3GPP TSG-CN WG3 Meeting #31bis
N3-040315
Zagreb, Croatia, 10th - 14th May 2004.
Source:
Siemens
Title:
Flow Description with IpFilterRule
Agenda item:
10.4
Document for:
Discussion
Introduction

This document discusses how IPFilterRule type could be used at the Gq interface. A related CR against TS 29.209 is contained in Tdoc N4-040316.

Discussion
IPFilterRule options
“Options” parameters of the Diameter IPFilterRule type have no Go equivalent, and can therefore not be fulfilled.

RFC 3558 recommends using more restrictive rules for action “permit”, if options are not supported. However, this seems not to be supported at the Go interface also. The proper error handling is ffs.

An PDF receiving IPFilterRule will need to understand the syntax of these “options”, even if they useless.
Other useless IPFilterRule Features

+ The address invert modifier (!) has no Go equivalent, and can therefore not be fulfilled.

+ The keyword “assigned” refers to a termianl IP address unknown to the PDF.

Again, an error handling needs to be described and additional complexity is required at the PDF.

Mapping Filters from Gq to Go Interface

It must be possible to derive separate Filters for each Flow identifier at the PDF, as the PDF has to distribute the Filters to PDP contexts based on the binding information it receives over Go. In particular for downlink IP Flows, the filters are required to sort incoming IP packets into PDP contexts. It is therefore not acceptable to install all filters at all PDP Contexts of an AF session.
A simple solution to this problem is to use separate filters for each IP flow.

However, this has several drawbacks:

+ large amounts of data at the Gq interface

+ high AF complexity and load to map SDP information to this format

+ high GGSN load, if filters are not combined by PDF

+ PDF complexity and load due to large amount of data at Gq, and due to combining IP filters

It is desirable to describe several IP Flows in one Filter. This seems to be possible if those Flows within a media component share the IP Addresses and use different ports. The rule for the flow Identifier in TS 29 207 allows to map this to information to flow identifiers in an unambiguos way: “The ordinal number of the IP flow(s) within the media component description is assigned in the order of increasing port numbers.”

IP Filter Rule “deny” action
The action “deny” has no direct Go equivalent, and would need to be mapped to Go “allow” rules in a complicated manner.
Furthermore, if several DiameterFilterRules are concatenated, they are evaluate until the first rule (“permit” or “deny”) matches. Thus the order becomes important, if action “deny” is allowed. If only “allow” is allowed, the order does not matter, as the operation is equivalent to a logical “or” between the rules. Thus, permit would require designating a particular order for the rules at the Gq interface and would mean that the combination of Filter rules from the Gq interface for the Go interface becomes more complicated.
Due to the mapping problem described above, filters will only describe a single or a small number of IP flows. There, complicated filter constructs including “deny” actions are probably not required.

If one assumes that a gate for a particular IP flow consist of a single IPFilterRule only, one could try to assign the meaning of enabling or disabling Gates to the “permit” and “deny” action. However, the Diameter “deny” action means that packets matching the filter shall not be allowed, but leaves open what happens to packets not matching the filter. We want semantics where only Filters for particular gates are allowed, and all packets not matching any gate shall be discarded.
Conclusions
· Much of the flexibility and the options of the IPFilterRule may not be applied at the Gq interface due to mapping problems towards the Go interface
· When deciding if IPFilterRule is applied at the Gq interface, the synergies with other interfaces should be weighted against the complexity required for the understanding and error handling of useless IPFilterType features.
· It must be possible to derive separate Filters for each Flow identifier at the PDF.
· IPFilterRule may be used to describe all IP flows in one direction within a media component.
Annex A: IPFilterRule Definition in RFC 3588 (Diameter Base Protocol)

IPFilterRule
 The IPFilterRule format is derived from the OctetString AVP Base

 Format. It uses the ASCII charset. Packets may be filtered based

 on the following information that is associated with it:

 Direction (in or out)

 Source and destination IP address (possibly masked)

 Protocol

 Source and destination port (lists or ranges)

 TCP flags

 IP fragment flag

 IP options

 ICMP types

 Rules for the appropriate direction are evaluated in order, with

 the first matched rule terminating the evaluation. Each packet is

 evaluated once. If no rule matches, the packet is dropped if the

 last rule evaluated was a permit, and passed if the last rule was

 a deny.
 IPFilterRule filters MUST follow the format:

 action dir proto from src to dst [options]

 action permit - Allow packets that match the rule.

 deny - Drop packets that match the rule.

 dir "in" is from the terminal, "out" is to the

 terminal.

 proto An IP protocol specified by number. The "ip"

 keyword means any protocol will match.

 src and dst <address/mask> [ports]

 The <address/mask> may be specified as:

 ipno An IPv4 or IPv6 number in dotted-

 quad or canonical IPv6 form. Only

 this exact IP number will match the

 rule.

 ipno/bits An IP number as above with a mask

 width of the form 1.2.3.4/24. In

 this case, all IP numbers from

 1.2.3.0 to 1.2.3.255 will match.

 The bit width MUST be valid for the

 IP version and the IP number MUST

 NOT have bits set beyond the mask.

 For a match to occur, the same IP

 version must be present in the

 packet that was used in describing

 the IP address. To test for a

 particular IP version, the bits part

 can be set to zero. The keyword

 "any" is 0.0.0.0/0 or the IPv6

 equivalent. The keyword "assigned"

 is the address or set of addresses

 assigned to the terminal. For IPv4,

 a typical first rule is often "deny

 in ip! assigned"

 The sense of the match can be inverted by

 preceding an address with the not modifier (!),

 causing all other addresses to be matched

 instead. This does not affect the selection of

 port numbers.

 With the TCP, UDP and SCTP protocols, optional

 ports may be specified as:

 {port/port-port}[,ports[,...]]

 The '-' notation specifies a range of ports

 (including boundaries).

 Fragmented packets that have a non-zero offset

 (i.e., not the first fragment) will never match

 a rule that has one or more port

 specifications. See the frag option for

 details on matching fragmented packets.

 options:

 frag Match if the packet is a fragment and this is not

 the first fragment of the datagram. frag may not

 be used in conjunction with either tcpflags or

 TCP/UDP port specifications.

 ipoptions spec

 Match if the IP header contains the comma

 separated list of options specified in spec. The

 supported IP options are:

 ssrr (strict source route), lsrr (loose source

 route), rr (record packet route) and ts

 (timestamp). The absence of a particular option

 may be denoted with a '!'.

 tcpoptions spec

 Match if the TCP header contains the comma

 separated list of options specified in spec. The

 supported TCP options are:

 mss (maximum segment size), window (tcp window

 advertisement), sack (selective ack), ts (rfc1323

 timestamp) and cc (rfc1644 t/tcp connection

 count). The absence of a particular option may

 be denoted with a '!'.

 established

 TCP packets only. Match packets that have the RST

 or ACK bits set.

 setup TCP packets only. Match packets that have the SYN

 bit set but no ACK bit.

 tcpflags spec

 TCP packets only. Match if the TCP header

 contains the comma separated list of flags

 specified in spec. The supported TCP flags are:

 fin, syn, rst, psh, ack and urg. The absence of a

 particular flag may be denoted with a '!'. A rule

 that contains a tcpflags specification can never

 match a fragmented packet that has a non-zero

 offset. See the frag option for details on

 matching fragmented packets.

 icmptypes types

 ICMP packets only. Match if the ICMP type is in

 the list types. The list may be specified as any

 combination of ranges or individual types

 separated by commas. Both the numeric values and

 the symbolic values listed below can be used. The

 supported ICMP types are:

 echo reply (0), destination unreachable (3),

 source quench (4), redirect (5), echo request

 (8), router advertisement (9), router

 solicitation (10), time-to-live exceeded (11), IP

 header bad (12), timestamp request (13),

 timestamp reply (14), information request (15),

 information reply (16), address mask request (17)

 and address mask reply (18).

 There is one kind of packet that the access device MUST always

 discard, that is an IP fragment with a fragment offset of one. This

 is a valid packet, but it only has one use, to try to circumvent

 firewalls.

 An access device that is unable to interpret or apply a deny rule

 MUST terminate the session. An access device that is unable to

 interpret or apply a permit rule MAY apply a more restrictive

 rule. An access device MAY apply deny rules of its own before the

 supplied rules, for example to protect the access device owner's

 infrastructure.

 The rule syntax is a modified subset of ipfw(8) from FreeBSD, and the

 ipfw.c code may provide a useful base for implementations.

