3GPP TSG CN WG4 Meeting #20
N4-030830

Sophia Antipolis, FRANCE, 25th – 29th August 2003
Source:
Nokia
Title:
Version control in Cx and Sh
Agenda item:
6.4 Subscriber data handling for the IMS
Document for:
DISCUSSION and APPROVAL
1
Introduction

If a new command is introduced or a new mandatory AVP is added to a command, a Diameter application is no longer backwards compatible and it needs to version. The purpose of this paper is to review the versioning mechanisms that could be used in Cx and Sh protocols and to agree on the preferred mechanism as basis for the possible changes that are implemented to the Cx and Sh protocols to enable version control.

The version control of the Cx and Sh protocols is defined in chapter 7.1 in 29.229 where the last sentence of the chapter states “The exact mechanism and AVPs needed for the version control are decided when the exact update to the Cx application is needed.” Even though the aim of the Rel-6 Enhancements to Cx and Sh work item is to preserve the backwards compatibility between Rel-5 and Rel-6, it is a good idea to be ready for the protocol versioning as it is very likely that at some point the backwards compatibility can no longer be maintained and the protocols need to version.

The version control can be done on the level of application, command, or AVP. This paper discusses the version mechanism alternatives for each version control level. Versioning should be done so that when a specification is freezed, a version indication is given to all elements on the level on which the versioning is done. If after the freezing corrections that are not backward compatible are made to the specification, the version indication of the elements needs to be changed.

2
The level of versioning and version negotiation

The first thing to agree is the level on which the version control is made because it should be known before the versioning mechanism is selected. The entity (application, command or AVP) on which the version negotiation is done in the CER/CEA command pair depends on the level of versioning.
2.1
Application level

In this level the version control would apply to the version of the application and the version of the commands and AVPs would implicitly be the version of the application. If this is the level of version control, partial implementation of the protocol is not possible because announcing support for a protocol means supporting all it’s commands and AVPs.

2.1.1 Version information in application ID

In this solution the version of the application is identified by the application ID. When the Diameter nodes perform capabilities exchange, they inform their peers of locally supported applications, as defined in Diameter Base Protocol.

From IETF point of view every new version of the Cx and Sh interfaces would be a new independent Diameter Application with a new application ID. There is a risk that getting new application-id from IANA for each version would take a long time or be otherwise problematic. This version control mechanism is inflexible for the needs of protocols like Cx and Sh that are planned to evolve from release to release to allow the enhancements of the IMS.

2.1.2
Version information in version AVP

In this solution the version of the application is identified by the version AVP. Version AVPs in CER/CEA would be used for version negotiation. The data structure in the command should contain all the versions supported for each application, for example:

Supported-Auth-Application-Version ::= < AVP Header: TBD >

 { Auth-Application-Id }

 1* { Version }

 * [AVP]
Version AVP would also be present in all request and answer messages to enable support for multiple versions at the same time.
2.2
Command pair level

If the version control is done in the command pair level, each command pair would have a shared version identification. It should be required that the answer message must have the same version as the corresponding request message. If the version of the received request does not match with the supported versions agreed during CER/CEA procedure, an error response is sent back to the sender. The receiver ignores an answer message with an erroneous version.

The implicit version of the application would be the combination of the versions of the command pairs the application supports. The version of an AVP would implicitly be the version of the command it belongs to. If the version control is defined in this level, it is possible to implement only a part of the commands of the protocols or implement the new command versions gradually.

Version negotiation in the CER/CEA command pair could be done so that the CER would contain all the versions of the commands that the sender supports and the sender of the CEA would respond with highest commonly supported version of each commands. The responsibility to select the used versions should be with the sender of the CEA because that is the only way both parties can be sure which command versions are to be used. If there are dependencies between different commands, it could be controlled by the sender of the CEA command so that it sends back those highest common versions that work together correctly. The interdependency could be e.g. in SAA and PPR commands – the user profile should be the same in the used versions of the commands.

2.2.1
Version information in command-code

In this solution the version of the command is identified by the command code. A new command-code must be allocated for each new version of the command. The version information in CER/CEA would contain all supported commands for each application, for example

Supported-Command-Codes ::= < AVP Header: TBD >

1* { Command-Code }

 * [AVP]

The receiver of the CEA should be mandated to select the most recent version of the commonly supported versions to be taken into use when communicating with the sender of the CEA.

Creation of a new command-code requires IETF Consensus, as defined in Diameter Base Protocol. There is a risk that getting new command-code for each version would take a long time or be otherwise problematic. This version control mechanism is inflexible for the needs of protocols like Cx and Sh that are planned to evolve from

release to release to allow the enhancements of the IMS.

2.2.2
Version information in version AVP

In this solution the version of the command is identified by the version AVP. The version information in CER/CEA would contain all supported commands and versions for each command pair, for example

Supported-Commands ::= < AVP Header: TBD >

1* { Supported-Command-Version }

 * [AVP]

Supported-Command-Version ::= < AVP Header: TBD >

 { Command-Code }

1* { Version }

 * [AVP]
Version AVP would also be present in all request and answer messages to enable support for multiple versions at the same time.

2.3
AVP level

If the versioning would be done on the AVP level, the version of the command would implicitly be the combination of the supported AVPs and the implicit version of the application would be the combination of all implicit versions of the supported commands. The versioning of the AVP could be done by changing relevant AVPs to grouped and adding a new AVP to indicate the version of the grouped AVP. In CER/CEA the version negotiation could be done by listing for each supported command the supported combinations of the AVP

versions, for example

Supported-AVPs ::= < AVP Header: TBD >

1* { Supported-AVPs-in-Command }

 * [AVP]

Supported-AVPs-in-Command ::= < AVP Header: TBD >

 { Command-Code }

1* { Supported-AVP-Version }

 * [AVP]

Supported-AVP-Version ::= < AVP Header: TBD >

 { AVP-Code }

1* { Version }

 * [AVP]
If the version control is defined in this level, it is possible to implement the protocol and it’s features partially. However, the structure of the messages, AVPs, and version negotiation would be complex and it is questionable if the level of flexibility provided by this solution is practical at all.

4
Release 5 backward compatibility considerations

Adding new version AVP to Cx and Sh command ABNF definitions may raise the question how the support of Release 5 Cx and Sh commands is identified. There would not be a need to change the Rel-5 Cx and Sh command definitions to add the version AVP to the Cx and Sh commands – the lack of the AVP could indicate that the supported release is Rel-5.

5
Proposal

Defining the version control in the command pair level would allow the implementers to gradually support the new features in the commands. As the functionality of a command pair are closely tied together it is not seen necessary to allow independent versioning of the request and the answer. It is therefore proposed to add the version AVP to the CER/CEA command pair, and Cx and Sh commands as defined in Section 2.2.2.

