3GPP TSG-CN-WG4, Meeting #19

Brighton, UK, 15th - 19th October 2001
Tdoc N4- 011180

Agenda Item:
6.1

WI / Topic:
CSCF-HSS, Cx interface
Source:
Nokia

Title:
Use of UML to model the Subscriber Profile in Cx, Revised

Document for:
Discussion and Approval

Date:
2001-10-15

1. Introduction

The Subscriber Profile data which is downloaded to Serving-CSCF needs to be detailed for Cx interface standardization in CN4. This contribution proposes that the profile data is modelled by using Unified Modeling Language (UML
) after which the abstract syntax of the data structure is defined.

2. Discussion

The design of a complicated data structure like the Subscriber Profile transferred in the Cx interface should be defined in two phases:

1. In the data modelling phase the structure is defined using an implementation-neutral language like UML. The emphasis is on recognising all the data items (like public identity, private identity, service triggers) and on recognising all the conceptual wholes called classes in UML (like service profile). Further the construction of each class out of the data items and the relationship between the classes must be defined.
2. In the second phase the abstract syntax of the data structure is defined in the special language chosen (ASN.1, XML Schema
 or other). The UML class diagram of the first design phase is used as a starting point for the abstract syntax definition. Put it in an other way the UML diagram is mapped on an abstract syntax definition.

The division of the design in two phases makes it possible to first concentrate

on the data modelling and avoid the amount of implementation details needed in the final data structure definition.

The expertise needed in the first phase is also quite different from the one needed in the second phase. In the second phase a deep understanding of the abstract syntax definition language is needed whereas in the first phase expertise on the IMS subsystem is what is needed.

Using a formal language like UML in the first phase instead of a natural language has several

benefits:

1. Formal definitions are more precise in the sense that the correctness of the resulting model can be more objectively reasoned about.

2. Straightforward default mapping from UML diagrams to ASN.1 or XML Schema can be applied in the second phase. See the example in the annex.

3. Tools supporting the UML class diagram design and the mappings of UML diagrams to ASN.1 diagrams or XML Schemas can be used.

The extra work needed in using UML is minimized or non-existing because the simplicity of the UML subset used in defining the Subscriber Profile is quite simple and because the use of UML is widespread.

3. Use of UML to model the Subscriber Profile; Example
The figure below illustrates the use of UML class diagram to define the Subscriber Profile in Cx.

[image: image1.wmf] Public Identity

 Service Trigger

 Criteria

 URL

 SIP URL Identity

 SIP URL

 E.164 Identity

 E.164 Address

 Service Profile

1…*

1…*

 Subscription

 NAI

1…*

Figure 1. UML class diagram example

In natural language the information in the UML class diagram can be translated as:

· Subscription class has attribute NAI.

· Each Subscription object consists of several objects of class Service Profile.

· Each Service Profile object consists of a set of objects of class Public Identity and a set of objects of class Service Trigger.

· Each object of class Public Identity has the special class of either SIP URL Identity or E.164 Identity.

· Classes Service Profile and Public Identity have no attributes.

· Class Service Trigger has attributes Criteria and URL.

· The class SIP URL Identity has attribute SIP URL.
· The class E.164 Identity has attribute E.164 Address.
4. Definition of the UML Subset

The subset of UML used in defining the Subscriber Profile can be restricted to be suitable for modelling hierarchical data structures. The UML subset can be restricted in the following way:

1. UML version 1.4-0 is used.

2. Diagrams are restricted to UML Class Diagrams.

3. Relationships are restricted to generalizations and composite aggregations.

4. Classes are restricted to ones with no operations.

5. Attributes are restricted to ones with visibility public, multiplicity 1, no initial value and no property-string.

6. Attributes have no type expression.

5. Proposal
It is proposed that UML is used for modelling the Subscriber Profile in Cx. The UML class diagram is manually mapped on the abstact syntax notation used.
It is proposed that the mode of operation in the CN4 working group is such that the UML class diagram is defined first after which the abstract syntax definition is defined.

It is further proposed that the UML class diagram is included in the TS 23.016 and the abstract syntax definition of the Subscriber Profile is included in the TS 29.228 in the main body.

Annex 'Mapping UML Class Diagram to ASN.1 or XML Schema'

The annex describes how the example in the figure 1 can be mapped to ASN.1 and XML Schema.

1 Mapping the UML Class Diagram to ASN.1

1.1 Default Mapping to ASN.1

An UML diagram is mapped partially to ASN.1 by mapping each class c, generalization g and composite aggregation x to an ASN.1 type expression as follows. Formally mark the type expressions as type-expr(c), type-expr(g) and type-expr(x).

1. The class c is mapped to an ASN.1 type expression type-expr(c) as follows:

Suppose the class c has attributes a1,…,an, is parent in the generalizations g1,…,gm and is parent in the composite aggregations x1,…,xk.

The type-expr(c) is defined as a SEQUENCE with components corresponding to the attributes a1,…,an, generalizations g1,…,gm and aggregations x1,…,xk.

The types of the componenents corresponding to the generalizations g1,…,gm shall be type-expr(g1),…,type-expr(gm).

The types of the components corresponding to the aggregations x1,…,xk shall be type-expr(x1),…,type-expr(xk).

2. The generalization g is mapped to an ASN.1 type expression type-expr(g) as follows:

If g has sons c1,…,cn, type-expr(g) is defined as a CHOICE of components corresponding to the classes c1,…,cn.

The types of the components corresponding to the classes c1,…,cn shall be type-expr(c1),…,type-expr(cn).

3. The composite aggregation x is mapped to an ASN.1 type expression as follows:

If x has son c, type-expr(x) is defined as

a) type-expr(c) if the multiplicity is 0…1 or 1…1.

b) SET OF type-expr(c) otherwise

If multiplicity is 0…i a marker OPTIONAL is added.

The mapping as defined above is partial in the sense that the types of the components corresponding to the attribute names are not defined. Neither are the names of any components defined.

1.2 Mapping the example UML Class Diagram to ASN.1

The UML Class Diagram defined in 3.1 is mapped to an ASN.1 definition as follows.

Subscription :== SEQUENCE { nai Nai,

 serviceProfiles SET OF ServiceProfile}

ServiceProfile :== SEQUENCE { publicIdentities SET OF PublicIdentity,

 serviceTriggers SET OF ServiceTrigger }

PublicIdentity :== CHOICE { sipUrlIdentity sipUrlIdentity,

 e164Identity e164Identity }

SipUrlIdentity :== SEQUENCE { sipURL SIPURL }

E164Identity :== SEQUENCE { e164Address E164Address }

ServiceTrigger :== SEQUENCE { criteria Criteria,

 serviceURL ServiceURL }

This ASN.1 definition maybe made more compact by combining the definitions 3 - 5 to one:

PublicIdentity :== CHOICE { sipUrl sipUrl,

 e164Address e164Address }

2 Mapping the UML Class to XML Schema

2.1 Default Mapping to XML Schema

An UML diagram is mapped partially to an XML Schema by mapping each class c

to an XML complex type definition and by mapping each class c, which does not be a son in any generalization or aggregation, to a global element declaration. Formelly mark the type as type(c).

The mapping of class c to an XML complex type type(c)
Suppose the class c has attributes a1,…,an, is parent in the generalizations g1,…,gm and is parent in the composite aggregations x1,…,xk.

The class c is mapped to a complex type type(c). The type(c) is defined as a sequence of elements corresponding to the attributes a1,…,an, generalizations g1,…,gm and aggregations x1,…,xk.

The elements corresponding to generalizations g with sons c1,…,cn shall be defined as a choice of elements with types type(c1),…,type(cn).

The elements corresponding to composite aggregations x with son c and multiplicity i…j shall have type type(c), minOccurs="i" and maxOccurs="j". Or if j=*, maxOccurs="unbounded".

The mapping to XML global element to an element declaration
The class c, which does not be a son in any generalization or aggregation, is mapped on an global element declaration with type type(c).

The mapping as defined above is partial in the sense that the type names are not defined. Neither are the names of the components corresponding to the attributes and aggregations nor the types of the components corresponding to the attributes defined.

2.2 Mapping the example UML Class Diagram to XML Schema

The UML Class Diagram defined in 3.1 is partially mapped to an XML Schema definition as follows:

 <xsd:element name="subscription" type="Subscription"/>

 <xsd:complexType name="Subscription">

 <xsd:sequence>

 <xsd:element name="nai" type="Nai"/>

 <xsd:element name="serviceProfile" type="ServiceProfile" minOccurs="1"

 maxOccurs="unbounded"/>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="ServiceProfile">

 <xsd:sequence>

 <xsd:element name="publicIdentity" type="PublicIdentity" minOccurs="1"

 maxOccurs="unbounded"/>

 <xsd:element name="serviceTrigger" type="ServiceTrigger" minOccurs="1"

 maxOccurs="unbounded"/>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="PublicIdentity">

 <xsd:sequence>

 <xsd:choice>

 <xsd:element name="sipURL" type="SIPURL"/>

 <xsd:element name="e164Address" type="E164Address"/>

 </xsd:choice>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="ServiceTrigger">

 <xsd:sequence>

 <xsd:element name="criteria" type="Criteria"/>

 <xsd:element name="serviceURL" type="ServiceURL"/>

 </xsd:sequence>

 </xsd:complexType>

This XML definition may be made more compact by removing the definition of PublicIdentity and redefining the ServiceProfile definition as:

 <xsd:complexType name="ServiceProfile">

 <xsd:sequence>

 <xsd:choice minOccurs="1" maxOccurs="unbounded">

 <xsd:element name="sipURL" type="SIPURL"/>

 <xsd:element name="e164Address" type="E164Address"/>

 </xsd:choice>

 <xsd:element name="serviceTrigger" type="ServiceTrigger" minOccurs="1"

 maxOccurs="unbounded"/>

 </xsd:sequence>

 </xsd:complexType>

� UML or the Unified Modeling Language is a graphical language for visualizing, specifying and documenting the artifacts of a software system. UML is being standardised at Object Management Group. See � HYPERLINK "http://www.omg.org/" ��http://www.omg.org/�.

� XML Schema is a mechanism used to define the abstract syntax for XML documents. XML is the Extensible Markup Language used as an universal data format between for example Web applications. See � HYPERLINK "http://www.w3c.org/" ��http://www.w3c.org/�

_1064401693.doc

 Service Profile

1…*

 E.164 Address

 E.164 Identity

 SIP URL

 SIP URL Identity

 Service Trigger

 Public Identity

 Criteria

 URL

1…*

 NAI

 Subscription

1…*

