Fehler! Kein Text mit angegebener Formatvorlage im Dokument.
1
Fehler! Kein Text mit angegebener Formatvorlage im Dokument.

3GPP TSG-CN1 Meeting #34
Tdoc N1-040796
Zagreb, Croatia 10 – 14 May 2004
Source:
Siemens

Title:
CR against 24.841 – Correction of flows for XCAP usage

Agenda item:
8.2

Document for:
APPROVAL

The following editorial changes are provided for clause A.7

· Contect-Type changed to Content-Type

· Contect-Length changed to Content-Length
· AUID part of request URI in tables A.7.4-3 and, A.7.2-9 changed from presence-publish to "pidf-manipulation"
· Request URI in XCAP PUT in table A.7.4-3 corrected
A.7
Example signalling flows of HTTP based presence service operation

A.7.1
Introduction

This subclause shows flows relating to the manipulation of presence service data over the Ut reference point using XCAP.

Each example flow shows several sequences of manipulation of data for the presence service.

NOTE:
Error conditions are not considered in the examples e.g. if authorisation checks fail in the XCAP server, XML Schema compliancy checks fail or the file specified by the URI does not exist then an appropriate 4xx response is sent to the client.

Editor’s note: Clarifications how XCAP is using HTTP is needed.

A.7.2
Flows demonstrating how DMs manipulate resource lists

Editor’s Note: The possible proxies (e.g., handling authentication matters) between the data manipulator client and HTTP server are bypassed. Also the authentication related headers are missing.

[image: image1.wmf]AS (DMS)

2. XCAP 201 (Created)

UE (DM)

1. XCAP PUT

6. XCAP 200 (OK)

5. XCAP DELETE

8. XCAP 200 (OK)

7. XCAP GET

4. XCAP 200 (OK)

3. XCAP PUT

:

:

:

:

:

:

Figure A.7.2-1: DM manipulating a resource list on DMS

Figure A.7.2-1 shows a how a DM may manipulate a resource list on a DMS. The details of the flows are as follows:

1.
XCAP PUT request (DM to DMS – see example in table A.7.2-1

The DM generates an XCAP PUT request to create a new resource list on the DMS. The resource list has one entry.

Table A.7.2-1: XCAP PUT request (DM to DMS)

PUT http://xcap.home1.net/services/resource-lists/users/user1/pf.xml HTTP/1.1

User-Agent: IMS subscriber

Referer: http://oper.home1.net:1234/service

Date: Thu, 08 Jan 2004 10:13:17 GMT

Content-Type: application/resource-lists+xml

Content-Length: (…)

<?xml version="1.0" encoding="UTF-8"?>

 <resource-lists xmlns:"urn:ietf:params:xml:ns:resource-lists">

 <list name="Presence_fellows" uri="sip:user1_list1@home1.net" subscribeable="true">

 <entry name="user2" uri="sip:user2_public1@home2.net">

 <display-name>User2</display-name>

 </entry>

 </list>

 </resource-lists>

2.
XCAP 201 (Created) response (DMS to DM) – see example in table A.7.2-2

After the DMS has performed the necessary authorisation checks on the originator to ensure the DM is allowed to create a file, the DMS sends an XCAP 201 (Created) response to the DM.

Table A.7.2-1: XCAP 201 (Created) response (DMS to DM)

HTTP/1.1 201 CREATED

Server: Apache/1.3.22 (Unix) mod_perl/1.27

Date: Thu, 08 Jan 2004 10:50:35 GMT

Content-Type: text/html

Content-Length: 0

3.
XCAP PUT request (DM to DMS) – see example in table A.7.2-3

The DM adds a new entry to the previously created resource list by generating a new XCAP PUT request.

Table A.7.2-3: XCAP PUT request (DM to DMS)

PUT http://xcap.home1.net/services/resource-lists/users/user1/pf.xml?resource-lists/list[@name="Presence_fellows"]/entry HTTP/1.1

User-Agent: IMS subscriber

Referer: http://oper.home1.net:1234/service

Date: Thu, 08 Jan 2004 10:13:17 GMT

Content-Type: application/xml-fragment-body

Content-Length: (…)

 <entry name="user3" uri="sip:user3_public1@home3.net">

 <display-name>User3</display-name>

 </entry>

4.
XCAP 200 (OK) response (DMS to DM) – see example in table A.7.2-4

After the DMS has performed the necessary authorisation checks, XML document validations and XML schema compliancy checks the DMS sends an XCAP 201 (Created) response to the DM.

Table A.7.2-4: XCAP 200 (OK) response (DMS to DM)

HTTP/1.1 200 OK

Server: Apache/1.3.22 (Unix) mod_perl/1.27

Date: Thu, 08 Jan 2004 10:50:45 GMT

Content-Type: text/html

Content-Length: 0

5.
XCAP DELETE request (DM to DMS) – see example in table A.7.2-5

The DM decides to delete the entry "user2" from the resource list. The DM generates an XCAP DELETE request.

Table A.7.2-5: XCAP DELETE request (DM to DMS)

DELETE http://xcap.home1.net/services/resource-lists/users/user1/pf.xml?resource-lists/list[@name="Presence_fellows"]/entry[@name=user2"] HTTP/1.1

Host: oper.example.com:9999

User-Agent: IMS subscriber

Date: Thu, 08 Jan 2004 10:14:17 GMT

Referer: http://oper.home1.net:1234/service

6.
XCAP 200 (OK) response (DMS to DM) – see example in table A.7.2-6

After the DMS has performed the necessary authorisation checks on the originator to ensure the DM is allowed to delete an entry from the resource list, the DMS sends an XCAP 200 (OK) response.

Table A.7.2-6: XCAP 200 (OK) response (DMS to DM)

HTTP/1.1 200 OK

Server: Apache/1.3.22 (Unix) mod_perl/1.27

Date: Thu, 08 Jan 2004 11:00:47 GMT

Content-Type: image/jpeg

Content-Length: 0

7.
XCAP GET request (DM to DMS) – see example in table A.7.2-7

The DM wishes to check the result of the previous transaction by generating an XCAP GET request.

Table A.7.2-7: XCAP GET request (DM to DMS)

GET http://xcap.home1.net/services/resource-lists/users/user1/pf.xml HTTP/1.1

User-Agent: IMS subscriber

Referer: http://oper.home1.net:1234/service

Date: Thu, 08 Jan 2004 11:13:17 GMT

Content-Length: 0
8.
XCAP 200 (OK) response (DMS to DM) – see example in table A.7.2-8

After the DMS has performed the necessary authorisation checks on the originator to ensure the DM is allowed to fetch the resource list, the DMS sends an XCAP 200 (OK) response to the DM including the resource list in the body of the response.

Table A.7.2-8: XCAP 200 (OK) response (DMS to DM)

HTTP/1.1 200 OK

Server: Apache/1.3.22 (Unix) mod_perl/1.27

Etag: "askdajdsaj"

Date: Thu, 08 Jan 2004 11:50:35 GMT

Content-Type:application/resource-lists+xml

Content-Length: (…)

<?xml version="1.0" encoding="UTF-8"?>

 <resource-lists xmlns:"urn:ietf:params:xml:ns:resource-lists">

 <list name="Presence_fellows" uri="sip:user1_list1@home1.net" subscribeable="true">

 <entry name="user3" uri="sip:user3_public1@home3.net">

 <display-name>User3</display-name>

 </entry>

 </list>

 </resource-lists>

A.7.3
Flows demonstrating how DMs manipulate presence authorization policy

Editor’s Note: The possible proxies (e.g., handling authentication matters) between the data manipulator client and HTTP server are bypassed. Also the authentication related headers are missing.

[image: image2.wmf]AS (DMS)

2. XCAP 201 (Created)

UE (DM)

1. XCAP PUT

6. XCAP 200 (OK)

5. XCAP DELETE

8. XCAP 200 (OK)

7. XCAP GET

4. XCAP 200 (OK)

3. XCAP PUT

:

:

:

:

:

:

Figure A.7.3-1: DM manipulating presence authorization policy on DMS

Figure A.7.3-1 shows a DM manipulating presence authorization policy on a DMS. The details of the flows are as follows:

1.
XCAP PUT request (DM to DMS) – see example in table A.7.3-1

The DM generates an XCAP PUT request to create a presence authorization policy on the DMS. The presence authorization policy has one permission statement allowing for sip:user2_public1@home2.net to see all information from the basic PIDF namespace along with the "video" element from the prescaps namespace.

Table A.7.3-1: XCAP PUT request (DM to DMS)

PUT http://xcap.home1.net/services/permission-statements/users/user1/ps.xml HTTP/1.1

User-Agent: IMS subscriber

Referer: http://oper.home1.net:1234/service

Date: Thu, 08 Jan 2004 10:13:17 GMT

Content-Type:application/permission-statements+xml

Content-Length: (…)

<?xml version="1.0" encoding="UTF-8"?>

 <permission-statements xmlns="urn:ietf:params:xml:ns:permission-statements"

 xmlns:pidf="urn:ietf:params:xml:ns:pidf"

 xmlns:prescaps="urn:ietf:params:xml:ns:simple-prescaps-ext">

 <statement id="dsafa43232">

 <applies-to>

 <uri>sip:user2_public1@home2.net</uri>

 </applies-to>

 <permissions>

 <accept/>

 <show-namespace>urn:ietf:params:xml:ns:pidf</show-namespace>

 <show-element>prescaps:video</show-element>

 </permissions>

 </statement>

 </permission-statements>
2.
XCAP 201 (Created) response (DMS to DM) – see example in table A.7.3-2

After the DMS has performed the necessary authorisation checks on the originator to ensure the DM is allowed to create a file, the DMS sends an XCAP 201 (Created) response to the DM.

Table A.7.3-1: XCAP 201 (Created) response (DMS to DM)

HTTP/1.1 201 CREATED

Server: Apache/1.3.22 (Unix) mod_perl/1.27

Date: Thu, 08 Jan 2004 10:50:35 GMT

Content-Type: text/html

Content-Length: 0

3.
XCAP PUT request (DM to DMS) – see example in table A.7.3-3

The DM adds a new permission-statement to the previously created presence authorization policy by generating a new XCAP request. The new permission statement allows the user named sip:user3_public1@home3.net to see the tuple with class element specifying "sip".

Table A.7.3-3: XCAP PUT request (DM to DMS)

PUT http://xcap.home1.net/services/permission-statements/users/user1/ps.xml/permission-statements HTTP/1.1

User-Agent: IMS subscriber

Referer: http://oper.home1.net:1234/service

Date: Thu, 08 Jan 2004 10:13:27 GMT

Content-Type: application/xml-fragment-body

Content-Length: (…)

 <statement id="dsffdsfrrr32423">

 <applies-to>

 <uri>sip:user3_public1@home3.net</uri>

 </applies-to>

 <permissions>

 <accept/>

 <show-tuple>sip</show-tuple>

 </permissions>

 </statement>

4.
XCAP 200 (OK) response (DMS to DM) – see example in table A.7.3-4

After the DMS has performed the necessary authorisation checks, XML document validations and XML schema compliancy checks the DMS sends an XCAP 201 (Created) response to the DM.

Table A.7.3-4: XCAP 200 (OK) response (DMS to DM)

HTTP/1.1 200 OK

Server: Apache/1.3.22 (Unix) mod_perl/1.27

Date: Thu, 08 Jan 2004 10:50:45 GMT

Content-Type: text/html

Content-Length: 0

5.
XCAP DELETE request (DM to DMS) – see example in table A.7.3-5

The DM decides to delete the permission-statement for sip:user2_public1@home2.net from the authorization policy. The DM generates an XCAP DELETE request.

Table A.7.3-5: XCAP DELETE request (DM to DMS)

DELETE http://xcap.home1.net/services/presence-lists/users/user1/ps.xml/permission-statements/statement[@id="dsafa43232"]/permissions/show-namespace HTTP/1.1

Host: oper.example.com:9999

User-Agent: IMS subscriber

Date: Thu, 08 Jan 2004 10:14:17 GMT

Referer: http://oper.home1.net:1234/service

6.
XCAP 200 (OK) response (DMS to DM) – see example in table A.7.3-6

After the DMS has performed the necessary authorisation checks on the originator to ensure the DM is allowed to delete an entry from the resource list, the DMS sends an XCAP 200 (OK) response.

Table A.7.3-6: XCAP 200 (OK) response (DMS to DM)

HTTP/1.1 200 OK

Server: Apache/1.3.22 (Unix) mod_perl/1.27

Date: Thu, 08 Jan 2004 11:00:47 GMT

Content-Type: image/jpeg

Content-Length: 0

7.
XCAP GET request (DM to DMS) – see example in table A.7.3-7

The DM wishes to check the result of the previous transaction by releasing an XCAP GET request.

Table A.7.3-7: XCAP GET request (DM to DMS)

GET http://xcap.home1.net/services/permission-statements/users/user1/ps.xml HTTP/1.1

User-Agent: IMS subscriber

Referer: http://oper.home1.net:1234/service

Date: Thu, 08 Jan 2004 11:13:17 GMT

Content-Length: 0
8.
XCAP 200 (OK) response (DMS to DM) – see example in table A.7.3-8

After the DMS has performed the necessary authorisation checks on the originator to ensure the DM is allowed to fetch the resource list, the DMS sends an XCAP 200 (OK) response to the DM including the resource list in the body of the response.

Table A.7.3-8: XCAP 200 (OK) response (DMS to DM)

HTTP/1.1 200 OK

Server: Apache/1.3.22 (Unix) mod_perl/1.27

Etag: "eiuuekksks"

Date: Thu, 08 Jan 2004 11:50:35 GMT

Content-Type:application/permission-statements+xml

Content-Length: (…)

<?xml version="1.0" encoding="UTF-8"?>

 <permission-statements xmlns="urn:ietf:params:xml:ns:permission-statements"

 xmlns:pidf="urn:ietf:params:xml:ns:pidf"

 xmlns:prescaps=" urn:ietf:params:xml:ns:simple-prescaps-ext">

 <statement id="dsffdsfrrr32423">

 <applies-to>

 <uri>sip:user3_public1@home3.net</uri>

 </applies-to>

 <permissions>

 <accept/>

 <show-tuple>sip</show-tuple>

 </permissions>

 </statement>

 </permission-statements>
A.7.4
Storing external content (successful operation)

Editor’s Note: The possible proxies (e.g., handling authentication matters) between the data manipulator client and HTTP server are bypassed. Also the authentication related headers are missing.

[image: image3.wmf]AS (DMS)

2. HTTP 201 (Created)

UE (DM)

1. HTTP PUT

4. XCAP 201 (Created)

3. XCAP PUT

6. HTTP 200 (OK)

5. HTTP GET

8. HTTP 200 (OK)

7. HTTP PUT

10. XCAP 200 (OK)

9. XCAP PUT

HTTP server (DMS)

:

:

:

:

:

:

:

:

:

:

12. HTTP 200 (OK)

11. HTTP DELETE

Figure A.7.4.-1: DM manipulating hard-state presence document on DMS

Figure A.7.4-1 shows a DM manipulating hard-state presence document on a DMS when the presence document has an aggregated storing MIME object with the "application/pidf+xml" content type and any of its extensions. The details of the flows are as follows:

1.
HTTP PUT request (DM (client) to DMS) – see example in table A.7.2-1

In order to store the content, the DM generates an HTTP PUT request containing the MIME object in the body of the request. The request-URI points to the directory where the content is stored and shows the name of the file to be created.

Table A.7.4-1: HTTP PUT request (DM to DMS)

PUT http://operator.example.com/services/users/bill/pictureX HTTP/1.1

User-Agent: IMS subscriber

Referer: http://oper.home1.net:1234/service

Date: Thu, 08 Jan 2004 10:13:17 GMT

Content-Type: image/jpeg

Content-Length: (…)

{pictureX.jpg}

2.
HTTP 201 (Created) response (DMS to DM) – see example in table A.7.4-2

After the DMS has performed the necessary authorisation checks on the originator to ensure the DM is allowed to create a file the HTTP server sends an HTTP 201 (Created) response to the client.

Table A.7.4-2: HTTP 201 (Created) response (DMS to DM)

HTTP/1.1 201 CREATED

Server: Apache/1.3.22 (Unix) mod_perl/1.27Content-Type: text/html

Date: Thu, 08 Jan 2004 10:50:35 GMT

Content-Length: 1234

3.
XCAP PUT request (DM to DMS) – see example in table A.7.2-3

The DM generates an XCAP PUT request in order to store XML encoded presence document which includes a URI reference to the MIME object stored on the DMS. The AUID part of the request URI is 'pidf-manipulation' as defined in draft-isomaki-simple-xcap-pidf-manipulation-usage-00 [28].

Table A.7.4-3: XCAP PUT request (DM to DMS)

PUT http://xcap.example.com/services/pidf-manipulation /users/bill/pidf.xml HTTP/1.1

User-Agent: IMS subscriber

Referer: http://xcap.home1.net:1234/service

Date: Thu, 08 Jan 2004 10:13:27 GMT

Content-Type: application/pidf+xml

Content-Length: (…)

<?xml version="1.0" encoding="UTF-8"?>

 <presence xmlns="urn:ietf:params:xml:ns:cpim-pidf"

 xmlns:et="urn:ietf:params:xml:ns:pidf:rpid-tuple"

 xmlns:ext=”urn:ietf:params:xml:ns:ext-cont”

 entity="sip:bill@example.com">

 <tuple id="123sd">

 <status>

 <basic>open</basic>

 </status>

 <et:type>service</et:type>

 <contact>sip:bill@example.com</contact>

 </tuple>

 <tuple id="432sd">

 <status>

 <basic>open</basic>

 </status>

 <et:type>presentity</et:type>

 <ext:photo>

 http://operator.example.com/services/users/bill/pictureX.jpg

 </ext:photo>

 <note xml:lang="en">At home</note>

 </tuple>

 </presence>

4.
XCAP 201 (CREATED) response (DMS to DM) – see example in table A.7.4-4

After the DMS has performed the necessary authorisation checks, XML document validations and XML schema compliancy checks the DMS sends an XCAP 201 (Created) response to the DM.

Table A.7.4-4: XCAP 201 (Created) response (DMS to DM)

HTTP/1.1 201 CREATED

Server: Apache/1.3.22 (Unix) mod_perl/1.27

Date: Thu, 08 Jan 2004 10:50:45 GMT

Content-Type: text/html

Content-Length: 1234

5.
HTTP GET request (DM to DMS) – see example in table A.7.4-5

The DM wishes to fetch the MIME object from the DMS. The client generates an HTTP GET request. The request URI points to the directory where the object is stored and indicates the name of the file to be fetched.

Table A.7.4-5: HTTP GET request (DM to DMS)

GET http://operator.example.com/services/users/bill/pictureX HTTP/1.1

Host: oper.example.com:9999

User-Agent: IMS subscriber

Date: Thu, 08 Jan 2004 10:43:17 GMT

Accept: image/jpeg

Referer: http://oper.home1.net:1234/service

6.
HTTP 200 (OK) response (DMS to DM) – see example in table A.7.4-6

After the DMS has performed the necessary authorisation checks on the originator to ensure the DM is allowed to fetch the file the DMS sends an HTTP 200 (OK) response having the object in the body to the DM.

Table A.7.4-6: HTTP 200 (OK) response (DMS to DM)

HTTP/1.1 200 OK

Server: Apache/1.3.22 (Unix) mod_perl/1.27

Date: Thu, 08 Jan 2004 11:00:47 GMT

Content-Type: image/jpeg

Content-Length: (…)

{pictureX}

7.
HTTP PUT request (DM to DMS) – see example in table A.7.4-7

The DM wishes to modify the earlier stored MIME object by replacing the picture X with a new picture X with new content. To modify the object the DM generates an HTTP PUT request using the same request URI as has been used for the modified (old) object. The new object is conveyed in the body of the request.

Table A.7.4-7: HTTP PUT request (DM to DMS)

PUT http://operator.example.com/services/users/bill/pictureX HTTP/1.1

User-Agent: IMS subscriber

Referer: http://oper.home1.net:1234/service

Date: Thu, 08 Jan 2004 11:13:17 GMT

Content-Type: image/jpeg

Content-Length: (…)

{pictureX.jpg}

8.
HTTP 200 (OK) response (DMS to DM) – see example in table A.7.4-8

After the DMS has performed the necessary authorisation checks on the originator to ensure the DM is allowed to replace the existing MIME object with the new one the DMS sends an HTTP 200 (OK) response to the DM.

Table A.7.4-8: HTTP 200 (OK) response (DMS to DM)

HTTP/1.1 200 OK

Server: Apache/1.3.22 (Unix) mod_perl/1.27

Date: Thu, 08 Jan 2004 11:50:35 GMT

Content-Length: 0

9.
XCAP PUT request (DM to DMS) – see example in table A.7.4-9

The DM wishes to remove the MIME object from his presence information. The DM generates an XCAP PUT request to modify the XML encoded presence document to remove the reference to the MIME object from the presence document. The request URI contains a node selector to the requested tuple according to draft-ietf-simple-xcap-02 [27]. Note that because the message flow does not contain the XCAP GET request the use of the If-Match header is omitted in this example.

Table A.7.2-9: XCAP PUT request (DM to DMS)

PUT http://xcap.example.com/services/pidf-manipulation /users/bill/pidf.xml?presence/tuple[@id=”432sd”] HTTP/1.1

Date: Thu, 08 Jan 2004 11:13:37 GMT

Content-Type: text/plain

Content-Length: (…)

 <tuple id="432sd">

 <status>

 <basic>open</basic>

 </status>

 <et:type>presentity</et:type>

 <note xml:lang="en">At home</note>

 </tuple>

10.
XCAP 200 (OK) response (DMS to DM) – see example in table A.7.4-10

After the DMS has performed the necessary authorisation checks, XML document validations and XML Schema compliancy checks the DMS sends an XCAP 200 (OK) response to the DM.

Table A.7.4-10: XCAP 200 (OK) response (DMS to DM)

HTTP/1.1 200 OK

Server: Apache/1.3.22 (Unix) mod_perl/1.27

Date: Thu, 08 Jan 2004 11:50:59 GMT

Content-Length: 0

11.
HTTP DELETE request (DM to DMS) – see example in table A.7.4-11

The DM removes the MIME object from the DMS by generating an HTTP DELETE request

Table A.7.4-11: HTTP DELETE request (DM to DMS)

DELETE http://operator.example.com/services/users/bill/pictureX HTTP/1.1

Host: oper.example.com:9999

User-Agent: IMS subscriber

Referer: http://oper.home1.net:1234/service

Date: Thu, 08 Jan 2004 11:52:00 GMT

12.
HTTP 200 (OK) response (DMS to DM) – see example in table A.7.4-12

After the DMS has performed the necessary authorisation checks on the originator to ensure that the DM is allowed to delete the object, the DMS sends an HTTP 200 (OK) response to the DM.

Table A.7.4-12: HTTP 200 (OK) response (DMS to DM)

HTTP/1.1 200 OK

Server: Apache/1.3.22 (Unix) mod_perl/1.27

Date: Thu, 08 Jan 2004 11:52:35 GMT

Content-Length: 0

3GPP

_1142369546.vsd

_1142373667.vsd

_1142341352.vsd

