Error! No text of specified style in document.
2
Error! No text of specified style in document.

12 Authentication, authorization and security

Editor’s Note: description of general security, authentication and authorization mechanisms. The clauses 8 and 9 may provide additional reference point specific issues.

12.1 Authorization

12.1.1 Principles

In general, GUP authorization can be seen to consist of the following functional components:

· management of authorization related data (authorization rules) which also refer to actual authorized data

· access/storage of the authorization rules

· execution of authorization logic based on the pre-defined authorization rules and information received in the request or otherwise related to the request

· encapsulation of a set of authorization rules (privacy policy) together with the transported actual data.

The functional components are discussed more in the following subclauses.

12.1.2 Authorization related data

12.1.2.1 Authorization rules

The basic set of authorization rules define to whom, to which part of data and for which purpose the authorization is given. Additional conditions, e.g., based on a certain time schedule or additional information given in the request, may be applicable.

Editor’s note: In order to make an authorization decision some contextual information (propose of the request etc.) needs to be available. We need to make sure that procedures in the Rp and Rg interfaces provide a place holder to carry this information.

The authorization rules consist of the following built-in elements:

· authorization attributes and/or references to pre-defined (commonly used) contents of attributes

· references to the actual GUP data

· actions (e.g. the decision, encapsulation of the privacy policy).

12.1.2.2 Authorization attributes

Authorization attributes are defined to be used as basic elements of the authorization rules and thus as a basis for the authorization decisions.

The following types of authorization attributes are specified:

· identity of the target subscriber (or a group of subscribers) – the GUP subscriber;

· component type and more detailed data reference;

· identity of the requestor (application ID and end-user ID) or group of requestors;

· other requestor related data received in the request as the Authorization Assertions;

· allowed operations (Query, Modify, Create, Delete, Subscribe, List);

· other attributes (e.g. the time schedule) related to the request case;

· actions (accept, deny, the privacy policy to be included in the request).

NOTE: The exact names and format of the authorization attributes are specified in the subclause 10.1.5.

12.1.2.3 Management of authorization related data

The GUP procedures defined for the Rp and Rg reference points (see the clauses 8 and 9) are used for managing authorization related data.

12.1.3 Execution of authorization logic

The authorization logic compares the information conveyed in the request (and possible additional information related to the moment when the request is received) with the information defined in the authorization rules. When the logic leads to a decision to accept the request in principle, the requested data is compared with the authorized set of data. If discrepances are found a GUP authorization entity may either restrict to reply to the authorized content or deny the request. Note that this depends on the policy in the GUP authorization entity and the nature of the request.

In some pre-defined cases the authorization may already have been executed by some other entities. Then it is possible to by-pass the execution of the authorization logic by the GUP entities. The GUP entities simply check the validity of the assertion received in the request. This type of authorization can be used, for example, for 3rd parties requesting GUP data.

12.1.4 Roles of GUP entities related to the authorization

Figure 10.1 shows the logical entities involved in GUP authorization.

[image: image1.wmf]

Authorisation

Logic

Authorisation Rules

Application

Management

Entity

Decision

Rp/Rg: requestor data

Rp/Rg: management

operations

Read

,

Respo

nse

Figure x. Logical entities of GUP authorization

12.1.4.1 Application

The Application (= requestor) provides information about the intended use of the requested data as well as identity information related to the requestor. The intended usage can be deduced from the operation; in addition a separate privacy policy document may be conveyed within the request.

The Application may also provide the Authorization Assertions in the request. The Application may have obtained the assertions by contacting an appropriate entity dedicated to authorization before sending the GUP request.

The Application which receives user related data via GUP procedures shall follow the privacy policy possibly conveyed with the actual data when using, storing and distributing the data.

12.1.4.2 GUP server and RAF

The GUP Server and RAF (including the Data Repository) have access to the authorization rules. The interface between the authorization related data storage and GUP Server (and RAF) is out of the scope of this specification. Note that the GUP Server and RAF may act as data storage entities. The GUP Server or the RAF (or both of them) are responsibles for the execution of the authorization logic.

The authorization issues handled by the GUP Server typically concern the GUP profile and GUP Component level issues; the authorization handled by RAF may be based on more detailed data references (items inside a GUP component). The set of authorization attributes specified for GUP can be used by both the GUP Server and the RAF.

The GUP Server and the RAF may also add authorization rules (the privacy policy) to be transported with the actual data. See the subclause 9.4 for UsageDirective SOAP header block and Liberty ID-WSF Data Services Template Specification [13] and Liberty ID-WSF SOAP Binding Specification [14] for more information on the privacy policy handling.

12.1.4.3 Management entity

The authorization rules can be managed by the authorized entities: e.g

· the entity administrating the GUP Data Storage;

· the RAF and/or GUP Server;

· the GUP Subscriber itself.

The GUP Subscriber is normally allowed to manage a limited set of his own user profile data, e.g., certain GUP Components or certain data inside a GUP Component. Additionally, there might be restrictions on the allowed operations.

The entity administering the GUP Data Storage may define common or default authorization rules for GUP Subscribers. The entity may also pre-define contents for authorization attributes, e.g. user groups, to which the authorization rules can refer. The entity administering the GUP Data Storage may also manage GUP Subscriber specific authorization rules (e.g., on behalf of the GUP Subscriber).

12.1.5 Authorization data format

Editor’s Note: to specify the structure of the authorization data in more detail a XML (Schema) based "language" should be selected. The usability of the existing authorization rule languages, e.g., XACML should be studied more. The selected language should be capable at least for the following: definition of the authorization attributes supported by GUP, referencing to pre-defined data definitions (and privacy policy), definition of authorization rules to be common to several GUP subscribers. As an option, the language could support defining the privacy policies delivered with the GUP data.

12.1.5.1 Example of authorization data

Editor's Note: an example of an authorization related GUP Component is to be added here

12.2 Security and Authentication
12.2.1 Principles

12.2.1.1 Roles
In the context of GUP, we have the following roles:

· Client application (aka client)

· GUP server (aka server or Service Provider / SP)

· RAF

· Authenticator (aka Identity Provider / IDP)

The relationships between the various entities can be described as follows:

[image: image2.png]Client Application Client authenticates to IDP.

GUP server Server checks the vali

of client’s credentials.

Scope of 3GPP GUP

1DP

Figure 1: GUP roles

The way a client application authenticates to the IDP is beyond the scope of the GUP.

The way a GUP server interacts with the IDP to validate the credentials provided by the client is beyond the scope of GUP.

12.2.1.2 Authentication information carried in headers

During the various interactions between components, authentication information is carried in GUP wsse:Security header (see section 9.2.9).

If the client submits a request to the GUP server without any credential, the server will return an error forcing the client to authenticate to the IDP and get the appropriate header.

12.2.2 Security infrastructure
The security infrastructure for GUP will be defined as follows:
· Credentials issued by the IDP and recognized by the GUP server MUST be SAML assertions signed by the IDP.

Editor’s note: do we need to define a special profile?

Note: the main advantages of this solution are:

1. no need for the SP to keep track of user passwords. The SP only needs to trust the identity provider.

2. no need for the SP to support lots of client-specific authentication mechanisms: this is handled by the IDP.

3. SAML assertions signed by the IDP do not require further interactions with either the client or the IDP. The SP simply needs to check that the SAML assertion has been properly signed by the IDP.

· Rg interface (client application / GUP server)

Connections between the client and the GUP server through the Rg interface MUST be encrypted using SSL/TLS with server side certificates.

This corresponds to the following LA authentication mechanism: urn:liberty:security:2003-08:TLS:SAML
(transport level encryption + message level authentication).

· Rp interface (GUP server / RAF)

Connections between the GUP server and the RAFs through the Rp interface MUST be encrypted using SSL/TLS with server-side and client-side certificates.

This corresponds to the following LA authentication mechanism: urn:liberty:security:2003-08:ClientTLS:null (transport level encryption + transport level authentication).

Note: since the number of RAFs is limited and the connections between the server and the RAFs are long-lived (multiple requests sent on the same connections), this should not create too much overhead for either key

management or cryprographic processing.

This proposed infrastructure requires the following:

1. existence of one or more x.509 certification authorities (CA)

2. existence of a certificate for each GUP server signed by CA

3. existence of a certificate for each RAF signed by CA

The cipher suites to be used for peer-wise encryption are:

· TLS_RSA_WITH_RC4_128_SHA
· TLS_RSA_WITH_3DES_EDE_CBC_SHA

· TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA

· TLS_RSA_WITH_AES_CBC_SHA

· TLS_DHE_DSS_WITH_AES_CBC_SHA
Note: For signing and verification of protocol messages, communicating entities SHOULD use certificates and private keys that are distinct from the certificates and private keys applied for SSL or TLS channel protection. [from liberty-idwsf-security-mechanisms-v1.1]

12.2.3 End-to-End example (security flow)
[image: image3.png]Client Application | GUP server ‘ RAF ‘

i SASL authentication
The client now{ has a

wsse:Security header

with a SAML assertion

signed by the {DP.

S MTHTLM

a SSL/TLS With server certificates

a e SSL/TLS wlth server + client cert(flcates

>
»

fam] SAML assértlon signed by the IDP

Figure 2: GUP security flow

12.2.4 Example of GUP wsse:Security header

The following header authenticates the user defined by cn=john.doe,o=3gpp,co=org.
	<wsse:Security>

 <saml:Assertion>

 <saml:Conditions>

<!—

 e.g. not before now, not after 5 minutes from now

 only for GUP servers from provider.com

-->

 </saml:Conditions>

 <saml:AuthenticationStatement>

 <saml:Subject>cn=john.doe,o=3gpp,co=org</saml:Subject>

 </saml:AuthenticationStatement>

 <ds:Signature>

<!-- Digital signature of the whole assertion, signed by the IDP -->

 </ds:Signature>

 </saml:Assertion>

<wsse:Security>

In the context of GUP, we want to avoid unnecessary processing or flow. For this reason, we don’t want to use SAML assertions that require the client to provide further credentials. We consider that the possession of the SAML assertion properly signed by the IDP is a good enough credential. Replay attacks and hijacking are prevented by: (1) the use of strong encryption between the client and the IDP to obtain the SAML assertion, (2) the use of strong encryption between the client and the server to present the SAML assertion and (3) the use of timestamp in the SAML assertion itself (the assertion is signed along with the timestamp).
12.2.5 Example of SASL interaction between client application and IDP
We present an end-to-end example that shows how the client application could authenticate to the IDP using Liberty Alliance authentication framework. For sake of clarity, we have omitted the correlation information between the various messages.

1. Request sent by the client to the IDP to get some credentials for “john.doe”, using CRAM-MD5 digest authentication method.

	<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope">

 <s:Header/>

 <s:Body>

 <SASLRequest mechanism="CRAM-MD5" authnID="john.doe"/>

 </s:Body>

 </s:Envelope>

2. Response sent by the IDP. Authentication method has been accepted and challenge is sent back.

	 <s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope">

 <s:Header/>

 <s:Body>

 <SASLResponse mechanism="CRAM-MD5">

<Status code="continue"/>

<Data>

 CRAM-MD5 challenge here

</Data>

 </SASLResponse>

 </s:Body>

 </s:Envelope>

3. Client answers the challenge (using the challenge and some password or something).

	 <s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope">

 <s:Header/>

 <s:Body>

 <SASLRequest mechanism="CRAM-MD5">

<Data>

 CRAM-MD5 response here

</Data>

 </SASLRequest>

 </s:Body>

 </s:Envelope>

4. IDP checks that the answer is OK and if so sends back the credential. In our case, this is a SAML assertion stating that the holder is “john.doe”. The assertion is digitally signed using the IDP private key.

	 <s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope">

 <s:Header/>

 <s:Body>

 <SASLResponse mechanism="CRAM-MD5">

<Data>

 <saml:Assertion xmlns:saml="http://saml.org">

 <saml:Conditions/>

 <saml:AuthenticationStatement>

 <saml:Subject>john.doe</saml:Subject>

 </saml:AuthenticationStatement>

 <ds:Signature xmlns:ds="http://xmlsig.org">

 AEFFEE123EF4758...

 </ds:Signature>

 </saml:Assertion>

</Data>

 </SASLResponse>

 </s:Body>

 </s:Envelope>

At the end of the interaction, the client application holds a credential in the form of a valid SAML assertion digitally signed by the IDP and stating that the holder has been authenticated as “john.doe”.

3GPP

_1148902187.doc
		

		DOCUMENTTYPE

		

		1 (1)

		

		

		

		

		TypeUnitOrDepartmentHere

		

		

		

		TypeYourNameHere

		TypeDateHere

		

		

Rp/Rg: requestor data

Rp/Rg: management operations

Response

,

Read

Decision

Entity

Management

Application

Authorisation Rules

Logic

Authorisation

_935227290.doc

