3GPP TSG CN WG3 Meeting #21

N3-020101

Sophia, France. 28th Jan - 1st February 2002.

Source:
Ericsson

Title:
Feasibility of Diameter for Go in Release 5

Agenda item:
9.3

Document for:
Discussion

Discussion

To assist CN3 to evaluate the option of using Diameter for the Go interface, the following additional information is provided.

A couple of questions that may be raised in regard to whether an alternative protocol could be used are:

1) How easy is the protocol to modify and standardise for the Go application?

2) Is the protocol used in any similar application (ie. Is there evidence that it is appropriate to use for this type of application)?

3) Can the required work be performed in time?

To help answer these questions, text from the diameter specification draft-ietf-aaa-diameter-08.txt (work in progress) is presented here. This text shows

1) what is involved in standardising enhancements to the Diameter protocol, and

2) identifies existing data available within the base Diameter protocol that indicates it is used for a similar application.

It is further noted that although the Diameter protocol is still work in progress, Release 5 already contains a dependency to the Diameter protocol. The Diameter protocol is developed under the AAA working group (Authentication, Authorisation, and Accounting), which appears to be very relevant for the Go application. The protocol has been through WGLC, and the WG goals and milestones indicate submission of the protocol document(s) as a proposed standard RFC Apr 01.

Rules for extending Diameter

The basic concept behind Diameter is to provide a base protocol that can be extended in order to provide AAA services to new access technologies. The following text excerpts from the diameter draft specification indicate what is involved in extending the protocol.

2.3 Diameter Protocol Extensibility

 There are various ways the Diameter protocol can be extended. This

 section is intended to assist protocol designers in selecting the

 best method of using the Diameter protocol.

2.3.1 Defining new AVP Values

 New applications should attempt to reuse AVPs defined in existing

 application when possible, as opposed to creating a new AVP. For AVPs

 of type Enumerated, it is possible the application requires a new

 value to communicate some service-specific information.

 In order to allocate a new AVP value, a request MUST be sent to IANA

 [47], with a detailed explanation of the value. If the new AVP value

 changes an existing command code's ABNF, the IANA AVP value request

 MUST include the new ABNF itself.

2.3.2 Creating new AVPs

 When no existing AVP can be used appropriately to communicate some

 service-specific information, a new AVP should be created. The new

 AVP being defined MUST follow one of the types listed in section 4.3.

 In the event that a logical grouping of AVPs is necessary, and

 multiple "groups" are possible in a given command, it is highly

 recommended that a Grouped AVP be used (see Section 4.5).

 In order to create a new AVP, a request MUST be sent to IANA, with a

 detailed explanation of the AVP, its type and possible values.

 Furthermore, the request MUST include the commands that would make

 use of the AVP.

2.3.3 Creating new Auth Applications

 Should a new application require Diameter support, but it cannot fit

 within an existing application without requiring major changes to the

 specification, it may be desirable to create a new Diameter

 application. Major changes to an application include:

 - Requiring a whole different set of mandatory AVPs to a command

 - Requiring a command that has a different number of round trips

 to satisfy a request (e.g. application foo has a command that

 requires one round trip, but new application bar has a command

 that requires two round trips to complete).

 - The method used to authenticate the user is drastically

 different from any existing application, and the authentication

 information cannot be carried within the AVPs defined in the

 application.

 Note that the creation of a new application should be viewed as a

 last resort.

 New Diameter applications MUST define at least one Command Code, the

 expected AVPs in an ABNF [31] grammar (see section 3.2), and MAY also

 define new AVPs. If the Diameter application has any accounting

 requirements, it MUST also specify the AVPs that are to be present in

 the Diameter Accounting messages (see section 9.3).

 When possible, a new Diameter application SHOULD attempt to re-use

 any existing Diameter AVP, in order to reduce the possibility of

 having multiple AVPs that carry similar information.

 Every Diameter application specification MUST have an IANA assigned

 Application Identifier (see section 2.4).

<snip>

6.10 Vendor-Specific-Application-Id AVP

 The Vendor-Specific-Application-Id AVP (AVP Code 260) is of type

 Grouped and is used to advertise support of a vendor-specific

 Diameter Application.

Some existing Diameter information

The following excerpt from the Diameter base protocol shows a number of AVPs that indicate the use of Diameter for another QoS admission control function. Hence, Diameter already has a similar application.

4.0 Diameter AVPs

 Diameter AVPs carry specific authentication, accounting,

 authorization, routing and security information as well as

 configuration details for the request and reply.

 Some AVPs MAY be listed more than once. The effect of such an AVP is

 specific, and is specified in each case by the AVP description.

<snip>

4.4 Derived AVP Data Formats

 In addition to using the AVP Base Data Formats, applications may

 define data formats derived from the AVP Base Data Formats. An

 application that defines new AVP Derived Data Formats MUST include

 them in a section entitled "AVP Derived Data Formats", using the same

 format as the definitions below. Each new definition must be either

 defined or listed with a reference to the RFC that defines the

 format.

 The below AVP Derived Data Formats are commonly used by applications.

 IPAddress

 The IPAddress format is derived from the OctetString AVP Base

 Format. It represents 32 bit (IPv4) [17] or 128 bit (IPv6) [16]

 address, most significant octet first. The format of the

 address (IPv4 or IPv6) is determined by the length. If the

 attribute value is an IPv4 address, the AVP Length field MUST

 be 12 (16 if 'V' bit is enabled), otherwise the AVP Length

 field MUST be set to 24 (28 if the 'V' bit is enabled) for IPv6

 addresses.

<snip>

 IPFilterRule

 The IPFilterRule format is derived from the OctetString AVP

 Base Format. It uses the UTF-8 encoding and has the same

 requirements as the UTF8String. Packets may be filtered based

 on the following information that is associated with it:

 Direction (in or out)

 Source and destination IP address (possibly masked)

 Protocol

 Source and destination port (lists or ranges)

 TCP flags

 IP fragment flag

 IP options

 ICMP types

 Rules for the appropriate direction are evaluated in order,

 with the first matched rule terminating the evaluation. Each

 packet is evaluated once. If no rule matches, the packet is

 dropped if the last rule evaluated was a permit, and passed if

 the last rule was a deny.

 IPFilterRule filters MUST follow the format:

 action dir proto from src to dst [options]

 action permit - Allow packets that match the rule.

 deny - Drop packets that match the rule.

 dir "in" is from the terminal, "out" is to the

 terminal.

 proto An IP protocol specified by number. The "ip"

 keyword means any protocol will match.

 src and dst <address/mask> [ports]

 The <address/mask> may be specified as:

 ipno An IPv4 or IPv6 number in dotted-

 quad or canonical IPv6 form. Only

 this exact IP number will match the

 rule.

 ipno/bits An IP number as above with a mask

 width of the form 1.2.3.4/24. In

 this case all IP numbers from

 1.2.3.0 to 1.2.3.255 will match.

 The bit width MUST be valid for the

 IP version and the IP number MUST

 NOT have bits set beyond the mask.

 The sense of the match can be inverted by

 preceding an address with the not modifier,

 causing all other addresses to be matched

 instead. This does not affect the selection of

 port numbers.

 The keyword "any" is 0.0.0.0/0 or the IPv6

 equivalent. The keyword "assigned" is the

 address or set of addresses assigned to the

 terminal. The first rule SHOULD be "deny in

 ip !assigned".

 With the TCP, UDP and SCTP protocols, optional

 ports may be specified as:

 {port|port-port}[,port[,...]]

 The `-' notation specifies a range of ports

 (including boundaries).

 Fragmented packets which have a non-zero offset

 (i.e. not the first fragment) will never match

 a rule which has one or more port

 specifications. See the frag option for

 details on matching fragmented packets.

 options:

 frag Match if the packet is a fragment and this is not

 the first fragment of the datagram. frag may not

 be used in conjunction with either tcpflags or

 TCP/UDP port specifications.

 ipoptions spec

 Match if the IP header contains the comma

 separated list of options specified in spec. The

 supported IP options are:

 ssrr (strict source route), lsrr (loose source

 route), rr (record packet route) and ts

 (timestamp). The absence of a particular option

 may be denoted with a `!'.

 tcpoptions spec

 Match if the TCP header contains the comma

 separated list of options specified in spec. The

 supported TCP options are:

 mss (maximum segment size), window (tcp window

 advertisement), sack (selective ack), ts (rfc1323

 timestamp) and cc (rfc1644 t/tcp connection

 count). The absence of a particular option may

 be denoted with a `!'.

 established

 TCP packets only. Match packets that have the RST

 or ACK bits set.

 setup TCP packets only. Match packets that have the SYN

 bit set but no ACK bit.

 tcpflags spec

 TCP packets only. Match if the TCP header

 contains the comma separated list of flags

 specified in spec. The supported TCP flags are:

 fin, syn, rst, psh, ack and urg. The absence of a

 particular flag may be denoted with a `!'. A rule

 which contains a tcpflags specification can never

 match a fragmented packet which has a non-zero

 offset. See the frag option for details on

 matching fragmented packets.

 icmptypes types

 ICMP packets only. Match if the ICMP type is in

 the list types. The list may be specified as any

 combination of ranges or individual types

 separated by commas. The supported ICMP types

 are:

 echo reply (0), destination unreachable (3),

 source quench (4), redirect (5), echo request

 (8), router advertisement (9), router

 solicitation (10), time-to-live exceeded (11), IP

 header bad (12), timestamp request (13),

 timestamp reply (14), information request (15),

 information reply (16), address mask request (17)

 and address mask reply (18).

 There is one kind of packet that the access device MUST always

 discard, that is an IP fragment with a fragment offset of one.

 This is a valid packet, but it only has one use, to try to

 circumvent firewalls.

 An access device that is unable to interpret or apply a deny

 rule MUST terminate the session. An access device that is

 unable to interpret or apply a permit rule MAY apply a more

 restrictive rule. An access device MAY apply deny rules of

 its own before the supplied rules, for example to protect

 the access device owner's infrastructure.

 The rule syntax is a modified subset of ipfw(8) from FreeBSD,

 and the ipfw.c code may provide a useful base for

 implementations.

 QoSFilterRule

 The QosFilterRule format is derived from the OctetString AVP

 Base Format. It uses the UTF-8 encoding and has the same

 requirements as the UTF8String. Packets may be marked or

 metered based on the following information that is associated

 with it:

 Direction (in or out)

 Source and destination IP address (possibly masked)

 Protocol

 Source and destination port (lists or ranges)

 DSCP values (no mask or range)

 Rules for the appropriate direction are evaluated in order,

 with the first matched rule terminating the evaluation. Each

 packet is evaluated once. If no rule matches, the packet is

 treated as best effort.

 QoSFilterRule filters MUST follow the format:

 action dir proto from src to dst [options]

 tag - Mark packet with a specific DSCP [49].

 The DSCP option MUST be included.

 meter - Meter traffic. The metering options

 MUST be included.

 dir "in" is from the terminal, "out" is to the

 terminal.

 proto An IP protocol specified by number. The "ip"

 keyword means any protocol will match.

 src and dst <address/mask> [ports]

 The <address/mask> may be specified as:

 ipno An IPv4 or IPv6 number in dotted-

 quad or canonical IPv6 form. Only

 this exact IP number will match the

 rule.

 ipno/bits An IP number as above with a mask

 width of the form 1.2.3.4/24. In

 this case all IP numbers from

 1.2.3.0 to 1.2.3.255 will match.

 The bit width MUST be valid for the

 IP version and the IP number MUST

 NOT have bits set beyond the mask.

 The sense of the match can be inverted by

 preceding an address with the not modifier,

 causing all other addresses to be matched

 instead. This does not affect the selection of

 port numbers.

 The keyword "any" is 0.0.0.0/0 or the IPv6

 equivalent. The keyword "assigned" is the

 address or set of addresses assigned to the

 terminal. The first rule SHOULD be "deny in

 ip !assigned".

 With the TCP, UDP and SCTP protocols, optional

 ports may be specified as:

 {port|port-port}[,port[,...]]

 The `-' notation specifies a range of ports

 (including boundaries).

 options:

 DSCP <color>

 color values as defined in [49]. Exact matching

 of DSCP values is required (no masks or ranges).

 the "deny" can replace the color_under or

 color_over values in the meter action for rate-

 dependent packet drop.

 metering <rate> <color_under> <color_over>

 The metering option provides Assured Forwarding,

 as defined in [50], and MUST be present if the

 action is set to meter. The rate option is the

 throughput, in bits per second, which is used by

 the access device to mark packets. Traffic above

 the rate is marked with the color_over codepoint,

 while traffic under the rate is marked with the

 color_under codepoint. The color_under and

 color_over options contain the drop preferences,

 and MUST conform to the recommended codepoint

 keywords described in [50] (e.g. AF13).

 The metering option also supports the strict

 limit on traffic required by Expedited

 Forwarding, as defined in [51]. The color_over

 option may contain the keyword "drop" to prevent

 forwarding of traffic that exceeds the rate

 parameter.

 The rule syntax is a modified subset of ipfw(8) from FreeBSD,

 and the ipfw.c code may provide a useful base for

 implementations.

Timing for standardisation

It is recognised that the time plan for completion of the CN3 activities is quite short. However, the following points should be noted with regard to this activity:

1) The standardisation activity is not an end in itself. It is the whole of the process to the delivery of the products that is important.

2) It is clear that the protocols under consideration can be used for a range of applications. They manage this by providing a generic mechanism to package the application data. It is the role of CN3 to identify the exact application data that must be carried. The specification of this data could borrow from any other similar work. For example, it may be based on data in PRCs from COPS PIBs, or AVPs from Diameter, or other sources. When the specific data is specified by CN3, this data can just as easily be defined into a PRC or an AVP, irrespective of the derivation of the data. Thus, the work for CN3 to define the data is not reduced or extended by the specific selection of the base protocol.

3) 3GPP already has a vendor-specific number that can be used for vendor-specific applications and AVPs.

Conclusion

Ericsson believes that the work involved in standardising the Go interface is similar whether the protocol selected is COPS or Diameter, because the most difficult aspects to agree on are the detail specification of the data to be communicated, rather than the encapsulation of that data in the protocol. Thus, it is feasible to deliver the Go interface in a similar timeframe irrespective of the selected base protocol.

Furthermore, the process to extend the Diameter protocol is not identified to be a blocking factor.

