	3GPP TSG-CN-WG3, Meeting #20
26-30 November 2001,

Cancun, MX
	Tdoc N3-010540

Agenda Item:
8.3

WI / Topic:

Interworking
Source:
Nokia

Title:
Interworking between 3GPP UE (IPv6 only) and external SIP device (IPv4 only)'
Effected Specifications / Releases: 24.229, CN3 TSs

Document for:
Discussion

Date:
2001-11-20

1 Problem statement

In 3GPP Rel5 the terminals shall use IPv6 (exclusively) when communicating with IMS.

As the timeframe for changing/upgrading the current IPv4 devices on the Internet to IPv6 is difficult to foresee, it is assumed that there will be a need for a session between a SIP-client using IPv4 (sitting on the Internet or a corporate network) and a 3G mobile terminal using IPv6, and for such a call to succeed the network needs to provide support for complex translation mechanisms.

The interworking is not limited to simple IP protocol translation (between v4 and v6) since applications like SIP include transport addresses (IP address and port number) in the packet payload to establish new media or data connections.

SIP is a protocol used for the initiation, modification, and termination of sessions. As a core part of its functionality, SIP carries the ports, IP addresses and domain names needed to describe the sessions it controls. There are a couple of issues to be considered when setting up and controlling multimedia sessions with SIP through NAT-like devices:

· conveying the SIP messages themselves through these devices and assure that subsequent requests are correctly routed on the same path as the initial requests were routed.

· conveying the SIP-initiated media session streams through these devices.

2 IPv4/IPv6 translation mechanisms/protocols made available by the IETF community

In most deployment scenarios, the IPv6 routing infrastructure will be built up over time. While the IPv6 infrastructure is being deployed, the existing IPv4 routing infrastructure can remain functional, and can be used to carry IPv6 traffic.

Once the IP addresses of the end points have been determined, appropriate routing mechanisms are necessary to send IP packets back and forth. If both the sender and the recipient have standard IPv6 addresses and direct connections to an IPv6 backbone, routing is straightforward. If they can reach each other only over an IPv4 network, IPv4 encapsulation is necessary while traversing the IPv4 part of the network. If each end-host supports a different version of IP, then a protocol translator or gateway is needed between them.

IPv6 hosts and routers will need to retain backward compatibility with IPv4 devices for an extended time period (possibly years or even indefinitely) and will probably have the option of retaining their IPv4 addressing. To accomplish these goals, IPv6 transition relies on several special functions that have been built into the IPv6 standards work, including dual-stack hosts and routers; transition mechanisms which temporarily assign an IPv4 address to an IPv6 host; tunnelling IPv6 via IPv4 or convert between IPv6/IPv4 headers.

2.1. Dual stack hosts

Dual stack hosts have both protocol stacks and have an IPv4 address and at least one globally routable IPv6 address.

[image: image1.wmf]

v4

v6

v4/v6

v4/v6

IPv6

IPv4

v6

Once a few nodes have been converted to IPv6, there is the strong possibility that these nodes will require continued interaction with existing IPv4 nodes. This is accomplished with the dual-stack IPv4/IPv6 approach. When running a dual IPv4/IPv6 stack, a host can access both IPv4 and IPv6 resources. Routers running both protocols can forward traffic for both IPv4 and IPv6 end nodes. Dual Stack machines can use totally independent IPv4 and IPv6 addresses, or they can be configured with an IPv6 address that is IPv4 compatible.

2.1.1. IPv4 compatible IPv6 addresses

The IPv6 transition mechanisms include a technique for hosts and routers to dynamically tunnel IPv6 packets over IPv4 routing infrastructure. IPv6 nodes that utilize this technique are assigned special IPv6 unicast addresses that carry an IPv4 address in the low-order 32-bits. This type of address is termed as “IPv4 - compatible IPv6 address”:

[image: image2.wmf]80 bits

16 bits

32 bits

Network prefix

0000

IPv4 address

A second type of IPv6 address which holds an embedded IPv4 address is also defined. This address is used to represent the addresses of IPv4-only nodes (those nodes, which do not have a dual protocol stack and do not support IPv6) as IPv6 addresses. This type of address is termed as "IPv4 - mapped IPv6 address”:

[image: image3.wmf]80 bits

16 bits

32 bits

Network prefix

FFFF

IPv4 address

A third type of IPv6 address which holds an embedded IPv4 address is utilized by some translation mechanisms. The “IPv4 - translated” address is used by an IPv6-enabled node when addressing an IPv4 node through an IPv6 - IPv4 protocol translator.
[image: image4.wmf]64 bits

16 bits

32 bits

Network prefix

0000

IPv4 address

16 bits

FFFF

2.2. IPv6 over IPv4 tunnelling

In most deployment scenarios, the IPv6 routing infrastructure will be built up over time. While the IPv6 infrastructure is being deployed, the existing IPv4 routing infrastructure can remain functional, and can be used to carry IPv6 traffic. Tunneling provides a way to utilize an existing IPv4 routing infrastructure to carry IPv6 traffic.

To be able to carry an IPv6 packet over an IPv4 backbone, an IPv4 header is added to the packet.

The value of the protocol field in the appended IPv4 header will be set to 41, to point that the packet contain an encapsulated packet.

There are two tunneling techniques:

· automatic: the encapsulating node determines the endpoint of the tunnel using dynamic routing

· configured: the encapsulating node determines the endpoint of the tunnel from an explicit configuration
The underlying mechanism is the same in both tunneling techniques:

· the encapsulating node (tunnel entry point) creates an encapsulating IPv4 header and transmits the encapsulated packet.

· the exit node of the tunnel (the decapsulating node) receives the encapsulated packet, removes the IPv4 header and processes the resulted IPv6 packet

Tunneling techniques are usually classified according to the mechanism by which the encapsulating node determines the address of the node at the end of the tunnel.

Tunneling can be done in a variety of ways:

· Host-to-Host: Ipv6/IPv4 hosts that are interconnected by an IPv4 infrastructure can tunnel IPv6 packets between themselves

· Router-to-Host: IPv6/IPv4 routers can tunnel IPv6 packets to their final destination

· Router-to-Router: IPv6/IPv4 routers interconnected by an IPv4 infrastructure can tunnel IPv6 packets between themselves

· Host-to-Router: IPv6/IPv4 hosts can tunnel IPv6 packets to an intermediary IPv6/IPv4 router that is reachable via an IPv4 infrastructure

If the tunnel endpoint is the destination itself, the tunnel endpoint can be determined from the destination IPv6 address of the packet - the packet can be encapsulated automatically – this is called automatic tunneling

If the tunnel endpoint is an intermediate router which must decapsulate the IPv6 packet and forward to its final destination, the tunnel endpoint must be determined from configuration – this is called configured tunneling
2.2.1 Example of automatic encapsulation

[image: image5.wmf]6to4 router

IPv4 backbone

IPv6 network

IPv6 only host

IPv4 only host

6to4 router

IPv6 network

IPv6 only host

IPv4/IPv6

DNS

IPv4 address: 192.1.2.3

6to4 IPv6 address: 2002:c001:0203::/48

IPv4 address: 9.254.253.252

IPv6 packet to A:

 SRC address: 2002:c001:0203:f00:260:97ff:fea8:e5a8

DST address: 2002:09fe:fbfc:a00:140:98aa:abc8:a3b7

A

B

IPv4 encapsulated packet to A:

SRC address: 192.1.2.3

DST address: 9.254.253.252

IPv6 address: 2002:c001:0203:

f00:260:97ff:fea8:e5a8

IPv6 address: 2002:09fe:fbfc:a00:140:98aa:abc8:a3b7

M

N

In the figure above an IPv6-only node B having a 64-bit interface identifier "260:97ff:fea8:e5a8" and a 16-bit site-level aggregator "f00" is connected to the IPv4 Internet via a dual stack 6to4 router M.. M has a publicly routable IPv4 address ”192.1.2.3" or ”c001:0203" in hexadecimal notation. The 6to4 address of B (a valid IPv6 address in fact) is "2002:c001:0203:f00:260:97ff:fea8:e5a8”. Similarly, the IPv6 only node A is connected to the IPv4 Internet via the dual stack 6to4 router N, which has a publicly routable IPv4 address “9.254.251.252” or “09fe:fbfc”. The 6to4 address of A is “2002:09fe:fbfc:a00:140:98aa:abc8:a3b7”.
When a sending host or router (such as B or M) sees a packet with the destination address of A, it first extracts the embedded IPv4 address (in this case ”09fe:fbfc"), and encapsulates the IPv6 packet in an IPv4 packet destined for this embedded address. When the 6to4 router N receives this packet, it decapsulates it, and forwards it to A using native IPv6 routing within the IPv6 stub network.
This mechanism is an alternative solution for automatic encapsulation. Nodes wishing to communicate using 6to4 addresses must satisfy the following restrictions:

· each 6to4 router must have at least one publicly routable IPv4 address. The
so called "6to4" automatic encapsulation mechanism reduces this requirement to just a single publicly routable IPv4 address per site.

each node behind a 6to4 router with the “a.b.c.d” IPv4 address must have an IPv6 address of 2002:ab:cd:SLA:I_faceID, with SLA and I_faceID of the site.

2.3. Protocol Translators

2.3.1. Stateless IP and ICMP translation (SIIT) mechanism

The temporary IPv4 address will be used as an IPv4-translated IPv6 address and the packets will travel through a stateless IP/ICMP translator that will translate the packet headers between IPv4 and IPv6 and translate the addresses in those headers between IPv4 addresses on one side and IPv4-translated IPv6 addresses or IPv4-mapped IPv6 addresses on the other side.
When the IPv4-to-IPv6 translator receives an IPv4 datagram addressed to a destination that lies outside of the attached IPv4 island, it translates the IPv4 header of that packet into an IPv6 header. It then forwards the packet based on the IPv6 destination address. The original IPv4 header on the packet is removed and replaced by an IPv6 header. For ICMP messages all packets need to have the Type value translated and for ICMP error messages the included IP header also needs translation.

When the IPv6-to-IPv4 translator receives an IPv6 datagram addressed to an IPv4-mapped IPv6 address, it translates the IPv6 header of that packet into an IPv4 header. It then forwards the packet based on the IPv4 destination address. The original IPv6 header on the packet is removed and replaced by an IPv4 header. For ICMP messages all packets need to have the Type value translated and for ICMP error messages the included IP header also needs translation.

[image: image6.wmf]

v6

only

IPv6

IPv4

v4

only

131.1.2.1

3. Translate IPv6

 header to IPv4

 header

145.1.2.1

::

145.1.2.10

Src

::

145.1.2.10

Dst

::

131.1.2.1

Src 145.1.2.10

Dst 131.1.2.1

The SIIT specification does not cover how an IPv6 node can acquire a temporary IPv4 address from the pool of IPv4 addresses and how such a temporary address be registered in the DNS.

2.3.2. Network Address and Protocol Translator

NAT-PT is an IPv4-to-IPv6 translation mechanism which attempts to provide transparent routing to end-nodes in IPv6 realm trying to communicate with end-nodes in IPv4 realm and vice versa. This is achieved using a combination of Network Address Translation and Protocol Translation. This mechanism does not mandate dual stack in end nodes and does not have any special routing requirement neither requires tunneling support. This mechanism is based on NAT-like address translation and IP header conversion as described in [SIIT].

NAT-PT uses a pool of IPv4 addresses for assignment to IPv6 nodes on a dynamic basis as sessions are initiated across IPv4-IPv6 boundaries. The IPv4 addresses are assumed to be globally unique. NAT-PT binds addresses in IPv6 network with addresses in IPv4 network and vice versa to provide transparent routing for the datagrams traversing between address realms. This requires no changes to end nodes and IP packet routing is completely transparent to end nodes. It does, however, require NAT-PT to track the sessions it supports and mandates that inbound and outbound datagrams pertaining to a session traverse the same NAT-PT router.

[image: image7.wmf]

v6

IPv6

IPv4

v4

131.1.2.1

3. Translate IPv6 header

 to IPv4 header.

 Use 145.1.2.10 and port

x

 as source address in

 IPv4 header.

145.1.2.10

4. Maintain a state so that packets from

 131.1.2.1 to 145.1.2.10 port

x

 can be

 sent to FE80::3434

Src FE80::3434

Dst ::131.1.2.1

Src 145.1.2.10, port

x

Dst 131.1.2.1

3 DNS Translation

[image: image8.wmf]Root Name Server

Com Name

Server

nokia.

com

www.nokia.

com

Local

Name

Server

DNS

Client

Recursive

query

1

10

2

3

4

5

6

7

8

9

The figure above shows how a recursive DNS query is made. In case the DNS Client has IPv6 protocol stack only, it will make a DNS query to find out the IP address of www.nokia.com , asking for a AAAA or A6 type record entry. In case the local name server does not receive a valid IPv6 address in response 9 (as www.nokia.com does not have an IPv6 address configured), the local name server will need to make a new DNS query for type A record. Before delivering the IPv4 address to the client, it has to translate it to an IPv6 address (IPv4 mapped IPv6), as the DNS client is IPv6 only. This functionality of the local name server is called DNS ALG (Application Level Gateway).

4 Interworking on SIP control plane

An example of SIP request is shown below:

INVITE sip:user2@home1.net

Via: SIP/2.0/UDP [5555::aaa:bbb:ccc:ddd]

Record-Route: sip: pcscf1.visited1.net

Route: sip: icscf1@home1.net

Supported: 100rel

From: sip: user1@home1.net

To: sip: user2@home1.net

Call-ID: cb03a0s09a2sdfglkj490333

Cseq: 127 INVITE

Contact: sip:[5555::aaa:bbb:ccc:ddd]

Contact: Blaster@home1.net

Content-Type: application/sdp

Content-Length: (…)

v=0

o=- 2987933615 2987933615 IN IP6 5555::aaa:bbb:ccc:ddd
s=-

c=IN IP6 5555::aaa:bbb:ccc:ddd

b=AS:64

t=907165275 0

m=video 3400 RTP/AVP 98 99

a=qos:mandatory sendrecv

a=rtpmap:98 H261

a=rtpmap:99:MPV

m=video 3402 RTP/AVP 98 99

a=rtpmap:98 H261

a=rtpmap:99:MPV

a=qos:mandatory sendrecv

m=audio 3456 RTP/AVP 97 96 0 15

a=rtpmap:97 AMR

a=fmtp:97 mode-set=0,2,5,7; maxframes=2

a=rtpmap:96 G726-32/8000

a=qos:mandatory sendrecv

m=audio 3458 RTP/AVP 97 96 0 15

a=rtpmap:97 AMR

a=fmtp:97 mode-set=0,2,5,7; maxframes=2

a=rtpmap:96 G726-32/8000

The headers in bold are part of the SIP message, the rest is the SDP payload. The headers in red are used for routing the SIP requests and their responses. The address found in the Contact: header is used for sending subsequent request to.

Before delivering the message to the recipient, the S-CSCF shall recognize whether the final destination of the message (as far as could be seen from the DNS query – at DNS Zone level) is an IPv6 host or an IPv4 host.

There are two possible cases:

1) S-CSCF is dual stack

2) S-CSCF has IPv6 stack only

1) In case S-CSCF is dual stack, it shall:

· send the message out using the protocol version which corresponds to the one used by the destination (as published at the DNS Zone level) in case it is a one-shot message (no response is coming to it). In all other cases it shall:

· insert its own IP address into headers like Via, Record Route, Path, etc. which are used for routing. The version of IP address shall be the same as the version of IP the first hop outside the domain of the S-CSCF uses.

· in case the Contact: header field contains an IP address of which the protocol version is different than the one of the destination (at DNS Zone level), then change the address to its own address (protocol version to match to the destination's one)

In case an I-CSCF is used for hiding, then the I-CSCF must also be dual stack.

2) In case S-CSCF has IPv6 only stack, then it shall:

· ask for an IPv4 address from a NAT-PT developed in the network by using a control protocol. A possible example is to use a small subset of the MEGACO protocol.

· the local name server of the network shall have DNS ALG support

· implement the steps listed above under 1)

· The message shall be routed through a NAT-PT which needs to translate the packet's header.

5 Interworking on SIP user plane

In order for the two endpoints using different version of IP addresses to be able to communicate the S-CSCF has to change the IP address found in the SDP payload of the SIP request and its response.

When an IPv4 host initiates the communication with an IPv6 host, the IPv4 address found in the SDP payload has to be changed to an IPv6 mapped IPv4 address.

When an IPv6 host initiates the communication with an IPv4 host, the IPv6 address found in the SDP payload has to be changed to an IPv4 address which has to be acquired from a device able to provide such an address when requested (NAT-PT). A binding has to be made in NAT-PT in order to enable the communication (NAT functionality).

An example for a control protocol which can be used to ask and provide such addresses between S-CSCF and NAT-PT is MEGACO [RFC3015]. Below an example is shown on how to use MEGACO between S-CSCF and NAT-PT for such a communication:

Step 1: NAT-PT registering for MEGACO control with the CSCF

The NAT-PT shall be able to register with the CSCF for MEGACO-control. This registration is conducted by means of sending a ServiceChange command, and the CSCF may accept the registration attempt with a ServiceChangeAck reply.

· NAT-PT to CSCF:

MEGACO/1 [AB.CD.EF::12.34.99]
 //IPv6 address of NAT-PT
Transaction = 9999 {
 Context = - {
 ServiceChange = ROOT {Services {
 Method=Restart,
 ServiceChangeAddress=55555, Profile=ResNAT/1} } } }

· CSCF sends a reply to NAT-PT accepting the registration:

MEGACO/1 [AB.CD.EF::12.34.56]:55555
 //IPv6 address of CSCF
Reply = 9999 {
 Context = - {ServiceChange = ROOT {
 Services {ServiceChangeAddress=55555, Profile=ResNAT/1} } } }

The NAT-PT realizes only ephemeral type of terminations, this also means that the TerminationID and the local transport address in the NAT-PT to be used for the session are allocated by the NAT-PT itself, and returned to the controlling CSCF in the reply message. The CSCF initiates the binding request in NAT-PT by sending an ADD command, and receives a transport address (TA) from NAT-PT to be used for the session in the reply message.

Step 2: (case when an IPv6 device initiates a call to an IPv4 device) S-CSCF asks for an IPv4 address to replace the address in the SDP payload. It sends a MEGACO ADD command to the NAT-PT

MEGACO/1 [AB.CD.EF::12.34.56]:55555
Transaction = 50001 {
 Context = $ {
 Add = $ { Media {
 Stream = 1 {
 LocalControl {Mode = SendReceive}}},
 Local {
v=0
c=IN IP4 $
m=audio $ RTP/AVP 4
a=ptime:30
 },
 Remote {
v=0
c=IN IP4 media-IP-address of UserA
//The media IP-address and media- port of UserA is received in the SDP part of the INVITE message
m=audio media-port RTP/AVP 4
a=ptime:30 }}}}}}

Step 3: NAT-PT answers to S-CSCF:

It also binds the provided IPv4 address with the IPv6 address in the ADD request.

MEGACO/1 [AB.CD.EF::12.34.99]:55555
Reply = 50001 {
 Context = 5000 {
 Add = 00001{
 Media {
 Stream = 1 {
 Local {
v=0
c=IN IP4 111.111.111.1
//CSCF copies this media IP address and port into the SDP part of the INVITE message.
m=audio 1111 RTP/AVP 4 }}}}}}

8 Proposal

It is proposed to add the following text to the informational annex of CN3 TS:

For IPv4/IPv6 interworking purposes it is proposed to have the following functionalities and interfaces with protocols in the IMS:

· A NAT-PT device able to translate the IP headers between different IP protocols and able to provide IPv4 addresses from its pool when required

· A control protocol between S-CSCF and NAT-PT for the purpose of communication between the two entities

· Use of MEGACO on the interface between S-CSCF and NAT-PT

The above requirements shall be optional for Rel5 with the purpose of making it mandatory in a later release.

It is proposed to add the following text to the informational annex of 24.229:

For IPv4/IPv6 interworking purposes it is proposed to have the following functionality as part of S-CSCF:

· A new functionality in S-CSCF which enables it to identify whether the endpoints willing to communicate have the same version of the IP protocol. It is assumed that the IMS UE will only have IPv6.

