3GPP TSG CN WG4 Meeting #26
N4-050129

Sydney, Australia, 14th – 18th November 2004
Source:
Lucent Technologies, Arnaud SAHUGUET, Bell Labs research
Title:
GUP security

Agenda item:
7.2

Document for:
29.240, chapter 12 (authentication, authorization and security) discussion and approval
1 Introduction

In this contribution, we present a proposal to address the issue of security in GUP. The solution must be compatible with Liberty Alliance but at the same time be appropriate for GUP telecom-centric environment. We first present an overview of the way LA tackles security and authentication, before we explain our proposed solution for GUP.

2 General principles

2.1 Glossary

· Credential

· Authentication

· Transport level security

· Message level security

2.2 Roles

In the context of GUP, we have the following roles:

· Client application (aka client)

· GUP server (aka server or Service Provider / SP)

· RAF

· Authenticator (aka Identity Provider / IDP)

The relationships between the various entities can be described as follows:

[image: image1.png]Client Application Client authenticates to IDP.

GUP server Server checks the vali

of client’s credentials.

Scope of 3GPP GUP

1DP

Figure 1: GUP roles

The way a client application authenticates to the IDP is beyond the scope of the GUP.

The way a GUP server interacts with the IDP to validate the credentials provided by the client is beyond the scope of GUP.

2.3 Authentication information carried in headers

During the various interactions between components, authentication information is carried in GUP wsse:Security header (see section 9.2.9).

If the client submits a request to the GUP server without any credential, the server will return an error forcing the client to authenticate to the IDP and get the appropriate header.

3 Overview of Liberty Alliance mechanisms

One key idea of LA is to outsource the authentication to a dedicated component, the Identity Provider (IDP). A client authenticates to the IDP and is given credentials to be presented to the Service Provider (SP). Depending on the nature of the credentials, the SP can grant access directly or need to interact further with the client or the IDP. The benefit of such an approach is that the SP does not need to support all possible authentication mechanism but rely on the IDP for this task.

In LA, clients authenticate to the IDP using using the SASL protocol. SASL is a meta protocol that supports most existing authentication mechanisms such as plain-text password, digest authentication, etc. LA has defined a SOAP binding for SASL, where the interaction can be described in terms of SOAP messages. See Liberty SASL-based SOAP Authentication Specification.

LA credentials are carried in the SOAP wsse:Security header.

LA allows for a large set of credentials to be used for authentication, such as wsse tokens, SAML assertions, etc. Some credentials are self contained in the sense that there is no need for the SP to interact with the IDP. Some other credentials require the SP to interact with the client (asking for a proof of knowledge, such as a password). Some other credentials require the SP to interact with the IDP, e.g. checking that a token issued by the IDP is valid.

Editor’s note: mention that the Service Discovery component is the one providing the authentication service.

4 Proposal for GUP security

4.1 Security infrastructure for GUP

· Credentials issued by the IDP and recognized by the GUP server MUST be SAML assertions signed by the IDP.

Editor’s note: do we need to define a special profile?

Note: the main advantages of this solution are:

1. no need for the SP to keep track of user passwords. The SP only needs to trust the identity provider.

2. no need for the SP to support lots of client-specific authentication mechanisms: this is handled by the IDP.

3. SAML assertions signed by the IDP do not require further interactions with either the client or the IDP. The SP simply needs to check that the SAML assertion has been properly signed by the IDP.

· Rg interface (client application / GUP server)

Connections between the client and the GUP server through the Rg interface MUST be encrypted using SSL/TLS with server side certificates.

This corresponds to the following LA authentication mechanism: urn:liberty:security:2003-08:TLS:SAML
(transport level encryption + message level authentication).

· Rp interface (GUP server / RAF)

Connections between the GUP server and the RAFs through the Rp interface MUST be encrypted using SSL/TLS with server-side and client-side certificates.

This corresponds to the following LA authentication mechanism: urn:liberty:security:2003-08:ClientTLS:null (transport level encryption + transport level authentication).

Note: since the number of RAFs is limited and the connections between the server and the RAFs are long-lived (multiple requests sent on the same connections), this should not create too much overhead for either key

management or cryprographic processing.

This proposed infrastructure requires the following:

1. existence of one or more x.509 certification authorities (CA)

2. existence of a certificate for each GUP server signed by CA

3. existence of a certificate for each RAF signed by CA

The cipher suites to be used for peer-wise encryption are:

· TLS_RSA_WITH_RC4_128_SHA
· TLS_RSA_WITH_3DES_EDE_CBC_SHA

· TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA

· TLS_RSA_WITH_AES_CBC_SHA

· TLS_DHE_DSS_WITH_AES_CBC_SHA

Note: For signing and verification of protocol messages, communicating entities SHOULD use certificates and private keys that are distinct from the certificates and private keys applied for SSL or TLS channel protection. [from liberty-idwsf-security-mechanisms-v1.1]

4.2 End-to-End example

[image: image2.png]Client Application | GUP server ‘ RAF ‘

i SASL authentication
The client now{ has a

wsse:Security header

with a SAML assertion

signed by the {DP.

S MTHTLM

a SSL/TLS With server certificates

a e SSL/TLS wlth server + client cert(flcates

>
»

fam] SAML assértlon signed by the IDP

Figure 2: GUP security flow

4.3 Example of GUP wsse:Security header

The following header authenticates the user defined by cn=john.doe,o=3gpp,co=org.
	<wsse:Security>

 <saml:Assertion>

 <saml:Conditions>

<!—

 e.g. not before now, not after 5 minutes from now

 only for GUP servers from provider.com

-->

 </saml:Conditions>

 <saml:AuthenticationStatement>

 <saml:Subject>cn=john.doe,o=3gpp,co=org</saml:Subject>

 </saml:AuthenticationStatement>

 <ds:Signature>

<!-- Digital signature of the whole assertion, signed by the IDP -->

 </ds:Signature>

 </saml:Assertion>

<wsse:Security>

In the context of GUP, we want to avoid unnecessary processing or flow. For this reason, we don’t want to use SAML assertions that require the client to provide further credentials. We consider that the possession of the SAML assertion properly signed by the IDP is a good enough credential. Replay attacks and hijacking are prevented by: (1) the use of strong encryption between the client and the IDP to obtain the SAML assertion, (2) the use of strong encryption between the client and the server to present the SAML assertion and (3) the use of timestamp in the SAML assertion itself (the assertion is signed along with the timestamp).

4.4 Pros and Cons of the proposed approach

Advantages of this approach

· clients can authenticate the way they want to the IDP, via SASL. We don't care. This is outside of GUP.

· no matter how the client authenticates, the end result is a SAML assertion that can be validated off-line by the GUP server by checking the digital signature in the XML content (no need for the server to contact the IDP)

· GUP servers and RAFs use peer authentication using SSL/TLS

Cons of this approach

· we use SAML assertions with no re-authentication, which can be seen as weaker because of possible replay attacks (see Appendix 5.1). But if the SSL/TLS connection is not broken and the client not compromised, there is no way to steal and replay the assertion.

· SAML assertions are VERY, VERY VERBOSE. But if we want to be LA compliant, we have no other choice.

Appendix

4.5 Overview of SAML based authentication [from liberty-idwsf-security-mechanisms-v1.1]

The following URIs indicate SAML-based unilateral message-origin (sender) message authentication mechanisms:
· urn:liberty:security:2003-08:null:SAML
· urn:liberty:security:2003-08:TLS:SAML
· urn:liberty:security:2003-08:ClientTLS:SAML
These mechanisms utilize theWeb Services Security SAML Token Profile [wss-saml] as the means by which the message sender authenticates to the recipient. In general these mechanisms assume that a TTP issues an assertion which includes an <saml:AuthenticationStatement> and other statements derived from <saml:SubjectStatement>.

The <saml:AuthenticationStatement> describes the authentication event at the authority. For each of the <saml:SubjectStatement> bound into the assertion, the authority dictates the subject confirmation obligations
the subject must affirm to a relying party in order for the statement to be considered trustworthy.
As a security precaution, the issuer of the assertion MUST include a <saml:AudienceRestrictionCondition>
element that specifies the intended consumer(s) of the assertion. One <saml:Audience> element MUST be set to the intended recipient’s <ProviderID> as specified in [LibertyMetadata]. The recipient MUST validate that it is the intended consumer before using the assertion. The assertion MAY contain additional <saml:Audience> elements that specify other intended relying parties.

These message authentication mechanisms are unilateral. That is only, the author of the message is authenticated. It is not in the scope of this specification to suggest when response messages should be authenticated, but it is worth noting that the mechanisms defined in Section 6.3.1 could be relied upon to authenticate any response message as well. Deployers should recognize, however, that independent authentication of response messages does not provide the same message stream protection semantics as a mutual peer entity authentication mechanism would offer.

For deployment settings which require message authentication independent of peer entity authentication, then the sending peer MUST perform message authentication by demonstrating proof of possession of a subject confirmation key. This key MUST be recognized by the recipient as belonging to the sender.
When the sender wields the subject confirmation key to sign elements of the message the signature ensures the
authenticity and integrity of the elements covered by the signature. However, this alone does not mitigate the threat of replay, insertion and certain classes of message modification attacks. To secure the message from such threats, one of the mechanisms which support peer entity authentication (see Section 6.2) MAY be used or the underlying SOAP binding request processing model MUST address these threats.
4.6 SASL example

We present an end-to-end example that shows how the client application could authenticate to the IDP using Liberty Alliance authentication framework. For sake of clarity, we have omitted the correlation information between the various messages.

1. Request sent by the client to the IDP to get some credentials for “john.doe”, using CRAM-MD5 digest authentication method.

	<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope">

 <s:Header/>

 <s:Body>

 <SASLRequest mechanism="CRAM-MD5" authnID="john.doe"/>

 </s:Body>

 </s:Envelope>

2. Response sent by the IDP. Authentication method has been accepted and challenge is sent back.

	 <s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope">

 <s:Header/>

 <s:Body>

 <SASLResponse mechanism="CRAM-MD5">

<Status code="continue"/>

<Data>

 CRAM-MD5 challenge here

</Data>

 </SASLResponse>

 </s:Body>

 </s:Envelope>

3. Client answers the challenge (using the challenge and some password or something).

	 <s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope">

 <s:Header/>

 <s:Body>

 <SASLRequest mechanism="CRAM-MD5">

<Data>

 CRAM-MD5 response here

</Data>

 </SASLRequest>

 </s:Body>

 </s:Envelope>

4. IDP checks that the answer is OK and if so sends back the credential. In our case, this is a SAML assertion stating that the holder is “john.doe”. The assertion is digitally signed using the IDP private key.

	 <s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope">

 <s:Header/>

 <s:Body>

 <SASLResponse mechanism="CRAM-MD5">

<Data>

 <saml:Assertion xmlns:saml="http://saml.org">

 <saml:Conditions/>

 <saml:AuthenticationStatement>

 <saml:Subject>john.doe</saml:Subject>

 </saml:AuthenticationStatement>

 <ds:Signature xmlns:ds="http://xmlsig.org">

 AEFFEE123EF4758...

 </ds:Signature>

 </saml:Assertion>

</Data>

 </SASLResponse>

 </s:Body>

 </s:Envelope>

At the end of the interaction, the client application holds a credential in the form of a valid SAML assertion digitally signed by the IDP and stating that the holder has been authenticated as “john.doe”.

