

N5-000016

3GPP N5 and joint session with S2 OSA

Berlin

5-6 April 2000

Source:

Alcatel

Title:

OSA Interface Between Framework And Network SCFs

Agenda Item:

Document for:
Discussion

Introduction

The OSA architecture, as it is specified today, consists of an open interface that allows third party applications to use network functionality in a technology independent way. Network functionality is viewed as a set of Service Capability Features that are grouped into two main types: Framework and Network SCFs – the former providing the means to use the latter. Whatever interactions are necessary between these two types of SCFs, they are not visible from the outside, which results in the need to develop them together.

This contribution proposes the addition to OSA of a new standardised interface, called the OSA Fw-Nw interface, to open the interactions between the Framework and Network SCFs, allowing a more modular architecture where Framework and Network SCFs may be deployed independently. It also aims to show how the new interface can be easily specified by re-using the current OSA API specifications; additional functionality, not re-usable from existing specifications, is proposed to be based on Parlay 2.0.

The Enhanced OSA

The following figure shows the enhanced Open Service Architecture once the interface between the Framework and the Network SCFs is open:

[image: image1.wmf]framework

User Location

Call control

HLR

CSE

WGW

WPP

Servers

E.g. Location server

MExE server

 SAT server

Service capability server(s)

Interface

class

OSA interface

Open

Service

Architecture

discovery

Application

Application

server

Fw-Nw interface

From the application point of view there is no difference between the case where the Fw-Nw interface is proprietary (i.e., where the Framework and Network SFCs are deployed together, as in the current OSA specification) and the case where the Fw-Nw interface is open (i.e., where the Framework and Network SFCs are deployed independently). Applications will continue using the OSA interface for the interactions necessary to access and use the service capabilities in network, that they see as Network SCFs – and they will continue using the Network SCFs for the actual access and use of the network functionality.

The only difference is at the network side of the OSA API, where the interactions with the application side may need or result into interactions through the Fw-Nw interface.

An Example: Discovery

The Discovery SCF allows applications to know what types of services are supported by the network, what are their properties, and which are the services they are subscribed to.

In the current OSA, the service type discovery mechanism can be summarised in the following steps:

· The application invokes the method listServiceTypes from the Framework

· The Framework returns the names of all SCF types supported by the network.

The way the Framework knows the SFC types it can return is not specified in the current OSA, where the Framework and Network SCFs are seen as a single entity. If independent deployment of both is allowed, then there is need for a mechanism that allows the Framework to know about the services offered by the network by means of Network SCFs.

The Functionality Of The Fw-Nw Interface

The proposed Fw-Nw interface consists of two main sets of functionality:

· The re-used functionality of the current interactions between the OSA Framework and applications.

· The new functionality necessary for the Framework to know about the network services provided by means of Network SCFs, so it can allow their discovery and access to applications.

The reason for re-using the functionality in the first bullet item is that, once the Framework and Network SCFs are separated entities, there is a need for the establishment of a trusted relationship between them, as well as for monitoring each other – and this is precisely what the Framework does in the current OSA. Although it is to be discussed whether all the current Framework methods are necessary for the proposed Fw-Nw interface, it is clear that no additional functionality is necessary for this purpose.

The Neccesary Additions

As pointed out in the previous section, although re-use of the current OSA specifications covers most of the functionality that needs to be provided by the proposed Fw-Nw interface, there are some interactions to be added as a result of opening it. This is the functionality that allows the Framework to know of the network services provided by Network SCFs. In order to make it possible, network services have to be registered with the Framework; and they need to be registered in such a way that applications can discover them as specified in the current OSA, which remain unchanged.

Proposed New Interface: IpFwServiceRegistration
This section proposes the methods provided by the Framework for the registration of network services.

Interface class

<<Interface>>

IpFwServiceRegistration

registerService(serviceTypeName: in TpServiceTypeName, servicePropertyList: in TpServicePropertyList, serviceID: out TpServiceIDRef) : TpResult

announceServiceAvailability(serviceID: in TpServiceID, serviceFactoryRef: in IpServiceRef) : TpResult

unregisterService(serviceID: in TpServiceID) : TpResult

describeService(serviceID: in TpServiceID, serviceDescription: out TpServiceDescriptionRef) : TpResult

Method
registerService()

The registerService() operation is the means by which a service is registered in the Framework, for subsequent discovery by the enterprise applications. A service-ID is returned to the service supplier when a service is registered in the Framework. The service-ID is the handle with which the service supplier can identify the registered service when withdrawing it. The service-ID is only meaningful in the context of the Framework that generated it.

Parameters

serviceTypeName : in TpServiceTypeName

The “serviceTypeName” parameter identifies the service type and a set of named property types that may be used in further describing this service (i.e., it restricts what is acceptable in the properties parameter).

· If the string representation of the “type” does not obey the rules for identifiers, then an P_ILLEGAL_SERVICE_TYPE exception is raised.

· If the “type” is correct syntactically but the Framework is able to unambiguously determine that it is not a recognised service type, then a P_UNKNOWN_SERVICE_TYPE exception is raised.

servicePropertyList : in TpServicePropertyList

The “servicePropertyList” parameter is a list of property name and property value pairs. They describe the service being registered. This description typically covers behavioural, non-functional and non-computational aspects of the service.

Service properties are marked “mandatory” or “readonly”. These property mode attributes have the following semantics:

a. mandatory – a service associated with this service type must provide an appropriate value for this property when registering.

b. readonly – this modifier indicates that the property is optional, but that once given a value, it may not be subsequently modified. Specifying both modifiers indicates that a value must be provided and that it may not be subsequently modified. An example of such properties are those which form part of a service agreement and hence cannot be modified by service suppliers during the life time of service.

The Framework identifies which properties of a service are “mandatory” (i.e., the values for these properties must be provided by the service suppliers when registering the service), and which ones are “readonly” (i.e., the values of these properties cannot be changed using modifyServiceDescription() method). Some service properties may be marked both “mandatory”and “readonly”.

· If the type of any of the property values is not the same as the declared type (declared in the service type), then a P_PROPERTY_TYPE_MISMATCH exception is raised.

· If an attempt is made to assign a dynamic property value to a readonly property, then the P_READONLY_DYNAMIC_PROPERTY exception is raised.

· If the “servicePropertyList” parameter omits any property declared in the service type with a mode of mandatory, then a P_MISSING_MANDATORY_PROPERTY exception is raised.

· If two or more properties with the same property name are included in this parameter, the P_DUPLICATE_PROPERTY_NAME exception is raised.

serviceID : out TpServiceIDRef

This is the unique handle that is returned as a result of the successful completion of this operation. The service supplier can identify the registered service when attempting to access it via other operations such as unregisterService(), etc. Enterprise client applications are also returned this service-ID when attempting to discover a service of this type.

Method

announceServiceAvailability()

The registerService() method described previously does not make the service discoverable. The announceServiceAvailability() method is invoked after the service is authenticated and its service factory is instantiated at a particular interface. This method informs the framework of the availability of “service factory” of the previously registered service, identified by its service ID, at a specific interface. After the receipt of this method, the framework makes the corresponding service discoverable.

There exists a “service manager”instance per service instance. Each service implements the IpServiceFactory interface. The IpServiceFactory interface supports a method called the createServiceManager(application: in TpClientAppID, serviceManager: out IpServiceRefRef). When the service agreement is signed for some serviceID (using signServiceAgreement()), the framework calls the createServiceManager() for this service, gets a serviceManager and returns this to the client application.

Parameters

serviceID : in TpServiceID

The service ID of the service that is being announced.

· If the string representation of the “serviceID” does not obey the rules for service identifiers, then an P_ILLEGAL_SERVICE_ID exception is raised.

· If the “serviceID” is legal but there is no service offer within the Framework with that ID, then an P_UNKNOWN_SERVICE_ID exception is raised.

serviceFactoryRef : in IpServiceRef

The interface reference at which the service factory of the previously registered service is available.

Method

unregisterService()

The unregisterService() operation is used by the service suppliers to remove a registered service from the Framework. The service is identified by the “service-ID” which was originally returned by the Framework in response to the registerService() operation. After the unregisterService(), the service can no longer be discovered by the enterprise client application.

It is the responsibility of the framework to ensure that all the service contracts (see service subscription section) corresponding to that service are expired before a service offer is unregistered.

Parameters

serviceID : in TpServiceID

The service to be withdrawn is identified by the “serviceID” parameter which was originally returned by the registerService() operation.

· If the string representation of the “serviceID” does not obey the rules for service identifiers, then an P_ILLEGAL_SERVICE_ID exception is raised.

· If the “serviceID” is legal but there is no service offer within the Framework with that ID, then an P_UNKNOWN_SERVICE_ID exception is raised.

Method

describeService()

The describeService() operation returns the information about a service that is registered in the framework. It comprises, the “type” of the service , and the “properties” that describe this service. The service is identified by the “service-ID” parameter which was originally returned by the registerService() operation.

Parameters

serviceID : in TpServiceID

The service to be described is identified by the “serviceID” parameter which was originally returned by the registerService() operation.

· If the string representation of the “serviceID” does not obey the rules for object identifiers, then an P_ILLEGAL_SERVICE_ID exception is raised.

· If the “serviceID” is legal but there is no service offer within the Framework with that ID, then an P_UNKNOWN_SERVICE_ID exception is raised.

serviceDescription : out TpServiceDescriptionRef

This consists of the information about an offered service that is held by the Framework. It comprises the “type” of the service , and the properties that describe this service.

Proposed New Interface: IpServiceFactory
As explain in the previous section, just registering a network service in the Framework does not make it available for discovery by applications: it is necessary for the Framework to have a reference to a manager of the network service, that will be the initial contact between this network service and the Framework.

This functionality is provided by each network service thourgh the following proposed interface class:
 Interface Class

<<Interface>>

IpSvcFactory

getServiceManager(application : in TpClientAppID , serviceManager : out IpServiceRefRef) : TpResult

Method

getServiceManager()

This method returns a service manager interface reference for the specified application. Usually, but not necessarily, this involves the instantiation of a new service manager interface.
Parameters

application : in TpClientAppID

Specifies the application for which the service manager interface is requested.

serviceManager : out IpServiceRefRef

Specifies the service manager interface reference for the specified applicationID

Conclusion

It is proposed that

· The extent to which current Framework ((application functionality is to be re-used for the proposed new interface is discussed.
· The Parlay based specifications in this contributions are discussed and refined, if necessary, according to OSA requirements.
· Stage 2 specifications of the proposed Fw-Nw interface are added in 23.127.

· Message Sequence Charts are added, that clarify the architectural dynamics with and without the proposed Fw-Nw interface.

· Stage 3 specifications of the proposed Fw-Nw interface are added in 29.198.

Priority should be given to the multivendorship within the same domain.

6

_1016349727.doc

framework

User Location

Call control

HLR

CSE

WGW

WPP

Fw-Nw interface

Servers

E.g. Location server

 MExE server

 SAT server

Service capability server(s)

Interface

class

OSA interface

Open

Service

Architecture

discovery

Application

Application

server

