3GPP TSG CN WG3 Meeting #22

N3-020251

Fort Lauderdale, USA. 8th - 12th April 2002.

Source:
Nortel Networks

Title:
Packet filters data structure

Agenda item:
9.3

Document for:
Approval

Introduction

The data structure for the packet classifiers is not currently defined in details, except the high level statement in TS 29.207 section 4.3.1.3.

Discussion

In order to prevent fraud, the Go interface allows for verification that the resources being used to provide a requested QoS are in-line with the media streams requested (and authorized) for the session. For the authorisation decisions, authorized QoS and packet classifiers are used.

The packet classifiers information elements (containing several filters) are important to prevent theft of service scenarios. When providing the decision to the GGSN, the PCF must send the relevant information about the authorized IP end points addresses and ports. Without this information, the GGSN cannot properly enforce the authorized session at the bearer plane.

Therefore the Go interface definition must provide the exchange of the appropriate information about IP end-points and ports. The following information should be included in the packet classifiers:

· Source IP address

· Destination IP address

· Source ports

· Destination ports

· Protocol ID

· Flow ID: The flow identifier in an IPv6 header

· DSCP

It is important to note that if a particular field is not relevant, it can be wildcarded.

The framework PIB already defines a Filter PRC that meets the requirements for the Go interface. We recommend re-using the same definitions proposed in the framework PIB in the UMTS Go PIB. We recommend importing the Base Filter Table and IP Filter table. Please see the following section of the framework PIB:

“

 --

 -- The Classification classes group

 --

 frwkClassifierClasses

 OBJECT IDENTIFIER ::= { frameworkPib 3 }

 --

 -- The Base Filter Table

 --

 frwkBaseFilterTable OBJECT-TYPE

 SYNTAX SEQUENCE OF FrwkBaseFilterEntry

 PIB-ACCESS install

 STATUS current

 DESCRIPTION

 "The Base Filter class. A packet has to match all

 fields in an Filter. Wildcards may be specified for those

 fields that are not relevant."

 ::= { frwkClassifierClasses 1 }

 frwkBaseFilterEntry OBJECT-TYPE

 SYNTAX FrwkBaseFilterEntry

 STATUS current

 DESCRIPTION

 "An instance of the frwkBaseFilter class."

 PIB-INDEX { frwkBaseFilterPrid }

 ::= { frwkBaseFilterTable 1 }

 FrwkBaseFilterEntry ::= SEQUENCE {

 frwkBaseFilterPrid InstanceId,

 frwkBaseFilterNegation TruthValue

 }

 frwkBaseFilterPrid OBJECT-TYPE

 SYNTAX InstanceId

 STATUS current

 DESCRIPTION

 "An integer index to uniquely identify this Filter among all

 the Filters."

 ::= { frwkBaseFilterEntry 1 }

 frwkBaseFilterNegation OBJECT-TYPE

 SYNTAX TruthValue

 STATUS current

 DESCRIPTION

 "This attribute behaves like a logical NOT for the filter.

 If the packet matches this filter and the value of this

 attribute is true, the action associated with this filter

 is not applied to the packet. If the value of this

 attribute is false, then the action is applied to the

 packet."

 ::= { frwkBaseFilterEntry 2 }

 --

 -- The IP Filter Table

 --

 frwkIpFilterTable OBJECT-TYPE

 SYNTAX SEQUENCE OF FrwkIpFilterEntry

 PIB-ACCESS install

 STATUS current

 DESCRIPTION

 "Filter definitions. A packet has to match all fields in a

 filter. Wildcards may be specified for those fields that

 are not relevant."

 INSTALL-ERRORS {

 invalidDstL4PortData(1),

 invalidSrcL4PortData(2)

 }

 ::= { frwkClassifierClasses 2 }

 frwkIpFilterEntry OBJECT-TYPE

 SYNTAX FrwkIpFilterEntry

 STATUS current

 DESCRIPTION

 "An instance of the frwkIpFilter class."

 EXTENDS { frwkBaseFilterEntry }

 UNIQUENESS { frwkBaseFilterNegation,

 frwkIpFilterAddrType,

 frwkIpFilterDstAddr,

 frwkIpFilterDstPrefixLength,

 frwkIpFilterSrcAddr,

 frwkIpFilterSrcPrefixLength,

 frwkIpFilterDscp,

 frwkIpFilterFlowId,

 frwkIpFilterProtocol,

 frwkIpFilterDstL4PortMin,

 frwkIpFilterDstL4PortMax,

 frwkIpFilterSrcL4PortMin,

 frwkIpFilterSrcL4PortMax }

 ::= { frwkIpFilterTable 1 }

 FrwkIpFilterEntry ::= SEQUENCE {

 frwkIpFilterAddrType InetAddressType,

 frwkIpFilterDstAddr InetAddress,

 frwkIpFilterDstPrefixLength InetAddressPrefixLength,

 frwkIpFilterSrcAddr InetAddress,

 frwkIpFilterSrcPrefixLength InetAddressPrefixLength,

 frwkIpFilterDscp DscpOrAny,

 frwkIpFilterFlowId Unsigned32,

 frwkIpFilterProtocol Integer32,

 frwkIpFilterDstL4PortMin InetPortNumber,

 frwkIpFilterDstL4PortMax InetPortNumber,

 frwkIpFilterSrcL4PortMin InetPortNumber,

 frwkIpFilterSrcL4PortMax InetPortNumber

 }

 frwkIpFilterAddrType OBJECT-TYPE

 SYNTAX InetAddressType

 STATUS current

 DESCRIPTION

 "The address type enumeration value [INETADDR] to specify

 the type of the packet's IP address."

 ::= { frwkIpFilterEntry 1 }

 frwkIpFilterDstAddr OBJECT-TYPE

 SYNTAX InetAddress

 STATUS current

 DESCRIPTION

 "The IP address [INETADDR] to match against the packet's

 destination IP address. frwkIpFilterDstPrefixLength

 indicates the number of bits that are relevant. "

 ::= { frwkIpFilterEntry 2 }

 frwkIpFilterDstPrefixLength OBJECT-TYPE

 SYNTAX InetAddressPrefixLength

 STATUS current

 DESCRIPTION

 "The length of a mask for the matching of the destination

 IP address. Masks are constructed by setting bits in

 sequence from the most-significant bit downwards for

 frwkIpFilterDstPrefixLength bits length. All other bits in

 the mask, up to the number needed to fill the length of

 the address frwkIpFilterDstAddr are cleared to zero. A zero

 bit in the mask then means that the corresponding bit in

 the address always matches."

 ::= { frwkIpFilterEntry 3 }

 frwkIpFilterSrcAddr OBJECT-TYPE

 SYNTAX InetAddress

 STATUS current

 DESCRIPTION

 "The IP address to match against the packet's source IP

 address. frwkIpFilterSrcPrefixLength indicates the

 number of bits that are relevant. "

 ::= { frwkIpFilterEntry 4 }

 frwkIpFilterSrcPrefixLength OBJECT-TYPE

 SYNTAX InetAddressPrefixLength

 UNITS "bits"

 STATUS current

 DESCRIPTION

 "The length of a mask for the matching of the source IP

 address. Masks are constructed by setting bits in sequence

 from the most-significant bit downwards for

 frwkIpFilterSrcPrefixLength bits length. All other bits in

 the mask, up to the number needed to fill the length of

 the address frwkIpFilterSrcAddr are cleared to zero. A

 zero bit in the mask then means that the corresponding bit

 in the address always matches."

 ::= { frwkIpFilterEntry 5 }

 frwkIpFilterDscp OBJECT-TYPE

 SYNTAX DscpOrAny

 STATUS current

 DESCRIPTION

 "The value that the DSCP in the packet can have and

 match this filter. A value of -1 indicates that a specific

 DSCP value has not been defined and thus all DSCP values

 are considered a match."

 ::= { frwkIpFilterEntry 6 }

 frwkIpFilterFlowId OBJECT-TYPE

 SYNTAX Unsigned32 (0..1048575)

 STATUS current

 DESCRIPTION

 "The flow identifier in an IPv6 header."

 ::= { frwkIpFilterEntry 7 }

 frwkIpFilterProtocol OBJECT-TYPE

 SYNTAX Integer32 (-1 | 0..255)

 STATUS current

 DESCRIPTION

 "The IP protocol to match against the packet's protocol.

 A value of -1 means match all."

 ::= { frwkIpFilterEntry 8 }

 frwkIpFilterDstL4PortMin OBJECT-TYPE

 SYNTAX InetPortNumber

 STATUS current

 DESCRIPTION

 "The minimum value that the packet's layer 4 destination

 port number can have and match this filter. This value must

 be equal to or lesser that the value specified for this

 filter in frwkIpFilterDstL4PortMax."

 ::= { frwkIpFilterEntry 9 }

 frwkIpFilterDstL4PortMax OBJECT-TYPE

 SYNTAX InetPortNumber

 STATUS current

 DESCRIPTION

 "The maximum value that the packet's layer 4 destination

 port number can have and match this filter. This value must

 be equal to or greater that the value specified for this

 filter in frwkIpFilterDstL4PortMin."

 ::= { frwkIpFilterEntry 10 }

 frwkIpFilterSrcL4PortMin OBJECT-TYPE

 SYNTAX InetPortNumber

 STATUS current

 DESCRIPTION

 "The minimum value that the packet's layer 4 source port

 number can have and match this filter. This value must

 be equal to or lesser that the value specified for this

 filter in frwkIpFilterSrcL4PortMax."

 ::= { frwkIpFilterEntry 11 }

 frwkIpFilterSrcL4PortMax OBJECT-TYPE

 SYNTAX InetPortNumber

 STATUS current

 DESCRIPTION

 "The maximum value that the packet's layer 4 source port

 number can have and match this filter. This value must be

 equal to or greater that the value specified for this filter

 in frwkIpFilterSrcL4PortMin."

 ::= { frwkIpFilterEntry 12 }

“ (END OF CITATION).

Proposal

The following data structure for the packet classifiers (the source IP address/port and wildcarding) is proposed to be included in TS 29.207.

================ First proposed changed section ============

4.3.1.3
Gate function
The Gate Function represents a user plane function enabling or disabling the forwarding of IP packets. A gate is described by a set of packet classifiers that identify IP flows associated to the gate. The packet classifier includes the standard 5-tuple (source IP address, destination IP address, source port, destination port, protocol) explicitly describing a unidirectional IP flow. Wildcarding of fields shall be possible.

The packet classifier is received from the PCF in an authorisation decision. The PEP installs the packet filter applying the packet classifier. After installation of the packet filter the gate shall be closed until the PEP receives a command to open the gate.

Editor’s note: The timing of the gating in relation with charging is for further study.

The commands to open or close the gate lead to the enabling or disabling of the passage for IP packets. If the gate is closed all packets of the related IP flows are dropped. If the gate is opened the packets of the related IP flows are allowed to be forwarded. The PCF may send these commands together with an authorisation decision or in subsequent decisions.

IP Packets of a PDP context not matching any packet classifier associated with this PDP context shall be dropped.

If the packet classifer is included as an additional IE in the authorisation information, the GGSN shall check for validity of the TFT in the Create PDP Context Request or Update PDP Context Request. If the TFT proposed will result in packets from the media flow being unable to pass through, the PDP context will be rejected with cause value indicating a semantic error in the TFT.

Editor’s note: This issue should still be discussed in SA2.
================ Next changed section ============

6.4
Go data

Editor’s Note: This section describes relevant detailed structure and data format of each data element. May use a sub-section for each data element.
The detailed data description is provided in Annex B.

Editor’s Note: This remainder of this chapter contains agreed detail message and data element format descriptions for the protocol prior to being defined in the PIB (Annex B). As the messages/data definitions are completed in the PIB, it shall be removed from here. Data shall not be removed from here until it is complete. Messages/data in the PIB which are not yet completed shall be clearly marked.
· Client Handle -
a unique identifier for the authorisation request. The format of the Client Handle is FFS.

· Binding information -
A data element from the PCF that identifies (at a minimum):

· The PCF identity

· The authorisation token for the session

· The flow id(s) within the session

Editor’s note: The format of the binding information is FFS.

· Authorisation Status – The authorisation status for the specified binding information. The status shall contain a valid/invalid indicator. The format of the authorisation status is FFS.

· Charging identifier – The charging identifier of the PDP context. The specific details of the charging identifier is FFS. Further information on the charging identifier is required from S2.

· Authorised QoS – The authorised QoS contains the maximum allowed class, and the bandwidth information.

· Maximum allowed class –
Format is FFS. Proposed to use a DSCP element from the DiffServ PIB.

· Data rate -
Format is FFS. Proposed to be based on qosTBParamRate from DiffServ PIB. The size and format of the element though shall be considered to ensure it is not unreasonable for use in 3GPP.

· Filter Specification – The information about the authorised IP end points addresses and ports is detailed below. The Filter Specification contains packet classifiers made of packet filters that have the following data structure. The packet classifier parameters are:

· Source IP address
· Destination IP address
· Source IP ports

· Destination ports

· Protocol ID
· Flow ID

· DSCP

The packet classifier shall be defined by the Filter base table and IP Filter table from the Framework PIB defined in the IETF. All fields of the packet classifier may be wildcarded.
================ Next changed section ============

Annex B (normative):
UMTS-Go PIB

Editor’s Note: The content of this annex provides a skeleton for the definition of the UMTS Go PIB. The naming of each of the elements has to be revisited in order to include that they are related to Go interface. Rephrasing of UMTS to 3GPP has to be checked (can the name start with a digit?)

UMTS Go PIB PIB-DEFINITIONS

· IMPORTS

FrwkBaseFilterTable, frwkIpFilterTable

FROM frameworkPib

�PAGE \# "'Page: '#'�'" ��This note should be removed. The rational is that during a SIP/SDP negotiation, the SIP INVITE will contain the source IP & port information and the SIP 183 will contain the destination IP & port information. The P-CSCF can store this info and provide it to the PCF so that the packet classifier can be properly defined.

