Error! No text of specified style in document.
1
Error! No text of specified style in document.

3GPP TSG-CN1 Meeting #32bis
Tdoc N1-040143

Sophia-Antipolis, France, 26-29 January 2004
Source:
Nokia

Title:
CR:

Agenda item:
8.1

Document for:
APPROVAL

Annex B: Example signalling flows of HTTP based presence service operation

B.1 Scope of signalling flows

B.2 Introduction
B.x

XCAP specific flows
B.y Flows demostrating how data manipulators store and manage external content to XML encoded presence information
B.Y.1 Introduction

This subclause covers the flows that show how data manipulators can store and manage external content (e.g., binary information) to XML encoded presence document.

B.Y.2 Storing external content (successful operation)
Editor’s Note: The elements shown in the flow shall be aligned with the XCAP specific flows when they are available. The possible proxies (e.g., handling authentication matters) between the data manipulator client and HTTP server are bypassed. Also the authentication related headers are missing.

[image: image1.wmf]

Da

ta

Manipulato

r

(Client)

HTTP

(XCAP)

Server

1. PUT

2. CREATED

3. (XCAP) PUT

4. CREATED

5. GET

6. OK

7. PUT

8. OK

9. (XCAP) PUT

10. OK

Data

Manipulato

r

(Client)

HTTP

(XCAP)

Server

1. PUT

2. CREATED

3. (XCAP) PUT

4. CREATED

5. GET

6. OK

7. PUT

8. OK

9. (XCAP) PUT

10. OK

Figure B.y.2-1: Data manipulator storing external content to HTTP (XCAP) server
Figure B.y.2-1 shows a data manipulator storing external content to HTTP (XCAP) server. The details of the flows are as follows:

1. PUT request (data manipulator (client) to HTTP (XCAP) server) – see example in table B.y.2-1
A data manipulator wishes to store external content to hard state type of XML encoded presence information. To store the content the client generates a HTTP PUT request containing the external content in the body of the request. The request URI points to the directory where the content is stored and shows the name of the file to be created.
Table B.y.2-1: PUT request (data manipulator to HTTP server)

PUT http://xcap.example.com/services/org.3gpp.presence.filestorage/users/bill/pictureX HTTP/1.1
User-Agent: IMS subscriber
Referer: http://xcap.home1.net:1234/service
Date: Thu, 08 Jan 2004 10:13:17 GMT
Content-Type: image/jpeg

Content-Length:
{pictureX.jpg}
2. OK response (HTTP (XCAP) server to data manipulator (client)) – see example in table B.y.2-2

After the HTTP server has performed the necessary authorisation checks on the originator to ensure the data manipulator is allowed to create a file the HTTP server sends a 201 CREATED response to the client.
In the case where the authorisation checks failed then a 401 response would be sent to the client.
Table B.y.2-1: OK response (HTTP server to data manipulator)
HTTP/1.1 201 CREATED
Server: Apache/1.3.22 (Unix) mod_perl/1.27Content-Type: text/html

Content-Length: 1234

Date: Thu, 08 Jan 2004 10:50:35 GMT

3. (XCAP) PUT request (data manipulator (client) to XCAP server) – see example in table B.y.2-3

The data manipulator generates a HTTP PUT request in order to store XML encoded presence document which among other information includes a URI reference to the external content stored in the server. The AUID part of the request URI is ‘presence-publish’ as defined in draft-isomaki-simple-xcap-publish-usage-00 [c].
Table B.y.2-3: (XCAP) PUT request (data manipulator to XCAP server)

PUT http://xcap.example.com/services/presence-publish/users/bill/pidf HTTP/1.1

User-Agent: IMS subscriber

Referer: http://xcap.home1.net:1234/service

Date: Thu, 08 Jan 2004 10:13:17 GMT

Contect-Type: application/pidf+xml

Contect-Length: xxx

 <?xml version="1.0" encoding="UTF-8"?>

 <presence xmlns="urn:ietf:params:xml:ns:cpim-pidf"

 xmlns:et="urn:ietf:params:xml:ns:pidf:rpid-tuple"

 xmlns:ext=”urn:ietf:params:xml:ns:ext-cont”

 entity="sip:bill@example.com">

 <tuple id="123sd">

 <status>

 <basic>open</basic>

 </status>

 <et:type>service</et:type>

 <contact>sip:bill@example.com</contact>
 </tuple>

 <tuple id="432sd">

 <status>

 <basic>open</basic>

 </status>

 <et:type>presentity</et:type>

 <ext:photo>

 http://xcap.example.com/services/org.3gpp.presence.filestorage/users/bill/pictureX.jpg

 </ext:photo>

 <note>At home</note>

 </tuple>

 </presence>

4. CREATED response (XCAP server to data manipulator (client)) – see example in table B.y.2-4

After the XCAP server has performed the necessary authorisation checks, XML document validations and XML Schema compliancy checks the XCAP server sends a 201 CREATED response to the client.

In the case where the authorisation, validation and XML Schema compliancy checks failed then a necessary 4xx response would be sent to the client.
Table B.y.2-4: CREATED response (XCAP server to data manipulator)

HTTP/1.1 201 CREATED

Server: Apache/1.3.22 (Unix) mod_perl/1.27Content-Type: text/html

Content-Length: 1234

Date: Thu, 08 Jan 2004 10:50:35 GMT

5. GET request (data manipulator (client) to HTTP (XCAP) server) – see example in table B.y.2-5

The data manipulator wishes to fetch external content from the server. The client generates a HTTP GET request. The request URI points to the directory where the content is stored and indicates the name of the file to be fetched.

Table B.y.2-5: GET request (data manipulator to HTTP server)

GET / HTTP/1.1

Host: xcap.example.com:9999

User-Agent: IMS subscriber
Date: Thu, 08 Jan 2004 10:13:17 GMT

Accept: image/jpeg
Referer: http://xcap.home1.net:1234/service

6. OK response (HTTP (XCAP) server to data manipulator (client)) – see example in table B.y.2-6

After the HTTP server has performed the necessary authorisation checks on the originator to ensure the data manipulator is allowed to fetch the file the HTTP server sends a 200 OK response having the content in the body to the client.

In the case where the authorisation checks failed or the file specified by the URI does not exist then a necessary 4xx response (e.g., 401 NOT FOUND or 401 UNAUTHORIZED) would be sent to the client.
Table B.y.2-6: OK response (HTTP server to data manipulator)

HTTP/1.1 200 OK

Server: Apache/1.3.22 (Unix) mod_perl/1.27Content-Type: text/html

Contect-Type: image/jpeg

Contect-Length: xxx
{pictureX}
7. PUT request (data manipulator (client) to HTTP (XCAP) server) – see example in table B.y.2-7

The data manipulator wishes to modify the earlier stored external content by replacing it with a new content. To modify the content the client generates a HTTP PUT request using the same request URI as has been used for the modified (old) content. The new content is conveyed in the body of the request.
Table B.y.2-7: PUT request (data manipulator to HTTP server)

PUT http://xcap.example.com/services/org.3gpp.presence.filestorage/users/bill/pictureX HTTP/1.1

User-Agent: IMS subscriber

Referer: http://xcap.home1.net:1234/service

Date: Thu, 08 Jan 2004 10:13:17 GMT

Content-Type: image/jpeg

Content-Length:
{pictureX.jpg}

8. OK response (HTTP (XCAP) server to data manipulator (client)) – see example in table B.y.2-8

After the HTTP server has performed the necessary authorisation checks on the originator to ensure the data manipulator is allowed to replace the existing content with the new one the HTTP server sends a 200 OK response to the client.

In the case where the authorisation checks failed then a 401 response would be sent to the client.

Table B.y.2-8: OK response (HTTP server to data manipulator)

HTTP/1.1 201 CREATED

Server: Apache/1.3.22 (Unix) mod_perl/1.27Content-Type: text/html

Content-Length: 1234

Date: Thu, 08 Jan 2004 10:50:35 GMT
9. (XCAP) PUT request (data manipulator (client) to XCAP server) – see example in table B.y.2-9

The data manipulator wishes to remove the external content from his presence information. The client generates a HTTP PUT request to modify the XML encoded presence document to remove the reference to the external content from the presence document. The request URI contains the reference to the replaced tuple according to draft-ietf-simple-xcap-01 [z]. Note that because the message flow does not contain the (XCAP) GET request the use of If-Match header is omitted in this example.
Table B.y.2-9: (XCAP) PUT request (data manipulator to XCAP server)

PUT http://xcap.example.com/services/presence-publish/users/bill/pidf?presence/tuple[@id=”423sd”] HTTP/1.1

Date: Thu, 08 Jan 2004 10:13:17 GMT

Contect-Type: text/plain

Contect-Length: xxx

 <tuple id="432sd">

 <status>

 <basic>open</basic>

 </status>

 <et:type>presentity</et:type>

 <note>At home</note>

 </tuple>

10. OK response (XCAP server to data manipulator (client)) – see example in table B.y.2-10

After the XCAP server has performed the necessary authorisation checks, XML document validations and XML Schema compliancy checks the XCAP server sends a 200 OK response to the client.

In the case where the authorisation, validation and XML Schema compliancy checks failed then a necessary 4xx response would be sent to the client.

Table B.y.2-10: CREATED response (XCAP server to data manipulator)

HTTP/1.1 201 CREATED

Server: Apache/1.3.22 (Unix) mod_perl/1.27Content-Type: text/html

Content-Length: 1234

Date: Thu, 08 Jan 2004 10:50:35 GMT

3GPP

_1136639944.doc
		

		DOCUMENTTYPE

		

		1 (1)

		

		

		

		

		TypeUnitOrDepartmentHere

		

		

		

		TypeYourNameHere

		TypeDateHere

		

		

10. OK

9. (XCAP) PUT

8. OK

7. PUT

6. OK

5. GET

4. CREATED

3. (XCAP) PUT

2. CREATED

1. PUT

Server

HTTP (XCAP)

(Client)

Manipulator

Data

10. OK

9. (XCAP) PUT

8. OK

7. PUT

6. OK

5. GET

4. CREATED

3. (XCAP) PUT

2. CREATED

1. PUT

Server

HTTP (XCAP)

(Client)

Manipulator

Data

_935227290.doc

