action performed by the gateway. These internal events are shown between quotation marks.

7.1
Framework

7.1.1
IpAuthentication

.[image: image8.wmf]Idle

IpInitial.initiateAuthentication

InitAuthentication

entry/ find auth. mechanism

selectAuthMethod

WaitForApplicationResult

entry/ ^IpAppAuthentication.Authenticate

Application Authenticated

ALL

STATES

authenticate ^result Authenticate(response)

authenticate ^result Authenticate(response)

"no mechanism found" ^result selectAuthMethod(P_INVALID_AUTH_CAPABILITY)

"mechanism found"[[two way authentication] ^result selectAuthenticationMethod(prescribedMethod)

"mechanism found"[one way authentication] / inform IpInitial that application authenticated

abortAuthentication / inform IpInitial that application aborted authentication

result Authenticate[response valid] / inform IpInitial that application authenticated

result Authenticate[response invalid]

IpAccess.endAccess

Figure 7-1: State Transition Diagram for Authentication
7.1.1.1
Idle state

When the application has requested the IpInitial interface class for initiateAuthentication, an object implementing the IpAuthentication interface class is created. The application now has to provide it’s authentication capabilities by invoking the SelectAuthMethod method.

7.1.1.2
Init Authentication state

In this state the Framework selects the preferred authentication mechanism within the capability of the application. When a proper mechanism is found, the Framework can decide that the application doesn’t have to be authenticated (one way authentication) or that the application has to be authenticated. In case no mechanism can be found the error code P_INVALID_AUTH_CAPABILITY) is returned and the Authentication object is destroyed. This implies that the application has to re-initiate the authentication by calling once more the initiateAuthentication method on the IpInitial interface class.

7.1.1.3
Wait For Application Result state

When entering this state, the Framework requests the application to authenticate itself by invoking the Authenticate method on the application. In case the application requests the Framework to authenticate itself by invoking Authenticate on the IpAuthentication interface, the Framework provides the correct response to the challenge of the application. When the Framework responds to the Authenticate request, the response is analysed and in case the response is valid a transition to the state Application Authenticated is made. In case the response is not valid, the Authentication object is destroyed. This implicates that the application has to re-initiate the authentication by calling once more the initiateAuthentication method on the IpInitial interface class.

7.1.1.4
Application Authenticated state

In this state the application is considered authenticated and is now allowed to request access to an instance of the IpAccess interface class. In case the application requests the Framework to authenticate itself by invoking Authenticate on the IpAuthentication interface class, the Framework provides the correct response to the challenge of the application.

7.1.2
IpAccess

[image: image9.emf]Active

IpInitial.requestAccess

obtainInterface / return requested FW interface

obtainInterfaceWithCallback / return requested FW interface

accessCheck / return whether application has access to requested service

selectService ^signServiceAgreement

signServiceAgreement[correct service selected] / get Service manager from Service Factory and return to application

terminateServiceAgreement / destroy Service manager object

endAccess / destroy all interface objects used by the application

network operator initiated endAccess / destroy all interface objects used by the application

Figure 7-2: State Transition Diagram for Access
7.1.2.1
Active state

When the application requests access to the Framework on the IpInitial interface class, an object implementing the IpAccess interface class is created. The application can now request other Framework SCFs, including the Service Discovery SCF. When the application is no longer interested in using the SCFs it calls the endAccess method. This results in the destruction of all interface objects used by the application. In case the network operator decides that the application has no longer access to the SCFs the same will happen.

7.1.3
IpServiceDiscovery

[image: image10.emf]Active

obtainFrameworkInterface(discoveryService)

obtainInterfaceWithCallback(discoveryService)

listServiceTypes

describeServiceType

listSubscribedServices

discoverService

IpAccess.endAccess

Figure 7-3: State Transition Diagram for Service Discovery
7.1.3.1
Active state

When the application requests for the Service Discovery SCF by invoking the obtainInterface or the obtainInterfaceWithCallback methods on the IpAccess interface class, an instance of the IpServiceDiscovery will be created. Next the application is allowed to request a list of the provided SCFs and to obtain a reference to instances of interfaces of SCFs.

7.1.4
IpLoadManager

[image: image11.wmf]IDLE

Notifying

do/ obtain load statistics and report them at specified interval with queryLoadRes

Suspending

Notification

reportLoad

Registered

IpAccess.obtainInterface

queryAppLoadRes[load statistics requested by LoadManager]

queryAppLoadErr[load statistics requested by LoadManager]

queryLoadReq

reportLoad

queryAppLoadRes[load statistics requested by LoadManager]

queryAppLoadErr[load statistics requested by LoadManager]

reportLoad

queryAppLoadRes[load statistics requested by LoadManager]

queryAppLoadErr[load statistics requested by LoadManager]

queryLoadReq

unregisterLoadController

registerLoadController

suspendNotification[all notifications suspendend]

unregisterLoadController

queryLoadRes[final load statistics report]

queryLoadErr[final load statistics report]

IpAccess.obtainInterfaceWithCallback

resumeNotification

unregisterLoadController

All States

IpAccess.endAccess

Figure 7-4: State Transition Diagram for LoadManager

7.1.4.1
Idle State

In this state the application has obtained an interface reference of the LoadManager from the IpAccess interface.

7.1.4.2
Registered State

In this state the application has registered for load control with the method RegisterLoadController(). The Loadmanager can now request the application to supply load statistics information (by invoking queryAppLoadReq()). Furthermore the LoadManager can request the application to control its load (by invoking enableLoadControl() or suspendNotification() on the application side of interface). In case the application detects a change in load level, it reports this to the LoadManager by calling the method reportLoad().

When entering this state, an object called LoadManagerInternal is created that has an internal state machine encapsulating the internal behaviour of the LoadManager. The State Transition Diagram of LoadManagerInternal is shown in Figure .

7.1.4.3
Notifying

In the Notifying state the application has requested for load statistics. The Loadmanager gathers the requested information and (periodically) reports them to the application.

7.1.4.4
Suspending Notification

Due to e.g. a temporary load condition, the application has requested the LoadManager to suspend sending the load statistics information.

[image: image12.wmf]Normal load

Application Overload

entry/ evaluate policy and perform necessary actions

exit/ cancel performed actions

A necessary action can

be suspending the load

notifictions to the

application or enabling

load control mechanisms

on certain services.

Internal overload

entry/ evaluate policy and perform necessary actions

exit/ cancel performed actions

A necessary action can be

suspending the load

notifictions from the

application by invoking

suspendNotification or

enabling load control

mechanisms on the

application by invoking

enableLoadControl.

Internal and Application Overload

entry/ evaluate policy and perform necessary actions

exit/ cancel performed actions

reportLoad[loadlevel != 0]

reportLoad[loadlevel = 0]

"internal load change detection"

"internal load change to non overloaded"

"internal load change to non overload"

reportLoad[loadlevel = 0]

reportLoad[loadlevel != 0]

"internal load change detection"

ALL

STATES

unregisterLoadController

registerLoadController

Figure 7-5: State Transition Diagram for the LoadManagerInternal

7.1.4.5
Normal Load state

In this state the none of the entities defined in the load balancing policy between the application and the framework / SCFs is overloaded.

7.1.4.6
Application overload state

In this state the application has indicated it is overloaded. When entering this state the load policy is consulted and the appropriate actions are taken by the LoadManager.

7.1.4.7
Internal overload

In this state the Framework or one or more of the SCFs within the specific load policy is overloaded. When entering this state the load policy is consulted and the appropriate actions are taken by the LoadManager.

7.1.4.8
Internal and application overload

In this state the application is overloaded as well as the Framework or one or more of the SCFs within the specific load policy. When entering this state the load policy is consulted and the appropriate actions are taken by the LoadManager.

7.1.5
IPFaultManager

[image: image13.wmf]FW

ACTIVE

FWFAULTY

entry/ ^

fwFaultReportInd to all applications with callback

exit/ ^

fwFaultRecoveryInd to all applications with callback

FW ACTIVITY TEST

entry/ test activity of framework

exit/ ^

app,activityTestRes

SVC ACTIVITY TEST

entry/ test activity of services

exit/ ^

app,activityTestRes

genFaultStatsRecordReq ^

app.genFaultStatsRecordRes

srvUnavailableInd / test the service, inform service that application is not using it

'

service fault' / ^

serviceUnavailableInd to all application using the service

IpAccess.obtainFrameworkInterfaceWithCallback

("

FaultManagement") / add application to fault management

fault detected in

fw

fault resolved

IpAccess.endAccess / remove application from load management

activityTestReq [null]

fault detected in

fw

no fault detected

service fault ^

srvUnavailableInd to all applications using the service

no fault detected

activityTestReq [

scfID]

IpAccess.endAccess/

Abort pending test request

IpAccess.endAccess/

Abort pending test request

IpAccess.endAccess

Figure 7-6: State Transition Diagram for Fault Manager
7.1.5.1
Framework Active state

This is the normal state of the framework, which is fully functional and able to handle requests from both applications and service capability features.

7.1.5.2
Framework Faulty state

In this state, the framework has detected an internal problem with itself such that application and service capability features cannot communicate with it anymore; attempts to invoke any methods that belongs to any SCFs of the framework return an error. If the framework ever recovers, applications with fault management callbacks will be notified via a fwFaultRecoveryInd message.

7.1.5.3
The Service Activity Test state

In this state, the framework is performing a test on one service capability feature. If the SCF is faulty, applications with fault management callbacks are notified accordingly through a svcUnavailableInd message.

7.1.5.4
The Framework Activity Test state

In this state, the framework is performing self-diagnostic tests. If a problem is diagnosed, all applications with fault management callbacks are notified through a fwFaultReportInd message.

7.1.6
IpHeartbeatmgmt

[image: image14.wmf]Application not

Application supervised

enableHeartBeat

IpAccess.obtainInterface

IpAccess.obtainInterfaceWithCallback

IpAccess.endAccess

disableHeartBeat

IpAccess.endAccess

changeTimePeriod

Figure 7-7: State Transition Diagram for the Heartbeat manager

7.1.6.1
Application not supervised

In this state the application has not registered for heartbeat supervision by the Framework.

7.1.6.2
Application supervised

In this state the application has registered for heartbeat supervision by the Framework. Periodically the Framework will request for the application heartbeat by calling the send method on the IpAppHeartBeat interface.

7.1.7
IpHeartBeat

[image: image15.emf]FW supervised by

Application

IpAppHeartBeatMgmt.enableAppHeartBeat

send / return heartbeat

IpAppHeartBeatMgmt.disableAppHeartBeat

IpAccess.endAccess

Figure 7-8: State Transition Diagram for HeartBeat
7.1.7.1
FW Supervised by Application state

In this state the Framework has requested the application for heartbeat supervision on itself. Periodically the application calls the send() method and the Framework returns it’s heartbeat result.

7.1.8
IpOAM

[image: image16.emf]Active

systemDateTimeQuery

IpAccess.endAccess

IpAccess.obtainInterface

IpAccess.obtainInterfaceWithCallback

Figure 7-9: State Transition Diagram for OAM
7.1.8.1
Active state

In this state the application has obtained a reference to the IpOAM interface. The application is now able to request the date / time of the Framework.
[image: image20.wmf]getServiceManager()

IpSvcFactory

<<Interface>>

7.1.9. IpServiceRegistration

Figure 7-10: State Transition Diagram for Service Registration
7.1.9.1. Registering Service
This is the state entered when a service starts its registration in the Framework, by informing it of the existence of a service characterised by a service type and a set of service properties. As a result the Framework associates a service ID to this service, that will be used to identify it by both sides. When receiving this ID, the service instantiates a manager interface for this service, which will be the entry point for applications that want to use it.
7.1.9.2. Service Registered

This is the state entered when, the service manager interface having been instantiated, the service informs the Framework of the availability of the service, and makes it actually available by providing the Framework with the manager interfaces to be used by applications. Anytime the service availability may be withdrawn by un-registering it.
8
Data Definitions

8.2
Framework Data Definitions

Editor’s note: framework data definitions have not changed
9
IDL Interface Definitions

Editor’s note: IDLs for the new interfaces to be added when the rest is agreed
The OSA API definitions have been divided into several CORBA modules. The common data definitions are placed in the root module while each of the specific service capability feature API definitions are being assigned their own module directly under that root. Each specific SCF functions, like User Status, have their data and interface definitions collocated. This structure has the advantage that explicit scoping is kept to a minimum.

The IDLs defined for the specific SCFs assumes that the OSA common definitions (interfaces and data) are provided in the org.threegpp.osa module within a file name called OSA.idl

Module Name
Description
IDL file name

org.threegpp.osa
Common data/interface definitions
OSA.idl

org.threegpp.osa.mm
Common mobility data definitions (root)
MM.idl

org.threegpp.osa.mm.ul
Network User Location (UL)
MMul.idl

org.threegpp.osa.mm.us
User Status (US)
MMus.idl

org.threegpp.osa.cc
Call Control
CC.idl

org.threegpp.osa.ui
User Interaction
UI.idl

org.threegpp.osa.termcap
Terminal Capabilities
TERMCAP.idl

9.2
Framework IDL

9.2.1
Common Data Types for the Framework

#include <OSA.idl>

module org{

 module threegpp{

 module osa{

 module fw{

typedef TpString
 TpClientAppID; // Identifies the client appl to the framework.

typedef sequence
 <TpClientAppID> TpClientAppIDList;

typedef TpString TpEntOpID;

typedef sequence
 < TpEntOpID >
 TpEntOpIDList;

typedef TpString

TpServiceID;
// A string of characters, generated

// automatically by the Framework and

// comprising a TpUniqueServiceNumber,

// TpServiceNameString, and a number of

// relevant TpServiceSpecString,

// concatenated using a forward

// separator (/), that uniquely

// identifies an instance of a

// SCF interface.

typedef sequence <TpServiceID>

TpServiceIDList;

typedef TpString

TpServiceNameString;

// Uniquely identifies the name

// of a SCF interface. For

// OSA release 99 the following

// values have been defined:

// NULL (no SCF name),

// P_CALL_CONTROL,

// P_USER_INTERACTION,

// P_USER_LOCATION,

//P_TERMINAL_CAPABILITIES and

// P_USER_STATUS.

typedef TpString

TpServiceSpecString;

// Uniquely identifies the name

// of a SCF specialisation

// interface. For OSA release 99

// the following values have

// been defined: NULL (no

// SCF specialisation) and

// P_CALL.

typedef TpString

TpUniqueServiceNumber;

// A string of characters that

// represents a unique number.

enum TpServicePropertyMode {

NORMAL,

// The value of the corresponding SCF property

// type may optionally be provided.

MANDATORY,

// The value of the corresponding SCF property

// type must be provided at SCF registration.

READONLY,

// The value of the corresponding SCF property

// is optional, but once given a value it may not be

// modified.

MANDATORY_READONLY

// The value of the corresponding SCF property

// type must be provided and may not be modified

// subsequently.

};

typedef TpString

TpServicePropertyTypeName;

typedef TpString

TpServicePropertyName;

typedef sequence <TpServicePropertyName>
TpServicePropertyNameList;

typedef TpString

TpServicePropertyValue;

typedef sequence <TpServicePropertyValue>
TpServicePropertyValueList;

struct TpServiceProperty {

// Describes a SCF property

TpServicePropertyName

ServicePropertyName;

TpServicePropertyValueList
ServicePropertyValueList;

TpServicePropertyMode

ServicePropertyMode;

};

typedef sequence <TpServiceProperty>

TpServicePropertyList;

typedef TpString

TpServiceTypeName;

typedef sequence <TpServiceTypeName>

TpServiceTypeNameList;

struct TpService {

// Describes a registered SCF.

TpServiceID

ServiceID;

TpServicePropertyList
ServicePropertyList;

};

typedef sequence <TpService>
TpServiceList;

struct TpServiceDescription {

// Describes the properties of a registered SCF.

TpServiceTypeName
ServiceTypeName;

TpServicePropertyList
ServicePropertyList;

};

struct TpPropertyStruct {

// Describes a SCF property.

TpServiceTypeName

ServicePropertyName;

TpServicePropertyMode

ServicePropertyMode;

TpServicePropertyTypeName
ServicePropertyTypeName;

};

typedef sequence <TpPropertyStruct>
TpPropertyStructList;

struct TpServiceTypeDescription {

// Describes a SCF type.

TpPropertyStructList

PropertyStructList;

TpServiceTypeNameList

ServiceTypeNameList;

TpBoolean

EnabledOrDisabled;

};

};};};};

9.2.2
Service Discovery IDL

#include <fw.idl>

module org{

module threegpp{

module osa{

module fw{

module discovery{

/***/

// Interface definitions //

/***/

/* The Service Discovery Framework SCF interface is used by the client application to

know what types of services are supported by the Framework, and what are their

properties; and to obtain the services its subscription allows access to. */

interface IpServiceDiscovery : IpOsa {

 /* This method is invoked by the client application to obtain the names of all service

 types that are in the Framework repository. */

 void listServiceTypes (

 out TpServiceTypeNameList listTypes // The names of the requested service types.

) raises (TpGeneralException);

 /* This method is invoked by the client application to obtain the detailed description of

 a particular service type. */

 void describeServiceType (

 in TpServiceTypeName name,
// Identifies the service

// type to be described.

 out TpServiceTypeDescription serviceTypeDescription

// Describes the

// specified service

// type.

) raises (TpGeneralException);

 /* This method is invoked by the client application to obtain the IDs of the services

 that meet its requirements. */

 void discoverService (

 in TpServiceTypeName serviceTypeName, // Type of the required service.

 in TpServicePropertyList desiredPropertyList, // Properties that the discovered set

// of SCFs should satisfy.

 in TpInt32 max, // Maximum number of SCFs that are

// to be returned.

 out TpServiceList serviceList // A list of matching SCFs.

) raises (TpGeneralException);

 /* This method is invoked by the client application to obtain a list of subscribed

 SCFs that they are allowed to access. */

 void listSubscribedServices (

 out TpServiceList serviceList // A list of subscribed SCFs.

) raises (TpGeneralException);

};

};};};};};

9.2.3
Trust and Security Management IDL

#include <fw.idl>

module org{

module threegpp{

module osa{

module fw{

module trust_and_security{

/***/

// Data definitions //

/***/

typedef TpString

TpAccessType;

// The type of access interface

// requested by the client application. // For OSA release 99 the following

// values have been defined: NULL

// (indicates the default access

// type) and P_ACCESS.

typedef TpString

TpAuthType;

// The type of authentication mechanism

// requested by the client. For OSA

// release 99 the following values have

// been defined: NULL (indicates OSA

// authentication), P_AUTHENTICATION

// (indicates use of the OSA

// authentication interfaces.

typedef TpString
TpAuthCapability;

// The authentication capabilities that

// could be supported by the OSA. For

// OSA release 99 the following values

// have been defined: NULL (indicates no

// client capabilities, P_DES_56,

// P_RSA_512 and P_RSA_1024).

typedef TpString

TpAuthCapabilityList;
// A string of multiple TpAuthCapability

// concatenated using a commas.

typedef TpString

TpInterfaceName;
// Identifies the names of the framework

// SCFs that are be supported by

// the OSA API. For release 99 these are // NULL, P_DISCOVERY, P_OAM,

// P_TRUST_AND_SECURITY_MANAGEMENT

// P_INTEGRITY_MANAGEMENT.

struct TpServiceAccessControl {

TpString

Policy;

// Access control policy information

// controlling access to the service

// feature.

TpString

TrustLevel;

// The level of trust that the network

// operator has assigned to the client

// application.

};

typedef TpString

TpServiceToken;
// Uniquely identifies a SCF.

struct TpSignatureAndServiceMgrRef {

TpString

DigitalSignature;

// The digital signature of the

// Framework for the service

// agreement.

IpOsa

ServiceMgrInterface;

};

typedef TpString

TpSigningAlgorithm;

// Identifies the signing

// algorithm that must be used.

// For OSA release 99 the

// following values have been

// defined: NULL (indicates

// no signing algorithm is

// required), P_MD5_RSA_512 and

// P_MD5_RSA_1024.

typedef TpString

TpFwID;

struct TpFwAuth {

TpFwID
FwID;

IpOsa
FwAuthInterface;

};

/***/

// Interface definitions //

/***/

/* The Initial Framework interface is used by the client application to initiate the mutual

authentication with the Framework and, when this is finished successfully, to request access

to it. */

interface IpInitial : IpOsa {

/* This method is invoked by the client application to start the process of mutual

authentication with the framework, and request the use of a specific authentication method.

*/

void initiateAuthentication (

in TpClientAppID clientAppID,
// Identifies the client to the framework.

in TpAuthType authType,
// Allows the client application to request a

// specific type of authentication mechanism.

in IpOsa appAuthInterface,

// Provides a reference to the client

// application authentication interface.

out TpFwAuth fwAuthInterface
// Provides a framework identifier, and a

// reference to framework authentication

// interface.

) raises (TpGeneralException);

/* This method is invoked by the client application, once mutual authentication is

achieved, to request access to the framework and specify the type of access desired. */

void requestAccess (

in TpAccessType accessType,
// Identifies the type of access interface

// requested by the client application.

in IpOsa appAccessInterface,

// Provides a reference to the access interface

// of the client application.

out IpOsa fwAccessInterface

// Provides a reference to call the access

// interface of the framework.

) raises (TpGeneralException);

};

/* The Access Framework interface is used by the client application to perform the mechanisms necessary for it to obtain access to SCFs. */

interface IpAccess : IpOsa {

/* This method is invoked by the client application to obtain interface references to other framework interfaces. */

void obtainInterface (

in TpInterfaceName interfaceName,
// The name of the framework interface to which a

// reference to the interface is requested.

out IpOsa fwInterface

// The requested interface reference.

) raises (TpGeneralException);

/* This method is invoked by the client application to obtain interface references to other framework interfaces, when it is required to supply a callback interface to the framework. */

void obtainInterfaceWithCallback (

in TpInterfaceName interfaceName,
// The name of the framework interface to which

// a reference to the interface is requested.

in IpOsa appInterface,

// This is the reference to the client

// application interface which is used for

// callbacks.

out IpOsa fwInterface

// The requested interface reference.

) raises (TpGeneralException);

/* This method may be invoked by the client application to check whether it has been

granted permission to access the specified SCF and, if granted, the level of trust that

will be applied. */

void accessCheck (

in TpString securityContext,
// A group of security relevant

// attributes.

in TpString securityDomain,
// The security domain in which

// the client application is

// operating.

in TpString group,
// Used to define the access

// rights associated with all

// clients that belong to that

// group.

in TpString serviceAccessTypes,
// Defined by the specific

// security model in use.

out TpServiceAccessControl serviceAccessControl

// The access control policy

// information controlling

// access to the service

//capability

// feature, and the trustLevel

// that the network operator

// has assigned to the client

// application.

) raises (TpGeneralException);

/* This method is invoked by the client application to identify the SCF that it wishes

to use. */

void selectService (

in TpServiceID serviceID,
// Identifies the SCF.

in TpServicePropertyList serviceProperties,
// List the properties that the SCF

// should support.

out TpServiceToken serviceToken

// A free format text token returned by

// the framework, which can be signed as

// part of a service agreement.

) raises (TpGeneralException);

/* This method is invoked by the client application to request that the framework sign an

agreement on the SCF, which allows the client application to use the SCF. */

void signServiceAgreement (

in TpServiceToken serviceToken,
// Used to identify the SCF

// instance requested by the

// client application.

in TpString agreementText,
// The agreement text to be

// signed by the framework.

in TpSigningAlgorithm signingAlgorithm,
// The algorithm used to compute

// the digital signature.

out TpSignatureAndServiceMgrRef signatureAndServiceMgr
// A reference to a structure

// that contains the digital

// signature of the framework

// for the service agreement,

// and a reference to the

// SCF manager interface of

// the SCF.

) raises (TpGeneralException);

/* This method is invoked by the client application to terminate an agreement for the

specified SCF. */

void terminateServiceAgreement (

in TpServiceToken serviceToken,
// Identifies the service agreement to be terminated.

in TpString terminationText,
// Describes the reason for the termination of the

// service agreement.

in TpString digitalSignature
// Used by the framework to check that the

// terminationText has been signed by the client.

) raises (TpGeneralException);

/* This method is invoked by the client application to end the access session

with the Framework. */

void endAccess () raises (TpGeneralException);

};

/* The Access client application interface is used by the Framework to perform the steps that are necessary in order to allow it to SCF access. */

interface IpAppAccess : IpOsa {

/* This method is invoked by the Framework to request that client application sign an agreement on a specified SCF. */

void signServiceAgreement (

in TpServiceToken serviceToken,
// Identifies the SCF instance to which

// this service agreement corresponds.

in TpString agreementText,
// Agreement text that has to be signed by the

// client application.

in TpSigningAlgorithm signingAlgorithm,
// Algorithm used to compute the digital

// signature.

out TpString digitalSignature
// Signed version of a hash of the service

// token and agreement text given by the

// framework.

) raises (TpGeneralException);

/* This method is invoked by the Framework to terminate an agreement for a specified

SCF. */

void terminateServiceAgreement (

in TpServiceToken serviceToken,

// Identifies the SCF agreement to be

// terminated.

in TpString terminationText,
// Describes the reason for the termination.

in TpString digitalSignature
// Used by the Framework to confirm its

// identity to the client.

) raises (TpGeneralException);

/* This method is invoked by the Framework to end the client application's access session

with the framework. */

void terminateAccess (

in TpString terminationText,
// Describes the reason for the termination of

// the access session.

in TpSigningAlgorithm signingAlgorithm,
// The algorithm used to compute the digital

// signature.

in TpString digitalSignature
// Used by the Framework to confirm its

// identity to the client.

) raises (TpGeneralException);

};

/* The Authentication Framework interface is used by client application to perform its part of

the mutual authentication process with the Framework necessary to be allowed to use any of the

other interfaces supported by the Framework. */

interface IpAuthentication : IpOsa {

/* This method is invoked by the client application to start the authentication process,

informed the Framework of the authentication mechanisms it supports, and be informed by its

of its preferred choice. */

void selectAuthMethod (

in TpAuthCapabilityList authCapability,
// Informs the Framework of the authentication

// mechanisms supported by the client

// application.

out TpAuthCapability prescribedMethod
// Indicates the mechanism preferred by the

// framework.

) raises (TpGeneralException);

/* This method is invoked by the client application to authenticate the framework using the

mechanism indicated in the parameter prescribedMethod. */

void authenticate (

in TpAuthCapability prescribedMethod,
// Specifies the method accepted by that the

// framework for authentication.

in TpString challenge,
// The challenge presented by the client

// application to be responded to by the

// framework.

out TpString response
// The response of the framework to the

// challenge of the client application.

) raises (TpGeneralException);

/* This method is invoked by the client application to to abort the authentication process.

void abortAuthentication() raises (TpGeneralException);

};

/* The Authentication client application interface is used by the Framework to authenticate the client application. */

interface IpAppAuthentication : IpOsa {

/* This method is invoked by the Framework to authenticate the client application using the

mechanism indicated in prescribedMethod. */

void authenticate (

in TpAuthCapability prescribedMethod,
// The agreed authentication method.

in TpString challenge,

// The challenge presented by the Framework.

out TpString response

) raises (TpGeneralException);

/* This method is invoked by the Framework to abort the authentication process. */

void abortAuthentication() raises (TpGeneralException);

};

};};};};};

9.2.4
Integrity Management IDL

#include <fw.idl>

module org{

module threegpp{

module osa{

module fw{

module integrity{

/***/

// Data definitions //

/***/

typedef TpString

TpActivityTestRes;

// An implementation specific

// result, whose values are

// Framework provider specific.

struct TpTimeInterval {

// A time interval.

TpDateAndTime

StartTime;

TpDateAndTime

StopTime;

};

enum TpInterfaceFault {

// The cause of the interface fault detected.

INTERFACE_FAULT_UNDEFINED,

// Undefined.

INTERFACE_FAULT_LOCAL_FAILURE,
// A fault in the local API software or

// hardware has been detected.

INTERFACE_FAULT_GATEWAY_FAILURE,
// A fault in the gateway API software

// or hardware has been detected.

INTERFACE_FAULT_PROTOCOL_ERROR
// An error in the protocol used on the

// client-gateway link has been detected.

};

struct TpFaultStatsSet {

// Statistics on a per fault type basis.

TpInterfaceFault
Fault;

TpInt32

Occurrences;

// The number of separate

// instances of this fault

// during the period.

TpInt32

MaxDuration;

// The duration in seconds of

// the longest fault.

TpInt32

TotalDuration;

// The cumulative total during

// the period.

TpInt32

NumberOfClientsAffected;
// Those informed of the fault

// by the Framework.

};

struct TpFaultStatsRecord {

// The set of fault information records to be returned

// for the requested time period.

TpTimeInterval

Period;

TpFaultStatsSet
FaultRecords;

};

typedef TpInt32

TpActivityTestID;
// Used as a token to match activity

// test requests with their results.

enum TpSvcUnavailReason {

// The reason why a SCF is unavailable.

SERVICE_UNAVAILABLE_UNDEFINED,

// Undefined.

SERVICE_UNAVAILABLE_LOCAL_FAILURE,

// The local API software or hardware

// has failed.

SERVICE_UNAVAILABLE_GATEWAY_FAILURE,

// The gateway API software or

// hardware has failed.

SERVICE_UNAVAILABLE_OVERLOADED,

// The SCF is fully overloaded.

SERVICE_UNAVAILABLE_CLOSED

// The SCF has closed itself.

};

enum TpAPIUnavailReason {

// The reason why the API is unavailable.

API_UNAVAILABLE_UNDEFINED,

// Undefined.

API_UNAVAILABLE_LOCAL_FAILURE,
// The local API software or hardware

// has failed.

API_UNAVAILABLE_GATEWAY_FAILURE,
// The gateway API software or

// hardware has failed.

API_UNAVAILABLE_OVERLOADED,

// The gateway is fully overloaded.

API_UNAVAILABLE_CLOSED,

// The gateway has closed itself.

API_UNAVAILABLE_PROTOCOL_FAILURE
// The protocol used on the client-gateway

// link has failed.

};

enum TpLoadLevel {

// The load level values.

LOAD_LEVEL_NORMAL,

// Normal load.

LOAD_LEVEL_OVERLOAD,

// Overload.

LOAD_LEVEL_SEVERE_OVERLOAD

// Severe overload.

};

struct TpLoadThreshold{

// The load threshold value.

TpFloat

LoadThreshold;

};

struct TpLoadInitVal {
// The pair of load level and associated load threshold values.

TpLoadLevel

LoadLevel;

TpLoadThreshold
LoadThreshold;

};

struct TpLoadPolicy {

// The load balancing policy.

TpString

LoadPolicy;

};

struct TpLoadStatistic {

// The load statistic record at given

// timestamp.

TpServiceID

ServiceID;

TpFloat

LoadValue;

// Expressed in percentage.

TpLoadLevel

LoadLevel;

TpDateAndTime

TimeStamp;

};

typedef sequence <TpLoadStatistic>
TpLoadStatisticList;

enum TpLoadStatusError {

// The error code for getting the load status.

LOAD_STATUS_ERROR_UNDEFINED,

// Undefined error.

LOAD_STATUS_ERROR_UNAVAILABLE

// Unable to get the load status.

};

struct TpLoadStatisticError {

// The error for getting the load status at

// given timestamp.

TpServiceID

ServiceID;

TpFloat

LoadStatusError;

TpDateAndTime

TimeStamp;

};

typedef sequence <TpLoadStatisticError>
TpLoadStatisticErrorList;

/***/

// Interface definitions //

/***/

/* The Heartbeat Framework interface is used by the client application to supervise the

Framework or a SCF. */

interface IpHeartBeat : IpOsa {

/* This method is invoked by the client application to make the service or Framework

supervision. */

void send (

in TpSessionID session
// The heartbeat session.

) raises (TpGeneralException);

};

/* The Heartbeat client application interface is used by the Framework to supervise the client

application. */

interface IpAppHeartBeat : IpOsa {

/* This method is invoked by the Framework to make the client application supervision. */

void send (

in TpSessionID session
// The heartbeat session.

) raises (TpGeneralException);

};

/* The Heartbeat Management Framework interface is used by the client application to

initialise a heartbeat supervision of the client application. */

interface IpHeartBeatMgmt : IpOsa {

/* This method is invoked by the client application to register at the Framework for

heartbeat supervision. */

void enableHeartBeat (

in TpDuration duration,
// Duration in milliseconds between heartbeats.

in IpAppHeartBeat appInterface,

// The callback interface the heartbeat is

// calling.

out TpSessionID session

// The heartbeat session.

) raises (TpGeneralException);

/* This method is invoked by the client application to stop its heartbeat supervision. */

void disableHeartBeat (

in TpSessionID session
// The heartbeat session.

) raises (TpGeneralException);

/* This method is invoked by the client application to change the heartbeat period. */

void changeTimePeriod (

in TpDuration duration,
// Duration in milliseconds between heartbeats.

in TpSessionID session
// The heartbeat session.

) raises (TpGeneralException);

};

/* The Heartbeat Management client application interface is used by the Framework to initialise its heartbeat supervision of the Framework. */

interface IpAppHeartBeatMgmt : IpOsa {

/* This method is invoked by the Framework to register at the client application for its

heartbeat supervision. */

void enableAppHeartBeat (

in TpDuration duration,

// Time interval in milliseconds between the

// heartbeats.

in IpHeartBeat fwInterface,
// The callback interface the heartbeat is calling.

in TpSessionID session
// The heartbeat session.

) raises (TpGeneralException);

/* This method is invoked by the Framework to stop the heartbeat supervision by the

application. */

void disableAppHeartBeat (

in TpSessionID session
// The heartbeat session.

) raises (TpGeneralException);

/* This method is invoked by the Framework to change the heartbeat period. */

void changeTimePeriod (

in TpDuration duration,
// Interval in milliseconds between the heartbeats.

in TpSessionID session
// The heartbeat session.

) raises (TpGeneralException);

};

/* The Load Manager Framework interface is used by the client application for load balancing

management. */

interface IpLoadManager : IpOsa {

/* This method is invoked by the client application to notify framework its current load

level (0,1, or 2) when the load level on the application has changed. */

void reportLoad (

in TpClientAppID requester,
// The identifier of the client application for

// callbacks from the load balancing SCF.

in TpLoadLevel loadLevel
// The application's load level.

) raises (TpGeneralException);

/* This method is invoked by the client application to request load statistic records for

the framework and specified SCFs. */

void queryLoadReq (

in TpClientAppID requester,
// The identifier of the client application for

// callbacks from the load balancing SCF.

in TpServiceIDList serviceIDs,
// Specifies the framework and SCFs for which the

// load statistics shall be reported.

in TpTimeInterval timeInterval
// The time interval within which the load statistics

// are generated.

) raises (TpGeneralException);

/* This method is invoked by the client application to report load statistics back to the

framework that requested the information. */

void queryAppLoadRes (

in TpLoadStatisticList loadStatistics
// The application's load statistics.

) raises (TpGeneralException);

/* This method is invoked by the client application to return an error response to the

framework that requested the application's load statistics information. */

void queryAppLoadErr (

in TpLoadStatisticErrorList loadStatisticsError
// The error code associated with the

// failed attempt to retrieve the

// application's load statistics.

) raises (TpGeneralException);

/* This method is invoked by the client application to register the client application for

load management under various load conditions. */

void registerLoadController (

in TpClientAppID requester,
// Identifies the client application for callbacks from

// the load balancing SCF.

in TpServiceIDList serviceIDs
// Specifies the framework and SCFs to be

// registered for load control.

) raises (TpGeneralException);

/* This method is invoked by the client application to unregister for load management. */

void unregisterLoadController (

in TpClientAppID requester,

// Identifies the client application for callbacks from

// the load balancing SCF.

in TpServiceIDList serviceIDs // Specifies the framework or SCFs to be

// unregistered for load control.

) raises (TpGeneralException);

/* This method is invoked by the client application to resume load management notifications

to it from the framework and specified SCFs. */

void resumeNotification (

in TpServiceIDList serviceIDs
// Specifies the framework and SCFs for which

// notifications are to be resumed.

) raises (TpGeneralException);

/* This method is invoked by the client application to suspend load management

notifications to it from the framework and specified SCFs, while it handles a temporary

load condition. */

void suspendNotification (

in TpServiceIDList serviceIDs
// Specifies the framework and SCFs for which

// notifications are to be suspended.

) raises (TpGeneralException);

};

/* The Load Manager client application interface is used by the Framework to access the

application load balancing SCF. */

interface IpAppLoadManager : IpOsa {

/* This method is invoked by the Framework to request for load statistic records produced

by a specified application. */

void queryAppLoadReq (

in TpServiceIDList serviceIDs,
// Specifies the SCFs or application for which the

// load statistics shall be reported.

in TpTimeInterval timeInterval
// The time interval within which the load statistics

// are generated.

) raises (TpGeneralException);

/* This method is invoked by the Framework to return load statistics to the application

which requested the information. */

void queryLoadRes (

in TpLoadStatisticList loadStatistics
// The load statistics supplied by the

// Framework.

) raises (TpGeneralException);

/* This method is invoked by the Framework to return an error code to the application that

requested load statistics. */

void queryLoadErr (

in TpLoadStatisticErrorList loadStatisticsError
// The error code supplied by the

// Framework.

) raises (TpGeneralException);

/* This method is invoked by the Framework to disable load control activity at the client

application based on policy, after the load level of the Framework or SCF which has

been registered for load control moves back to normal. */

void disableLoadControl (

in TpServiceIDList serviceIDs
// Specifies the framework and SCFs for which the

// load has changed to normal.

) raises (TpGeneralException);

/* This method is invoked by the Framework to enable load management activity at the client

application based on the policy, upon detecting load condition change. */

void enableLoadControl (

in TpLoadStatisticList loadStatistics
// The new load statistics.

) raises (TpGeneralException);

/* This method is invoked by the Framework to resume the notification from an application

for its load status after the detection of load level change at the Framework and the

evaluation of the load balancing policy. */

void resumeNotification() raises (TpGeneralException);

/* This method is invoked by the Framework to suspend the notification from an application

for its load status after the detection of load level change at the Framework and the

evaluation of the load balancing policy. */

void suspendNotification() raises (TpGeneralException);

};

/* The Fault Manager Framework interface is used by the client application to inform the

Framework of events that affect the integrity of the Framework and SCFs, and to request

information about the integrity of the system. */

interface IpFaultManager : IpOsa {

/* This method may be invoked by the client application to test that the Framework or a

SCF is operational. */

void activityTestReq (

in TpActivityTestID activityTestID,
// Identifier provided by the client

// application to correlate the

// response with this request.

in TpServiceID svcID,
// Identifies for which SCF the client

// application is requesting the activity test

// be done.

in TpClientAppID appID
// Identifies which client application is

// requesting the activity test (and therefore

// which application receives the results).

) raises (TpGeneralException);

/* This method is invoked by the client application to return the result of a previously

requested activity test. */

void appActivityTestRes (

in TpActivityTestID activityTestID, // Used by the Framework to correlate this

// response with the original request.

in TpActivityTestRes activityTestResult // Result of the activity test.

) raises (TpGeneralException);

/* This method is invoked by the client application to inform the Framework that it can no

longer use the indicated SCF. */

void svcUnavailableInd (

in TpServiceID serviceID,
// Identity of the SCF which can no longer be used.

in TpClientAppID appID
// Identity of the application sending the indication.

) raises (TpGeneralException);

/* This method is invoked by the client application to request fault statistics from the

Framework. */

void genFaultStatsRecordReq (

in TpTimeInterval timePeriod,
// The period over which the fault statistics

// are to be generated.

in TpServiceIDList serviceIDList,
// The SCFs that the application would like

// to have included in the general fault

// statistics record.

in TpClientAppID appID
// Identifies which client application is

// requesting the statistics record (and

// therefore should receive it).

) raises (TpGeneralException);

};

/* The Fault Manager client application interface is used by the Framework to inform the

application of events that affect the integrity of the Framework, SCF or client

application. */

interface IpAppFaultManager : IpOsa {

/* This method is invoked by the Framework, in response to an activityTestReq, to return

the result of the activity test in this method. */

void activityTestRes (

in TpActivityTestID activityTestID,
// The identifier provided to correlate this

// response with the original request.

in TpActivityTestRes activityTestResult
// Result of the activity test.

) raises (TpGeneralException);

/* This method is invoked by the Framework to request that the client application carries

out an activity test to check that is it operating correctly. */

void appActivityTestReq (

in TpActivityTestID activityTestID
// The identifier provided to correlate this

// response with the original request.

) raises (TpGeneralException);

/* This method is invoked by the Framework to notify the client application of a failure

within the Framework. */

void fwFaultReportInd (

in TpInterfaceFault fault

// The fault that has been detected.

) raises (TpGeneralException);

/* This method is invoked by the Framework to notify the client application that a

previously reported fault has been rectified. */

void fwFaultRecoveryInd (

in TpInterfaceFault fault

// The fault from which the framework has recovered.

) raises (TpGeneralException);

/* This method is invoked by the Framework to inform the client application that it can no

longer use the indicated SCF due to a failure. */

void svcUnavailableInd (

in TpServiceID serviceID,
// Identity of the SCF which can no longer be used.

in TpSvcUnavailReason reason
// The reason why the SCF is no longer available.

) raises (TpGeneralException);

/* This method is invoked by the Framework to provide fault statistics to a client

application in response to a genFaultStatsRecordReq. */

void genFaultStatsRecordRes (

in TpFaultStatsRecord faultStatistics,
// The fault statistics record.

in TpServiceIDList serviceIDs
// The SCFs that have been included in the

// general fault statistics record.

) raises (TpGeneralException);

};

/* The OAM Framework interface is used by the client application to query the system date and

time, for synchronisation purposes. */

interface IpOAM : IpOsa {

/* This method is invoked by the client application to interchange the system an client

application date and time. */

void systemDateTimeQuery (

in TpDateAndTime clientDateAndTime,

// The date and time of the client.

out TpDateAndTime systemDateAndTime

// The date and time of the system.

) raises (TpGeneralException);

};

/* The OAM client application interface is used by the Framework to query the application date

and time, for synchronisation purposes. */

interface IpAppOAM : IpOsa {

/* This method is invoked by the Framework to interchange the system an client application

date and time. */

void systemDateTimeQuery (

in TpDateAndTime systemDateAndTime,

// The date and time of the system.

out TpDateAndTime clientDateAndTime

// The date and time of the client.

) raises (TpGeneralException);

};

};};};};};

Annex A (informative):
Change history

 Date
Version
Comment

February 2000
0.1.0
Initial Draft based on stable material on the Call Control, User Interaction, User Location and User Status SCFs. Initial first draft on the Framework SCF has been contributed but needs further electronic review.

February 2000
0.2.0
Chelo’s input on the Framework API are included, mainly the STDs and the IDLs based on the described Framework functionality in version 0.1.0

March 2000
0.3.0
Inputs based on the meeting in Antwerp 28/2 – 1/3
Enhancements to FW, CC, UI, NUL, NUS and TermCap SCFs added.
Improvements to introduction sections 1-5.

March 2000
1.0.0
Email comments included into the document and version upgraded to 1.0.0 as decided on the email exploder (d.d. 10-03-2000)

April 2000
1.1.0
Inputs based on meeting in Berlin 5/4 – 6/4
The document is alignment with stage 2 document with respect to terminology and naming. Some additional documentation to the Call Control Data definitions has been added. Furthermore, a lot of editorial errors have been fixed.

April 2000
1.1.1
editorial modifications

� INCORPORER Word.Picture.8 ���

� INCORPORER Word.Picture.8 ���

� INCORPORER Word.Picture.8 ���

� INCORPORER Word.Picture.8 ���

� INCORPORER Word.Picture.8 ���

3GPP

[image: image21.wmf]registering service

service registered

registerService

announceServiceAvailability

unregisterService

describeService

[image: image22.wmf]registerService()

announceServiceAvailability()

unregisterService()

describeService()

IpServiceRegistration

<<Interface>>

[image: image23.wmf]registerService(

serviceTypeName : in

TpServiceTypeName,

servicePropertyList : in

TpServicePropertyList,

serviceID : out

TpServiceID) :

TpResult

IpServiceRegistration

<<Interface>>

announceServiceAvailability(

serviceID : in

TpServiceID,

serviceFactoryRef : in

IpOSA) :

TpResult

unregisterService(

serviceID : in

TpServiceID) :

TpResult

describeService(

serviceID : in

TpServiceID,

serviceDescription : out

TpServiceDescription) :

TpResult

[image: image24.wmf]IpSvcFactory

getServiceManager(application : in

TpClientAppID,

serviceManager : out

IpOSA) :

TpResult

<<Interface>>

[image: image25.wmf]getServiceManager()

IpSvcFactory

<<Interface>>

_1018860355.doc

Consists of

PServiceDiscovery

PTrustAndSecurityMgmt

PIntegrityMgmt

PFramework

_1018875471.doc

IpServiceRegistration

registerService(serviceTypeName : in TpServiceTypeName, servicePropertyList : in TpServicePropertyList,

serviceID : out TpServiceID) : TpResult

announceServiceAvailability(serviceID : in TpServiceID, serviceFactoryRef : in IpOSA) : TpResult

unregisterService(serviceID : in TpServiceID) : TpResult

describeService(serviceID : in TpServiceID, serviceDescription : out TpServiceDescription) : TpResult

<<Interface>>

_1018875500.doc

IpSvcFactory

getServiceManager(application : in TpClientAppID, serviceManager : out IpOSA) : TpResult

<<Interface>>

_1018882541.doc

PAppIntegrityMgmt

PSvcFramework

PTrustAndSecurityMgmt

PIntegrityMgmt

PAppTrustAndSecurityMgmt

PFWFramework

PServiceDiscovery

PFramework

PAppFramework

_1018876715.doc

registering service

service registered

registerService

announceServiceAvailability

unregisterService

describeService

_1018875490.doc
[image: image1.emf][image: image2.emf]

IpSvcFactory

getServiceManager()

<<Interface>>

_1018862985.doc

PFWFramework

PAppFramework

PSvcFramework

PFramework

_1018875459.doc
[image: image1.emf][image: image2.emf]

IpServiceRegistration

registerService()

announceServiceAvailability()

unregisterService()

describeService()

<<Interface>>

_1013370603.doc
[image: image1.emf][image: image2.emf][image: image3.emf][image: image4.emf]

IpInitial

initiateAuthentication()

requestAccess()

<<Interface>>

IpAccess

obtainInterface()

obtainInterfaceWithCallback()

accessCheck()

selectService()

signServiceAgreement()

terminateServiceAgreement()

endAccess()

<<Interface>>

IpAppAccess

signServiceAgreement()

terminateServiceAgreement()

terminateAccess()

<<Interface>>

<<uses>>

IpAuthentication

selectAuthMethod()

authenticate()

abortAuthentication()

<<Interface>>

IpAppAuthentication

authenticate()

abortAuthentication()

<<Interface>>

<<uses>>

_1013431559.doc
[image: image1.emf][image: image2.emf]

 IpServiceDiscovery

listServiceTypes()

describeServiceType()

discoverService()

listSubscribedServices()

<<Interface>>

_1017147760.doc
[image: image1.emf]Application not

Application supervised

enableHeartBeat

IpAccess.obtainInterface

IpAccess.obtainInterfaceWithCallback

IpAccess.endAccess

disableHeartBeat

IpAccess.endAccess

changeTimePeriod

_1013370765.doc
[image: image1.emf][image: image2.emf][image: image3.emf][image: image4.emf]

0..*

IpAppHeartBeatMgmt

enableAppHeartBeat()

disableAppHeartBeat()

changeTimePeriod()

<<Interface>>

IpAppHeartBeat

send()

<<Interface>>

1

IpLoadManager

reportLoad()

queryLoadReq()

queryAppLoadRes()

queryAppLoadErr()

registerLoadController()

unregisterLoadController()

resumeNotification()

suspendNotification()

<<Interface>>

IpAppLoadManager

queryAppLoadManager()

queryLoadRes()

queryLoadErr()

disableLoadControl()

enableLoadControl()

resumeNotification()

suspendNotification()

<<Interface>>

<<uses>>

IpFaultManager

activityTestReq()

appActivityTestRes()

serviceUnavailableInd()

genFaultStatsRecordReq()

<<Interface>>

IpAppFaultManager

activityTestRes()

appActivityTestReq()

fwFaultReportInd()

fwFaultRecoveryInd()

svcUnavailableInd()

genFaultStatsRecordRes()

<<Interface>>

<<uses>>

IpOAM

systemDateTimeQuery()

<<Interface>>

IpAppOAM

systemDateTimeQuery()

<<Interface>>

<<uses>>

IpHeartBeatMgmt

enableHeartBeat()

disableHeartBeat()

changeTimePeriod()

<<Interface>>

<<uses>>

IpHeartBeat

send()

<<Interface>>

<<uses>>

1

0..*

_1013345232.doc

PAppFramework

Consists of

PappTrustAndSecurityMgmt

PAppIntegrityMgmt

_1013331034.doc

FW

ACTIVE

FWFAULTY

entry/ ^fwFaultReportInd to all applications with callback

exit/ ^fwFaultRecoveryInd to all applications with callback

IpAccess.endAccess

IpAccess.endAccess/

Abort pending test request

IpAccess.endAccess/

Abort pending test request

FW ACTIVITY TEST

entry/ test activity of framework

exit/ ^app,activityTestRes

SVC ACTIVITY TEST

entry/ test activity of services

exit/ ^app,activityTestRes

genFaultStatsRecordReq ^app.genFaultStatsRecordRes

srvUnavailableInd / test the service, inform service that application is not using it

'service fault' / ^serviceUnavailableInd to all application using the service

IpAccess.obtainFrameworkInterfaceWithCallback("FaultManagement") / add application to fault management

fault detected in fw

fault resolved

IpAccess.endAccess / remove application from load management

activityTestReq [null]

fault detected in fw

no fault detected

service fault ^srvUnavailableInd to all applications using the service

no fault detected

activityTestReq [scfID]

