Error! No text of specified style in document.
4
Error! No text of specified style in document.

3GPP TSG CN WG4 Meeting #24
N4-041004

Sophia Antipolis, France. 16th to 20th August 2004.

Source:
Nokia
Title:
TS 29.240, Proposal for moving text between chapters
Agenda item:
7.2
Document for:
DISCUSSION AND APPROVAL
1 Introduction

In CN4 # 23bis ist was decided to change the structure of TS 29.240

2 Proposal

The following changes are kindly proposed to the TS 29.240.
8
GUP SOAP Bindings

Editor’s note: SOAP binding based on LA SOAP bindings (include reference).

8.1
GUP SOAP headers

Editor´s note: This is the current approved text on this:

The SOAP protocol is applied in the Rp reference point. SOAP provides a mechanism for exchanging structured and typed information between peers using XML. It is a very generic protocol which can also be used to carry remote procedure calls. Each SOAP message has an element ”Envelope” and its immediate child elements ”Header” and ”Body”. SOAP carries the GUP procedure elements in its body part in compliance with the SOAP standard [5]. The GUP Procedure elements are placed immediately below the Body element. If there are several requests or responses, the GUP Procedure elements are carried one after another.

GUP SOAP messages are specified to run over standard http [6] as specified in [5] but implementations may also support other transport mechanims. If any SOAP level error is reported, no application data are returned. The used SOAP binding and error reporting mechanisms are defined in Liberty ID-WSF SOAP Binding Specification [14].

There are a number of SOAP Header elements defined for GUP. The first part of each header is defined according to the Liberty ID-WSF SOAP Binding Specification [14] which specifies the following header blocks that are also applicable in GUP:

Editor’s note: Whether the GUP framework will support a subset of SOAP headers defined by the SOAP specification and also by Liberty ID-WSF SOAP Binding Specification [14] is FFS. Additionally some GUP specific SOAP headers may also be required FFS. The implementation is FFS.

Editor’s note: Namespaces for SOAP headers are FFS.

Messaging-specific Header Block

· CorrelationType Header Block

· Provider Header Block

Optional Header Blocks

· ProcessingContext Header Block

· ConsentType Header Block

· UsageDirective Header Block

· ServiceInstanceUpdate Header Block

· Timeout Header Block

· CredentialsContext Header Block

Additionally the Liberty ID-WSF Security Mechanisms specification [15] defines SOAP headers for security, authentication and authorisation purposes. Those may optionally be applied in GUP requests and responses. See subclause 9.3 for more information.

8.1.1
Correlation Header Block

The Correlation Header Block is used to correlate request and response messages. The following specific attributes are defined:

· messageID

· messageIDRef

· timestamp

· id

8.1.2
Provider Header Block

The Provider Header Block provides means for a sender to claim that it is presented by a given providerID and optionally also that it is a member of an affiliation represented by a given affiliationID. Following specific attributes are defined:

· providerID

· affiliationID

· id

8.1.3
ProcessingContext Header Block

Using the ProcessingContext header block a sender can signal to a receiver that the receiver should add a specific additional facet to the overall processing context in which any action(s) are invoked as a result of processing the message. The different processing context facets are denoted by URIs. The content of the ProcessingContext header block is the URI and an id attribute has also be specifically defined for it to be used, when the header block is signed.

8.1.4

ConsentType Header Block

The ConsentType Header Block may optionally be used to indicate the principal’s consent for an operation. The following specific attributes are defined:

· uri

· timestamp

· id

8.1.5
UsageDirective Header Block

The UsageDirective Header Block may optionally be used for privacy protection purposes. It is able to show the privacy policy which is intended to be applied (in a request) or which should be followed (in a response). The following specific attributes are defined:

· ref

· id

· <Privacy policy instance>

8.1.6
ServiceInstanceUpdate Header Block

The ServiceInstanceUpdate Header Block allows a message receiver to indicate in a response message that a new SOAP endpoint, new credentials or new security mechanisms should be used by the sender of the request to access the requested resource. The following elements are defined:

· SecurityMechID

· Credential

· Endpoint

Also an id attribute is specifically defined.

8.1.7
Timeout Header Block

A sender of a request may indicate using the Timeout Header Block that the request should be processed within a specified period of time. The following specific attributes are defined:

· maxProcessingTime

· id

8.1.8
CredentialsContext Header Block

Using the CredentialsContext a sender may indicate to a receiver what type of credentials should be used. This is meant to be used in a response message to indicate to the requestor the type of credentials that should be used. The following elements are defined:

· lib:RequestAuthContext

· SecurityMechID

Also an id attribute is specifically defined.

8.1.9
Security header element

Liberty ID-WSF Security Mechanisms [15] specifies a Security header element. The Security header element contains XML elements:

· Assertion

· Signature

Editor’s note: SA WG3 is expected to provide contents to this subclause

8.1.10
Requestor data

The GUP stage 2 3GPP TS 23.240 [1] contains a Requestor data parameter in several procedures. This subclause shows how the Requestor data parameter is carried in the SOAP headers defined by the Liberty Alliance Project. The information can be provided as follows:

· The subscriber identification matches with the concept of an invocation id in Liberty ID-WSF specifications. This id is carried inside the Security SOAP header in the Subject element.

· The application identification matches with the concept of sender id in Liberty ID-WSF specifications. This id is carried inside the Security SOAP header in the ProxySubject element.

· The authorization assertion is provided within the Security header element in the Assertion element.

· The additional info may be carried inside the Assertion (or in procedure extensions). More detailed specification is FFS.
Editor's note: Also a GUP specific new SOAP header element may need to be considered for part of the Requestor data information.
8.2
General Principles

Editor’s note: talk about the LA philosophy about itemID et al.

Editor’s note: copy/paste some stuff 9.1.1 (from version 0.3.0).

Editor’s note: LA version 1 vs LA version 2.

Editor’s note : how to properly include LA xsd types into our xsd types.

8.3
Procedures
The Rp reference point procedures described in this subclause have several common features and functions. One example is the error handling which has many commonly applied features and result codes as described in the subclause 9.1.10. All the special error handling measures and results are defined for each procedure separately. Common information elements are described in clause 7, which also shows how a number of common parameters are placed in the XML data elements. Note that not all the parameters mentioned in the procedure descriptions will necessarily have a one to one relationship with an XML element.

The following actions are carried out for each procedure:

· The receiving entity checks the authority of the sender to carry out this operation. The result code ActionNotAuthorized is returned if the action is not allowed.

· The receiving entity checks that all the mandatory (denoted by M in the procedure descriptions) parameters are provided. The corresponding error (e.g. MissingResourceIDElement, MissingSelect or MissingNewDataElement) is returned if any mandatory parameter is missing.

· The receiving entity verifies the ComponentType and further processing of the request is based on the features linked to this type. The result code InvalidResourceID is returned if the ComponentType is badly formed.

· The receiving entity verifies the validity of the ResourceIDGroup element (i.e. subscriber identity) . The format must be correct and the address in the allowed range. The identity must be supported by the implementation. The receiving entity checks whether the subscriber and the related component exist. Also, other case specific policies and rules are checked, e.g. before a component can be created. The result code InvalidResourceID is returned if some flaw is detected in the ResourceIDGroup.

· The receiving entity evaluates the RequestorData with the requested operations. Only those actions for which there is a valid authority may be carried out . The handling of the unauthorised actions is procedure specific, however the default behaviour is that the whole operation fails. The result code ActionNotAuthorized is returned if the action is not allowed.

· The receiving entity verifies all data presented in XML format against the XML schema to be well formed and valid. If an error is found the whole operation fails with the appropriate result code: InvalidResourceID, InvalidSelect, InvalidData, InvalidRequestorData or ExtensionNotSupported.

The SOAP body may contain several procedure elements of the same type (e.g. Query). The related response message provides the outcome for all of these. An attribute itemID in the request and itemIDRef in the response have been defined for each procedure element to facilitate linking of the response element with the earlier request element. Furthermore these identifiers may be needed on the lower level as well (e.g. QueryItem) to identify the exact requested action. itemID may be also returned in error cases to show the faulty element. Furthermore, an id attribute is defined for the elements as a local identification in scope of the message.

The Schema of the procedure XML elements is in Annex C.

8.3.1
Create message

The Create Component procedure is used by the application to add a new profile component. The request is placed in a Create element in the request message.

The CreateResponse element provides the result of the procedure. There may be many Create elements in one message.

The schema for <Create> is shown below

<xs:element name="Create" type="CreateType"/>
 <xs:complexType name="CreateType">
 <xs:sequence>
 <xs:group ref="ResourceIDGroup" minOccurs="0"/>
 <xs:element name="CreateItem" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Select" type="SelectType"/>
 <xs:element name="NewData">

 <xs:complexType>

 <xs:sequence>

 <xs:any minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:sequence>
 <xs:attribute name="id" type="xs:ID"/>
 <xs:attribute name="itemID" type="IDType"/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="id" type="xs:ID"/>
 <xs:attribute name="itemID" type="IDType"/>
</xs:complexType>

Where SelectType in the context of a GUP Data Service is defined as:

· ComponentType (optional) as a string with the GUP namespace

· GCLRef (mandatory) as a string

The schema for <CreateResponse> is shown below

<xs:element name="CreateResponse" type= "CreateResponseType"/>
 <xs:complexType name="CreateResponseType">
 <xs:sequence>
 <xs:element ref="Status"/>
 <xs:complexType>
 <xs:attribute name="id" type="xs:ID"/>
 <xs:attribute name="itemIDRef" type="IDReferenceType"/>
 <xs:attribute name="timeStamp" type="xs:dateTime"/>
</xs:complexType>

</xs:element>
where <Status> is defined in schema liberty-idff-utility-v1.0.xsd

8.3.2 Delete message

Editor’s note: This section is to be written in a similar way than clause 8.3.1

8.3.3 Modify message

Editor’s note: This section is to be written in a similar way than clause 8.3.1

8.3.4 Query message

The schema for <Query> element is below (from Liberty ID-WSF Data Services Template Specification version 1.0, section 3.2)

Editor’s note: when using LA schema and making some changes, changes should be highlighted/emphasized.

<xs:element name="Query" type="QueryType"/>
 <xs:complexType name="QueryType">
 <xs:sequence>
 <xs:group ref="ResourceIDGroup" minOccurs="0"/>
 <xs:element name="QueryItem" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Select" type="SelectType"/>
 </xs:sequence>
 <xs:attribute name="id" type="xs:ID"/>
 <xs:attribute name="includeCommonAttributes" type="xs:boolean" default="0"/>
 <xs:attribute name="itemID" type="IDType"/>
 <xs:attribute name="changedSince" type=" xs:dateTime"/>
 </xs:complexType>
 </xs:element>
 <xs:element ref="Extension" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="id" type="xs:ID"/>
 <xs:attribute name="itemID" type="IDType"/>
</xs:complexType>

Where SelectType in the context of a GUP Data Service is defined as:

ComponentType (optional) as a string with the GUP namespace

GCLRef (mandatory) as a string

Needs to be clarified:

· What happens when we have both ComponentType and GCLRef?

The schema for <QueryResponse> is below (from Liberty ID-WSF Data Services Template Specification version 1.0, section 3.2)

<xs:element name="QueryResponse" type= "QueryResponseType"/>
 <xs:complexType name="QueryResponseType">
 <xs:sequence>
 <xs:element ref="Status"/>
 <xs:element name="Data" minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:any minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="id" type="xs:ID"/>
 <xs:attribute name="itemIDRef" type= "IDReferenceType"/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="id" type="xs:ID"/>
 <xs:attribute name="itemIDRef" type="IDReferenceType"/>
 <xs:attribute name="timeStamp" type="xs:dateTime"/>
</xs:complexType >
8.3.5 Subscribe message

Editor’s note: This section is to be written in a similar way than clause 8.3.1

8.3.6 Unsubscribe message

Editor’s note: This section is to be written in a similar way than clause 8.3.1

8.3.7 Notify message

Editor’s note: This section is to be written in a similar way than clause 8.3.1

8.3.8 List message

Editor’s note: This section is to be written in a similar way than clause 8.3.1

9
Rp interface

9.1
General Principles

9.2
Procedures

Editors’s note: Part of this text will be moved to clause 8.3

·
·
·
·
·
·

9.2.1
Create Component procedure

3GPP

