Page 1

3GPP TSG-CN4 Meeting #21
Tdoc N4-031300
Bangkok, Thailand, 27 – 31 October 2003
	CR-Form-v7

	CHANGE REQUEST

	

	(

	24.080
	CR
	031
	(

rev
	1
	(

Current version:
	5.4.0
	(

	

	For HELP on using this form, see bottom of this page or look at the pop-up text over the (
 symbols.

	

	Proposed change affects:
(

	UICC apps(

	
	ME
	x
	Radio Access Network
	X
	Core Network
	x

	

	Title:
(

	Deferred MT-LR Area Event

	
	

	Source:
(

	Nokia

	
	

	Work item code:
(

	LCS2
	
	Date: (

	27/10/2003

	
	
	
	
	

	Category:
(

	B
	
	Release: (

	Rel-6

	
	Use one of the following categories:
F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
2
(GSM Phase 2)
R96
(Release 1996)
R97
(Release 1997)
R98
(Release 1998)
R99
(Release 1999)
Rel-4
(Release 4)
Rel-5
(Release 5)
Rel-6
(Release 6)

	
	

	Reason for change:
(

	SA2 has approved the Deferred MT-LR Area Event concept. This CR, together with the companion CRs, provides the corresponding Stage 3 modifications.

	
	

	Summary of change:
(

	Addition of new Area Event Request from network to mobile, Area Event Report from mobile to network and Area Event Cancellation from network to mobile.

The ASN.1 module versions have also been updated to version 9 for Rel-6.

	
	

	Consequences if
(

not approved:
	The functionalities defined at Stage 2 would not be implemented in Stage 3 creating misalignment.

	
	

	Clauses affected:
(

	4.2, 4.3.1, 4.4.2, 4.5

	
	

	
	Y
	N
	
	

	Other specs
(

	X
	
	 Other core specifications
(

	24.030 CR 014, 29.002 CR 702

	affected:
	
	X
	 Test specifications
	

	
	
	X
	 O&M Specifications
	

	
	

	Other comments:
(

	

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at http://www.3gpp.org/specs/CR.htm. Below is a brief summary:

1)
Fill out the above form. The symbols above marked (
 contain pop-up help information about the field that they are closest to.

2)
Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3)
With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.
4.2
Operation types

Table 4.1 summarizes the operations defined for supplementary services in this specification and shows which of these operations are call related and call independent. The terms "call related" and "call independent" are defined in TS 24.010.

Table 4.1: Relevance of supplementary service operations

	Operation name
	Call related SS
	Call independent SS

	registerSS
	-
	+

	eraseSS
	-
	+

	activateSS
	-
	+

	deactivateSS
	-
	+

	interrogateSS
	-
	+

	registerPassword
	-
	+

	getPassword
	-
	+

	processUnstructuredSS-Data
	+
	+

	forwardCheckSS-Indication
	-
	+

	processUnstructuredSS-Request
	-
	+

	unstructuredSS-Request
	-
	+

	unstructuredSS-Notify
	-
	+

	forwardChargeAdvice
	+
	-

	notifySS
	+
	-

	forwardCUG-Info
	+
	-

	buildMPTY
	+
	-

	holdMPTY
	+
	-

	retrieveMPTY
	+
	-

	splitMPTY
	+
	-

	explicitCT
	+
	-

	accessRegisterCCEntry
	+
	-

	eraseCCEntry
	-
	+

	callDeflection
	+
	-

	userUserService
	+
	-

	lcs-LocationNotification
	-
	+

	lcs-MOLR
	-
	+

	lcs-AreaEventRequest
	-
	+

	lcs-AreaEventReport
	-
	+

	Lcs-AreaEventCancellation
	-
	+

	NOTE:
The processUnstructuredSS-Data operation may be used call related by a GSM Phase 1 MS.

The following ASN.1 module defines operations by allocating them a local value. For the involved operations the same local values as in MAP are allocated.

.$SS-Operations {

 itu-t identified-organization (4) etsi (0) mobileDomain (0) gsm-Access (2) modules (3)

 ss-Operations (0) version9 (9)}

DEFINITIONS ::=

BEGIN

EXPORTS

-- exports operations

-- operations defined in this specification

processUnstructuredSS-Data, notifySS, forwardChargeAdvice, forwardCUG-Info, buildMPTY, holdMPTY, retrieveMPTY, splitMPTY, explicitCT, accessRegisterCCEntry, callDeflection, userUserService,

lcs-LocationNotification, lcs-MOLR;

IMPORTS

OPERATION FROM

Remote-Operations-Information-Objects {

joint-iso-itu-t remote-operations(4)

 informationObjects(5) version1(0)}

-- The MAP operations:

-- registerSS, eraseSS, activateSS, deactivateSS, interrogateSS, registerPassword,

-- getPassword, processUnstructuredSS-Request, unstructuredSS-Request, unstructuredSS-Notify

-- forwardCheckSS-Indication

-- are imported from MAP-Operations in SS-Protocol module.

-- imports SS-data types

NotifySS-Arg,

ForwardChargeAdviceArg,

ForwardCUG-InfoArg,

SS-UserData,

AccessRegisterCCEntryArg,

CallDeflectionArg,

UserUserServiceArg,

LocationNotificationArg,

LocationNotificationRes,

LCS-MOLRArg,

LCS-MOLRRes,
LCS-AreaEventRequestArg,
LCS-AreaEventReportArg,
LCS-AreaEventCancellationArg

FROM SS-DataTypes {

 itu-t identified-organization (4) etsi (0) mobileDomain (0) gsm-Access (2) modules (3)

 ss-DataTypes (2) version9 (9)}

-- imports MAP-SS-data types

RegisterCC-EntryRes

FROM MAP-SS-DataTypes {

 itu-t identified-organization (4) etsi (0) mobileDomain (0)

 gsm-Network (1) modules (3) map-SS-DataTypes (14) version9 (9)}

-- imports MAP-errors

illegalSS-Operation, ss-ErrorStatus, ss-NotAvailable, ss-SubscriptionViolation,

ss-Incompatibility, systemFailure, facilityNotSupported, callBarred, unexpectedDataValue, shortTermDenial, longTermDenial, dataMissing, forwardingViolation, forwardingFailed, positionMethodFailure

FROM MAP-Errors {

 itu-t identified-organization (4) etsi (0) mobileDomain (0) gsm-Network (1) modules (3)

 map-Errors (10) version9 (9)}

-- imports SS-Errors

resourcesNotAvailable, maxNumberOfMPTY-ParticipantsExceeded, deflectionToServedSubscriber, invalidDeflectedToNumber, specialServiceCode, rejectedByUser, rejectedByNetwork

FROM SS-Errors {

 itu-t identified-organization (4) etsi (0) mobileDomain (0) gsm-Access (2) modules (3)

 ss-Errors (1) version9 (9)}

;

-- operations definition

processUnstructuredSS-Data
OPERATION ::= { -- Timer T(PUSSD)= 15s to 30s

ARGUMENT
SS-UserData

RESULT

SS-UserData

-- optional

ERRORS

{

systemFailure |

unexpectedDataValue}

CODE

local:19 }

notifySS
OPERATION ::= {

ARGUMENT
NotifySS-Arg

CODE

local:16 }

forwardChargeAdvice
OPERATION ::= { -- Timer T(AoC)= 1s to 40s

ARGUMENT
ForwardChargeAdviceArg

RETURN RESULT TRUE

CODE

local:125 }

forwardCUG-Info
OPERATION ::= {

ARGUMENT
ForwardCUG-InfoArg

CODE

local:120 }

buildMPTY
OPERATION ::= { -- Timer T(BuildMPTY)= 5s to 30s

RETURN RESULT TRUE

ERRORS
{

illegalSS-Operation |

ss-ErrorStatus |

ss-NotAvailable |

ss-Incompatibility |

systemFailure |

resourcesNotAvailable |

maxNumberOfMPTY-ParticipantsExceeded}

CODE
local:124 }

holdMPTY
OPERATION ::= { -- Timer T(HoldMPTY)= 5s to 30s

RETURN RESULT TRUE

ERRORS
{

illegalSS-Operation |

ss-ErrorStatus |

ss-Incompatibility |

facilityNotSupported |

systemFailure}

CODE
local:123 }

retrieveMPTY
OPERATION ::= { -- Timer T(RetrieveMPTY)= 5s to 30s

RETURN RESULT TRUE

ERRORS
{

illegalSS-Operation |

ss-ErrorStatus |

ss-Incompatibility |

facilityNotSupported |

systemFailure}

CODE
local:122 }

splitMPTY
OPERATION ::= { -- Timer T(SplitMPTY)= 5s to 30s

RETURN RESULT TRUE

ERRORS
{

illegalSS-Operation |

ss-ErrorStatus |

ss-Incompatibility |

facilityNotSupported |

systemFailure}

CODE
local:121 }

explicitCT
OPERATION ::= { -- Timer T(ECT)= 5s to 15s

RETURN RESULT TRUE

ERRORS
{

illegalSS-Operation |

ss-ErrorStatus |

ss-NotAvailable |

ss-Incompatibility |

facilityNotSupported |

systemFailure |

resourcesNotAvailable |

callBarred}

CODE
local:126 }

accessRegisterCCEntry
 OPERATION ::= { -- Timer T(AccRegCCEntry)= 30s

ARGUMENT
AccessRegisterCCEntryArg

RESULT

RegisterCC-EntryRes

ERRORS

{

systemFailure |

dataMissing |

unexpectedDataValue |

callBarred |

illegalSS-Operation |

ss-ErrorStatus |

ss-Incompatibility |

shortTermDenial |

longTermDenial |

facilityNotSupported}

CODE

local:119 }

-- the timer value is defined by T308, see also in TS 24.008 for definition of timer T308

callDeflection
OPERATION ::= { -- Timer T(CD)= 30s

ARGUMENT
CallDeflectionArg

RETURN RESULT TRUE

ERRORS

{

illegalSS-Operation |

ss-ErrorStatus |

ss-NotAvailable |

ss-Incompatibility |

facilityNotSupported |

systemFailure |

resourcesNotAvailable |

forwardingViolation |

callBarred |

deflectionToServedSubscriber |

invalidDeflectedToNumber |

specialServiceCode |

forwardingFailed}

CODE

local:117 }

-- the timer value is defined by T305, see also in TS 24.008 for definition of timer T305

-- extensionContainer shall not be used with this operation

userUserService
OPERATION ::= { -- Timer T(UUS3)= 10s

ARGUMENT
UserUserServiceArg

RETURN RESULT TRUE

ERRORS

{

illegalSS-Operation |

ss-ErrorStatus |

ss-NotAvailable |

ss-Incompatibility |

facilityNotSupported |

systemFailure |

resourcesNotAvailable |

rejectedByNetwork |

rejectedByUser}

CODE

local:118 }

-- The timer value for UUS3 is 10s; it is applicable only if UUS3 is activated by FACILITY

-- message. If UUS service (UUS1, UUS2 or UUS3) is activated by SETUP message, no timers are

-- needed. In those cases Return Result or Return Error must be received within certain call

-- control messages, see 3GPP TS 24.087.

-- extensionContainer shall not be used with this operation.

lcs-LocationNotification
OPERATION ::= { -- Timer T(LCSN)= 10s to 20s

ARGUMENT
LocationNotificationArg

RESULT

LocationNotificationRes

ERRORS

{

systemFailure |

unexpectedDataValue}

CODE

local:116 }

lcs-MOLR
OPERATION ::= { -- Timer T(LCSL)= 10s to 30s

ARGUMENT
LCS-MOLRArg

RESULT

LCS-MOLRRes

ERRORS

{

systemFailure |

unexpectedDataValue |

dataMissing |

facilityNotSupported |

ss-SubscriptionViolation |

positionMethodFailure}

CODE

local:115 }

lcs-AreaEventRequest
OPERATION ::= { -- Timer T(LCSN)= 10s to 20s

ARGUMENT
LCS-AreaEventRequestArg

RETURN RESULT TRUE

ERRORS

{

systemFailure |

facilityNotSupported |

unexpectedDataValue}

CODE

local:xxx }

lcs-AreaEventReport
OPERATION ::= { -- Timer T(LCSL)= 10s to 30s

ARGUMENT
LCS-AreaEventReportArg

RETURN RESULT TRUE

ERRORS

{

systemFailure |

unexpectedDataValue |

facilityNotSupported |

CODE

local:xxx }
lcs-AreaEventCancellation
OPERATION ::= { -- Timer T(LCSN)= 10s to 20s

ARGUMENT
LCS-AreaEventCancellationArg

RETURN RESULT TRUE

ERRORS

{

systemFailure |

facilityNotSupported |

unexpectedDataValue}

CODE

local:xxx }

.#END

4.2.1
Void

4.2.2
Operations description

For each operation this subclause provides a brief prose description.

4.2.2.1
registerSS (MS --> network)

This operation is invoked by an MS to register data related to a supplementary service in the network. When no BasicService parameter is provided, the registration applies to all provisioned and applicable basic services.

4.2.2.2
eraseSS (MS --> network)

This operation is invoked by an MS to erase data related to a supplementary service in the network. When no BasicService parameter is provided, the erasure applies to all provisioned and applicable basic services.

4.2.2.3
activateSS (MS --> network)

This operation is invoked by an MS to request the network for a supplementary service activation. When no BasicService parameter is provided, the activation applies to all provisioned and applicable basic services.

4.2.2.4
deactivateSS (MS --> network)

This operation is invoked by an MS to request the network for a supplementary service deactivation. When no BasicService parameter is provided, the deactivation applies to all provisioned and applicable basic services.

4.2.2.5
interrogateSS (MS --> network)

This operation is invoked by an MS to request the network for a supplementary service interrogation. When no BasicService parameter is provided, the interrogation applies to all provisioned and applicable basic services.

4.2.2.6
notifySS (network --> MS)

This operation is invoked by the network to forward a supplementary service notification towards a mobile subscriber.

4.2.2.7
registerPassword (MS --> network)

This operation is invoked by an MS to register a new password related to the management by the subscriber himself of subscription data in the HLR. The operation "Register password" will be successful if the subscriber can provide the old password, the new password and the new password again as results of 3 subsequent operations "Get password".

4.2.2.8
getPassword (network --> MS)

This operation is invoked by the network to request a password from the mobile subscriber. It may be used to allow the registration of a new password or the management of subscription data by the subscriber himself (e.g. modification of call barring activation status).

4.2.2.9
processUnstructuredSS-Data (MS --> network)

This operation is invoked by an MS to relay unstructured information in order to allow end to end SS operation between the MS and the network following specific rules (e.g. embedding of keypad commands). The operation is used in order to provide backward compatibility (see TS 24.090).

4.2.2.10
processUnstructuredSS-Request (MS --> network)

This operation is invoked by an MS to start an unstructured supplementary service data application in the network.

4.2.2.11
unstructuredSS-Request (network --> MS)

This operation is invoked by the network to request unstructured information from the MS in order to perform an unstructured supplementary service data application.

4.2.2.12
unstructuredSS-Notify (network --> MS)

This operation is invoked by the network to give an unstructured supplementary service notification to the mobile user.

4.2.2.13
forwardCheckSSIndication (network --> MS)

This operation is invoked by the network to indicate to the mobile subscriber that the status of supplementary services may not be correct in the network. The procedures for initiating ForwardCheckSSIndication are specified in TS 29.002.

4.2.2.14
forwardChargeAdvice (network --> MS)

This operation is invoked by the network to forward Advice of Charge information to the mobile subscriber.

4.2.2.15
buildMPTY (MS --> network)

This operation is invoked by an MS to request the network to connect calls in a multi party call.

4.2.2.16
holdMPTY (MS --> network)

This operation is invoked by an MS to put the MS-connection to a multi party call (invoked by that MS) on hold.

4.2.2.17
retrieveMPTY (MS --> network)

This operation is invoked by an MS to request retrieval of a multi party call held by that MS.

4.2.2.18
splitMPTY (MS --> network)

This operation is invoked by an MS to request a private communication with one of the remote parties in a multi party call invoked by that MS.

4.2.2.19
forwardCUG-Info (MS --> network)

This operation is used by an MS to explicitly invoke a CUG call.

4.2.2.20
explicitCT (MS --> Network)

This operation is invoked by an MS to request the network to connect the two calls of the subscriber.

4.2.2.21
accessRegisterCCEntry (MS --> Network)

This operation is invoked by an MS to activate a CCBS request in the network.

4.2.2.22
callDeflection (MS --> Network)

This operation is invoked by an MS to request the network to deflect the incoming call to a specified destination.

4.2.2.23
userUserService (MS --> Network, Network --> MS)

This operation is invoked by an MS to request the network to allow an MS to send/receive information to/from another subscriber in association with a call.

4.2.2.24
lcs-LocationNotification (network --> MS)

This operation is invoked by the network to request a verification from the mobile subscriber for the attempted location request or to notify the subscriber about authorized location request.

4.2.2.25
lcs-MOLR (MS --> Network)

This operation is invoked by an MS to request the network to start location procedure, which is used to provide the MS location estimate, location assistance data or deciphering keys for broadcast assistance data.
4.2.2.26
lcs-AreaEventRequest (network --> MS)

This operation is invoked by the network to request a mobile to start the deferred MT-LR Area Event procedure.
4.2.2.27
lcs-AreaEventReport (MS --> network)

This operation is invoked by an MS to respond that the requested Area Event has occurred.

4.2.2.28
lcs-AreaEventCancellation (network --> MS)

This operation is invoked by the network to request a mobile to cancel the deferred MT-LR Area Event procedure.

**** NEXT MODIFIED SECTION ****

4.3.1
Errors ASN.1 specification

The following ASN.1 module provides an ASN.1 specification of errors. Errors from MAP are imported in the SS‑Protocol module in subclause 4.5. The module defines errors by allocating them a local value. For the involved errors the same local values as in MAP are allocated.

.$SS-Errors {

 itu-t identified-organization (4) etsi (0) mobileDomain (0) gsm-Access (2) modules (3)

 ss-Errors (1) version9 (9)}

DEFINITIONS ::=

BEGIN

IMPORTS

ERROR FROM

Remote-Operations-Information-Objects {joint-iso-itu-t remote-operations(4)

 informationObjects(5) version1(0)};

-- The MAP errors

-- unknownSubscriber, bearerServiceNotProvisioned, teleserviceNotProvisioned,

-- illegalSS-Operation, ss-ErrorStatus, ss-NotAvailable, ss-SubscriptionViolation,

-- ss-Incompatibility, systemFailure, dataMissing, unexpectedDataValue, facilityNotSupported,

-- pw-RegistrationFailure, negativePW-Check, callBarred, numberOfPW-AttemptsViolation,

-- absentSubscriber, illegalSubscriber, illegalEquipment, ussd-Busy, unknownAlphabet,

-- forwardingViolation, forwardingFailed

-- are imported from MAP-Errors in SS-Protocol module.

DUMMYCLASS ::= CLASS {&dummyID INTEGER}

-- errors definition

resourcesNotAvailable ERROR ::= {

CODE
local:127 }

maxNumberOfMPTY-ParticipantsExceeded ERROR ::= {

CODE
local:126 }

invalidDeflectedToNumber ERROR ::= {

CODE
local:125 }

specialServiceCode ERROR ::= {

CODE
local:124 }

deflectionToServedSubscriber ERROR ::= {

CODE
local:123 }

rejectedByNetwork ERROR ::= {

CODE
local:122 }

rejectedByUser ERROR ::= {

CODE
local:121 }

.#END

**** NEXT MODIFIED SECTION ****

4.4.2
ASN.1 data types

This subclause provides an ASN.1 module defining the abstract data types in operations and errors specification. Only data types which are specific for this specification are defined. All other data types are imported from MAP together with the import of operations and errors.

.$SS-DataTypes {

 itu-t identified-organization (4) etsi (0) mobileDomain (0) gsm-Access (2) modules (3)

 ss-DataTypes (2) version9 (9)}

DEFINITIONS

IMPLICIT TAGS ::=

BEGIN

-- exports all data types defined in this module

IMPORTS

SS-Code

FROM MAP-SS-Code {

 itu-t identified-organization (4) etsi (0) mobileDomain (0) gsm-Network (1) modules (3)

 map-SS-Code (15) version9 (9)}

-- imports MAP-SS-DataTypes

SS-Status, USSD-DataCodingScheme, USSD-String, CCBS-Feature

-- USSD-DataCodingScheme, USSD-String were introduced because of CNAP.

FROM MAP-SS-DataTypes {

 itu-t identified-organization (4) etsi (0) mobileDomain (0) gsm-Network (1) modules (3)

 map-SS-DataTypes (14) version9 (9)}

GSN-Address,

CUG-Index,

NotificationToMSUser

FROM MAP-MS-DataTypes {

 itu-t identified-organization (4) etsi (0) mobileDomain (0) gsm-Network (1) modules (3)

 map-MS-DataTypes (11) version9 (9)}

maxSignalInfoLength,

ISDN-AddressString,

ISDN-SubaddressString,

AlertingPattern,

LCSClientExternalID,

AddressString,

LCSServiceTypeID

FROM MAP-CommonDataTypes {

 itu-t identified-organization (4) etsi (0) mobileDomain (0) gsm-Network (1) modules (3)

 map-CommonDataTypes (18) version9 (9)}

LocationType,

DeferredLocationEventType,

LCSClientName,

LCS-QoS,

Horizontal-Accuracy,

ResponseTime,

Ext-GeographicalInformation,

SupportedGADShapes,

Add-GeographicalInformation,

LCSRequestorID,

LCS-ReferenceNumber,

LCSCodeword,
AreaEventInfo
FROM MAP-LCS-DataTypes {

 itu-t identified-organization (4) etsi (0) mobileDomain (0)

 gsm-Network (1) modules (3) map-LCS-DataTypes (25) version9 (9)}

;

-- data types definition

SS-UserData ::= IA5String (SIZE (1.. maxSignalInfoLength))

NotifySS-Arg ::= SEQUENCE{

ss-Code

[1]

SS-Code OPTIONAL,

ss-Status

[4]

SS-Status OPTIONAL,

ss-Notification

[5]

SS-Notification OPTIONAL,

callIsWaiting-Indicator

[14]
NULL OPTIONAL,

callOnHold-Indicator

[15]
CallOnHold-Indicator OPTIONAL,

mpty-Indicator

[16]
NULL OPTIONAL,

cug-Index

[17]
CUG-Index OPTIONAL,

clirSuppressionRejected

[18]
NULL OPTIONAL,

... ,

ect-Indicator

[19]
ECT-Indicator OPTIONAL,

nameIndicator

[20]
NameIndicator OPTIONAL,

ccbs-Feature

[21]
CCBS-Feature OPTIONAL,

alertingPattern

[22]
AlertingPattern OPTIONAL,

multicall-Indicator

[23]
Multicall-Indicator OPTIONAL}

-- The nameIndicator is defined because of CNAP.

Multicall-Indicator
::= ENUMERATED {

nbr-SNexceeded (0),

nbr-Userexceeded (1)}

ForwardChargeAdviceArg ::= SEQUENCE{

ss-Code

[0]

SS-Code,

chargingInformation

[1]

ChargingInformation,

...}

SS-Notification ::= OCTET STRING (SIZE (1))

--
 Bit 8 7 6 5 4
00000 (Unused)

--
Bit 3
Call is forwarded indication to A-subscriber

--

(calling subscriber)

--
0
No information content

--
1
Outgoing call has been forwarded to C

--
Bit 2
Call is forwarded indication to B-subscriber

--

(forwarding subscriber)

--
0
No information content

--
1
Incoming call has been forwarded to C

--
Bit 1
Call is forwarded indication to C-subscriber

--

(forwarded-to subscriber)

--
0
No information content

--
1
Incoming call is a forwarded call

ChargingInformation ::= SEQUENCE{

e1
[1] E1 OPTIONAL,

e2
[2] E2 OPTIONAL,

e3
[3] E3 OPTIONAL,

e4
[4] E4 OPTIONAL,

e5
[5] E5 OPTIONAL,

e6
[6] E6 OPTIONAL,

e7
[7] E7 OPTIONAL,

...}

E1 ::= INTEGER (0..max10TimesUnitsPerTime)

max10TimesUnitsPerTime INTEGER ::= 8191

E2 ::= INTEGER (0..max10TimesTimeInterval)

max10TimesTimeInterval INTEGER ::= 8191

E3 ::= INTEGER (0..max100TimesScalingFactor)

max100TimesScalingFactor INTEGER ::= 8191

E4 ::= INTEGER (0..max10TimesIncrement)

max10TimesIncrement INTEGER ::= 8191

E5 ::= INTEGER (0..max10TimesIncrementPerDataInterval)

max10TimesIncrementPerDataInterval INTEGER ::= 8191

E6 ::= INTEGER (0..maxNumberOfSegmentsPerDataInterval)

maxNumberOfSegmentsPerDataInterval INTEGER ::= 8191

E7 ::= INTEGER (0..max10TimesInitialTime)

max10TimesInitialTime INTEGER ::= 8191

CallOnHold-Indicator
::= ENUMERATED {

callRetrieved (0),

callOnHold (1)}

ForwardCUG-InfoArg ::= SEQUENCE {

cug-Index

[0]
CUG-Index OPTIONAL,

suppressPrefCUG

[1]
NULL OPTIONAL,

suppressOA

[2]
NULL OPTIONAL,

...}

ECT-Indicator
::= SEQUENCE {

ect-CallState

[0]
ECT-CallState,

rdn
[1]
RDN OPTIONAL,

...}

ECT-CallState
::= ENUMERATED {

alerting (0),

active (1)}

NameIndicator ::= SEQUENCE {

callingName

[0] Name OPTIONAL,

...}

Name ::= CHOICE {

namePresentationAllowed

[0] NameSet,

presentationRestricted

[1] NULL,

nameUnavailable

[2] NULL,

namePresentationRestricted
[3] NameSet}

NameSet ::= SEQUENCE {

dataCodingScheme

[0] USSD-DataCodingScheme,

lengthInCharacters

[1] INTEGER,

nameString

[2] USSD-String,

...}

-- NameIndicator, Name and NameSet are defined because of CNAP.

-- The USSD-DataCodingScheme shall indicate use of the default alphabet through the

-- following encoding:

-- bit 7 6 5 4 3 2 1 0

-- | 0 0 0 0 | 1 1 1 1|

RDN
::= CHOICE {

presentationAllowedAddress

[0]
RemotePartyNumber,

presentationRestricted

[1]
NULL,

numberNotAvailableDueToInterworking

[2]
NULL,

presentationRestrictedAddress

[3]
RemotePartyNumber}

RemotePartyNumber
::= SEQUENCE {

partyNumber

[0]
ISDN-AddressString,

partyNumberSubaddress
[1]
ISDN-SubaddressString OPTIONAL,

...}

AccessRegisterCCEntryArg
::= SEQUENCE {

...}

CallDeflectionArg
::= SEQUENCE {

deflectedToNumber

[0]
AddressString,

deflectedToSubaddress
[1]
ISDN-SubaddressString OPTIONAL,

...}

UserUserServiceArg ::= SEQUENCE {

uUS-Service

[0]
UUS-Service,

uUS-Required
[1]
BOOLEAN,

... }

UUS-Service ::= ENUMERATED {

uUS1 (1),

uUS2 (2),

uUS3 (3),

... }

-- exception handling:

-- In case of UUS-Service with any other value, indicated as "UUS required",

-- but not understood by the MS, the call will be cleared.

LocationNotificationArg
::= SEQUENCE {

notificationType
[0]
NotificationToMSUser,

locationType

[1]
LocationType,

lcsClientExternalID
[2] LCSClientExternalID

OPTIONAL,

lcsClientName

[3]
LCSClientName

OPTIONAL,

... ,

lcsRequestorID

[4] LCSRequestorID

OPTIONAL,

lcsCodeword

[5]
LCSCodeword

OPTIONAL,

lcsServiceTypeID
[6]
LCSServiceTypeID

OPTIONAL }

-- exception handling:

-- At reception of an unrecognised notificationType value the receiver shall reject the

-- operation with a return error cause of unexpected data value.

-- At reception of an unrecognised locationType value the receiver shall reject the

-- operation with a return error cause of unexpected data value.

LocationNotificationRes
::= SEQUENCE {

verificationResponse

[0]
VerificationResponse OPTIONAL,

...}

VerificationResponse::= ENUMERATED {

permissionDenied
(0),

permissionGranted
(1),

... }

-- exception handling:

-- an unrecognized value shall be treated the same as value 0 (permissionDenied)

LCS-MOLRArg
::= SEQUENCE {

molr-Type

[0]
MOLR-Type,

locationMethod

[1]
LocationMethod

OPTIONAL,

lcs-QoS

[2]
LCS-QoS

OPTIONAL,

lcsClientExternalID
[3] LCSClientExternalID

OPTIONAL,

mlc-Number

[4]
ISDN-AddressString

OPTIONAL,

gpsAssistanceData
[5]
GPSAssistanceData

OPTIONAL,

...,

supportedGADShapes
[6]
SupportedGADShapes

OPTIONAL}

-- The parameter locationMethod shall be included if and only if the molr-Type is set to value

-- deCipheringKeys or assistanceData.

-- The parameter gpsAssistanceData shall be included if and only if the molr-Type is set to value

-- assistanceData and locationMethod is set to value assistedGPS.

MOLR-Type::= ENUMERATED {

locationEstimate

(0),

assistanceData

(1),

deCipheringKeys

(2),

... }

-- exception handling:

-- an unrecognized value shall be rejected by the receiver with a return error cause of

-- unexpected data value.

LocationMethod::= ENUMERATED {

msBasedEOTD

(0),

msAssistedEOTD

(1),

assistedGPS

(2),

...,

msBasedOTDOA

(3)

}

-- exception handling:

-- When this parameter is received with value msBasedEOTD or msAssistedEOTD and the MS

-- is camped on an UMTS Service Area then the receiver shall reject it

-- with a return error cause of unexpected data value.

-- When this parameter is received with value msBasedOTDOA and the MS

-- is camped on a GSM Cell then the receiver shall reject it with a return error cause of

-- unexpected data value.

-- an unrecognized value shall be rejected by the receiver with a return error cause of

-- unexpected data value.

GPSAssistanceData::= OCTET STRING (SIZE (1..38))

-- Octets 1 to 38 are coded in the same way as the octets 3 to 7+2n of Requested GPS Data IE

-- in 3GPP TS 49.031.

LCS-MOLRRes::= SEQUENCE {

locationEstimate

[0]
Ext-GeographicalInformation

OPTIONAL,

decipheringKeys

[1] DecipheringKeys

OPTIONAL,

...,

add-LocationEstimate
[2]
Add-GeographicalInformation

OPTIONAL}

-- Parameters locationEstimate or add-LocationEstimate (one but not both)

-- shall be included if and only if the

-- molr-Type in LocationRequestArg was set to value locationEstimate.

-- Parameter add-LocationEstimate shall not be included if the supportedGADShapes

-- parameter was not received in the LCS-MOLRArg.

-- The locationEstimate and the add-locationEstimate parameters shall not be sent if

-- the supportedGADShapes parameter has been received in LCS-MOLRArg

-- and the shape encoded in locationEstimate or add-LocationEstimate is not marked

-- as supported in supportedGADShapes. In such a case LCS-MOLRArg

-- shall be rejected with error FacilityNotSupported with additional indication

-- shapeOfLocationEstimateNotSupported.

-- Parameter decipheringKeys shall be included if and only if the molr-Type

-- in LocationRequestArg was set to value deCipheringKeys.

DecipheringKeys::= OCTET STRING (SIZE (15))

-- Octets in DecipheringKeys are coded in the same way as the octets 3 to 17 of Deciphering Key IE

-- in 3GPP TS 49.031. I.e. these octets contain Current Deciphering Key, Next Deciphering Key and

-- Ciphering Key Flag.

LCS-AreaEventRequestArg
::= SEQUENCE {

referenceNumber

[0]
LCS-ReferenceNumber,

h-gmlc-address

[1]
GSN-Address,

r-gmlc-address

[2] GSN-Address

OPTIONAL,

deferredLocationEventType
[3] DeferredLocationEventType,

areaEventInfo

[4]
AreaEventInfo,

... }

-- the msAvailableValue in the DeferredLocationEventType is not applicable for this procedure

LCS-AreaEventReportArg
::= SEQUENCE {

referenceNumber

[0]
LCS-ReferenceNumber,

h-gmlc-address

[1]
GSN-Address,

r-gmlc-address

[2]
GSN-Address

OPTIONAL,

... }

LCS-AreaEventCancellationArg
::= SEQUENCE {

referenceNumber

[0]
LCS-ReferenceNumber,

h-gmlc-address

[1]
GSN-Address,

... }

.#END

**** NEXT MODIFIED SECTION ****

4.5
Operations and errors implementation

For the actual implementation of supplementary services, operations and errors have to be defined by value. The following ASN.1 module, imports operation from the ASN.1 module described in subclause 4.2 and operations and errors from MAP.

.$SS-Protocol {

 itu-t identified-organization (4) etsi (0) mobileDomain (0)

 gsm-Access (2) modules (3) ss-Protocol (3) version9 (9)}

DEFINITIONS ::=

BEGIN

IMPORTS

OPERATION

FROM Remote-Operations-Information-Objects {

joint-iso-itu-t remote-operations(4) informationObjects(5) version1(0)}

-- imports operations

-- imports operation from MAP-MobileServiceOperations

forwardCheckSS-Indication

FROM MAP-MobileServiceOperations {

 itu-t identified-organization (4) etsi (0) mobileDomain (0) gsm-Network (1) modules (3)

 map-MobileServiceOperations (5) version9 (9)}

-- imports operations from MAP-SupplementaryServiceOperations

registerSS, eraseSS, activateSS, deactivateSS, interrogateSS, registerPassword, getPassword,

processUnstructuredSS-Request, unstructuredSS-Request, unstructuredSS-Notify, eraseCC-Entry

FROM MAP-SupplementaryServiceOperations {

 itu-t identified-organization (4) etsi (0) mobileDomain (0) gsm-Network (1) modules (3)

 map-SupplementaryServiceOperations (8) version9 (9)}

-- imports operations from SS-Operations

processUnstructuredSS-Data, notifySS, forwardChargeAdvice, buildMPTY, holdMPTY, retrieveMPTY,

splitMPTY, explicitCT, forwardCUG-Info, accessRegisterCCEntry, callDeflection, userUserService,

lcs-LocationNotification, lcs-MOLR

FROM SS-Operations {

 itu-t identified-organization (4) etsi (0) mobileDomain (0) gsm-Access (2) modules (3)

 ss-Operations (0) version9 (9)}

;

Supported-SS-Operations OPERATION ::= {forwardCheckSS-Indication | registerSS | eraseSS |

activateSS | deactivateSS | interrogateSS | registerPassword | getPassword |

processUnstructuredSS-Request | unstructuredSS-Request | unstructuredSS-Notify | eraseCC-Entry |

processUnstructuredSS-Data | notifySS | forwardChargeAdvice | buildMPTY | holdMPTY |

retrieveMPTY | splitMPTY | explicitCT | forwardCUG-Info | accessRegisterCCEntry |

callDeflection | userUserService | lcs-LocationNotification | lcs-MOLR}

.#END

�PAGE \# "'Page: '#'�'" �� Enter the specification number in this box. For example, 04.08 or 31.102. Do not prefix the number with anything . i.e. do not use "TS", "GSM" or "3GPP" etc.

�PAGE \# "'Page: '#'�'" �� Enter the CR number here. This number is allocated by the 3GPP support team. It consists of at least three digits, padded with leading zeros if necessary.

�PAGE \# "'Page: '#'�'" �� Enter the revision number of the CR here. If it is the first version, use a "-".

�PAGE \# "'Page: '#'�'" �� Enter the version of the specification here. This number is the version of the specification to which the CR will be applied if it is approved. Make sure that the latest version of the specification (of the relevant release) is used when creating the CR. If unsure what the latest version is, go to � HYPERLINK "http://www.3gpp.org/3G_Specs/3G_Specs.htm" ��� � HYPERLINK "http://www.3gpp.org/specs/specs.htm" ��http://www.3gpp.org/specs/specs.htm�.

�PAGE \# "'Page: '#'�'" �� For help on how to fill out a field, place the mouse pointer over the special symbol closest to the field in question.

�PAGE \# "'Page: '#'�'" �� Mark one or more of the boxes with an X.

�PAGE \# "'Page: '#'�'" �� SIM / USIM / ISIM applications.

�PAGE \# "'Page: '#'�'" �� Enter a concise description of the subject matter of the CR. It should be no longer than one line. Do not use redundant information such as "Change Request number xxx to 3GPP TS xx.xxx".

�PAGE \# "'Page: '#'�'" �� Enter the source of the CR. This is either (a) one or several companies or, (b) if a (sub)working group has already reviewed and agreed the CR, then list the group as the source.

�PAGE \# "'Page: '#'�'" �� Enter the acronym for the work item which is applicable to the change. This field is mandatory for category F, B & C CRs for release 4 and later. A list of work item acronyms can be found in the 3GPP work plan. See � HYPERLINK "http://www.3gpp.org/ftp/information/work_plan/" ��http://www.3gpp.org/ftp/information/work_plan/� .�The list is also included in a MS Excel file included in the zip file containing the CR cover sheet template.

�PAGE \# "'Page: '#'�'" �� Enter the date on which the CR was last revised. Format to be interpretable by English version of MS Windows ® applications, e.g. 19/02/2002.

�PAGE \# "'Page: '#'�'" �� Enter a single letter corresponding to the most appropriate category listed below. For more detailed help on interpreting these categories, see the Technical Report � HYPERLINK "http://www.3gpp.org/ftp/Specs/archive/21_series/21.900/" ��21.900� "TSG working methods".

�PAGE \# "'Page: '#'�'" �� Enter a single release code from the list below.

�PAGE \# "'Page: '#'�'" �� Enter text which explains why the change is necessary.

�PAGE \# "'Page: '#'�'" �� Enter text which describes the most important components of the change. i.e. How the change is made.

�PAGE \# "'Page: '#'�'" �� Enter here the consequences if this CR was to be rejected. It is necessary to complete this section only if the CR is of category "F" (i.e. correction).

�PAGE \# "'Page: '#'�'" �� Enter the number of each clause which contains changes.

�PAGE \# "'Page: '#'�'" �� Tick "yes" box if any other specifications are affected by this change. Else tick "no". You MUST fill in one or the other.

�PAGE \# "'Page: '#'�'" �� List here the specifications which are affected or the CRs which are linked.

�PAGE \# "'Page: '#'�'" �� Enter any other information which may be needed by the group being requested to approve the CR. This could include special conditions for it's approval which are not listed anywhere else above.

�PAGE \# "'Page: '#'�'" �� This is an example of pop-up text.

CR page 1

