3GPP TSG CN WG1 Meeting #32
N1-031588

Bangkok, THAILAND, 27th – 31st October 2003

3GPP TS 24.cde V0.0.0 (2003-10)
Technical Specification

3rd Generation Partnership Project;

Technical Specification Group Core Network;

Bootstrapping interface (Ub);

Protocol details

(Release6)

[image: image1.jpg]
The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP.

The present document has not been subject to any approval process by the 3GPP Organizational Partners and shall not be implemented.

This Specification is provided for future development work within 3GPP only. The Organizational Partners accept no liability for any use of this Specification.
Specifications and reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organizational Partners' Publications Offices.

Remove GSM logo from the cover page for pure 3rd Generation documents.

Keywords

<keyword[, keyword]>

Select keywords from list provided in specs database.

3GPP

Postal address

3GPP support office address

650 Route des Lucioles - Sophia Antipolis

Valbonne - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Internet

http://www.3gpp.org

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© 2003, 3GPP Organizational Partners (ARIB, CWTS, ETSI, T1, TTA, TTC).

All rights reserved.

Contents

4Foreword

Introduction
4
1
Scope
5
2
References
5
3
Definitions, symbols and abbreviations
5
3.1
Definitions
5
3.2
Symbols
6
3.3
Abbreviations
6
4
Generic Bootstrapping Architecture; Ub interface
7
4.1
Generic bootstrapping network architecture
7
5.
GBA procedure over Ub interface
8
5.1
Successful case
8
5.2
User authentication failure case
10
5.3
Network authentication failure case
10
5.4
Synchronisation failure
10
Annex <X> (informative): Change history
13

Foreword

This Technical Specification has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

x
the first digit:

1
presented to TSG for information;

2
presented to TSG for approval;

3
or greater indicates TSG approved document under change control.

y
the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.

z
the third digit is incremented when editorial only changes have been incorporated in the document.

Introduction

This clause is optional. If it exists, it is always the second unnumbered clause.

1
Scope

This clause shall start on a new page.

The present document …

2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

· References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

· For a specific reference, subsequent revisions do not apply.

· For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[<seq>]
<doctype> <#>[([up to and including]{yyyy[-mm]|V<a[.b[.c]]>}[onwards])]: "<Title>".

[1]
Draft 3GPP TS ab.cdf “Generic Authentication Architecture (GAA); Generic Bootstrapping Architecture”.

[2]
Draft 3GPP TS ab.cdf “Generic Authentication Architecture (GAA) Zh and Zn Interfaces based on Diameter protocol; Protocol details”.

[3]
3GPP TS 23.003: “Numbering, addressing and identification”.

[4]
A. Niemi, et al, “Hypertext Transfer Protocol (HTTP) Digest Authentication Using Authentication and Key Agreement (AKA)”, RFC3310, September 2002.

[5]
Franks J., et al, “HTTP Authentication: Basic and Digest Access Authentication”, RFC 2617, June 1999.

[6]
Murata M., et al, “XML Media Types”, RFC 3023, January 2001.

[7]
Draft 3GPP TR ab.cde “Generic Authentication Architecture (GAA); System description”.

[8]
Draft 3GPP TS ab.cde “Generic Authentication Architecture (GAA) Zh and Zn Interfaces based on the Diameter protocol; Protocol details”.

[9]
Draft 3GPP TS ab.cde “Generic Authentication Architecture (GAA) Support for Subscriber Certificates”.

3
Definitions, symbols and abbreviations

Delete from the above heading those words which are not applicable.

Subclause numbering depends on applicability and should be renumbered accordingly.

3.1
Definitions

For the purposes of the present document, the [following] terms and definitions [given in ... and the following] apply.

Definition format

<defined term>: <definition>.

example: text used to clarify abstract rules by applying them literally.
3.2
Symbols

For the purposes of the present document, the following symbols apply:

Symbol format

<symbol>
<Explanation>

3.3
Abbreviations

For the purposes of the present document, the following abbreviations apply:

Abbreviation format

<ACRONYM>
<Explanation>

AKA
Authentication and Key Agreement

AUTN
Authentication Token

BSF
Bootstrapping Function

CK
Confidentiality Key

GAA
Generic Authentication Architecture

GBA
Generic Bootstrapping Architecture

HSS
Home Subscriber System

IK
Integrity Key

IMPI
IP Multimedia Private Identity

IMPU
IP Multimedia Public Identity

Ks
key material

NAF
Network Application Function

SQN
Sequence number

UE
User Equipment

4
Generic Bootstrapping Architecture; Ub interface

Generic Authentication Architecture (GAA) is based on shared secrets provided by generic bootstrapping architecture (GBA). The GAA framework is described in general in [7] and the GBA procedures in [1]. This specification specifies in stage 3 level detail the Ub interface of GBA.

4.1
Generic bootstrapping network architecture

Figure 1 shows a simple network model of the entities involved in the bootstrapping architecture. The stage 2 level specification of generic bootstrapping architecture and procedures are described in [1]. The generic bootstrapping architecture related to Ub interface is between UE and bootstrapping server function (BSF). During bootstrapping procedure BSF also uses the Zh interface to request authentication vectors and user’s profile information from HSS. The Zh interface is defined in [2] and [8]. The end result of the bootstrapping procure is that both BSF and an UE have a security association in a form of transaction identifier (TID) and bootstrapped secret (Ks).

The bootstrapped secret is used over the Ua interface with network application function (NAF), and Zn interface is used by the NAF to retrieve the Ks and user’s profile information from BSF. The Ua interface depends on type of NAF (e.g., a PKI Portal, see [9]). The Zn interface is defined in [2] and [8].

[image: image2.wmf]

UE

HSS

BSF

Ua

Ub

Zh

Zn

NAF

Figure 1: Network architecture of bootstrapping procedure

According to [1] the bootstrapping procedure shall be based HTTP Digest AKA [4]. The protocol stack of the Ub interface in bootstrapping procedure is presented in Figure 2. The details are defined in clause 5.

[image: image3.wmf]

IP

TCP

HTTP

HTTP Digest AKA

Bootstrapping

application logic

in UE

IP

TCP

HTTP

HTTP Digest AKA

Bootstra

pping

application logic

in BSF

Ub

Figure 2: Protocol stack of Ub interface

5.
GBA procedure over Ub interface

The requirements for Ub interface are listed in [1] subclause 4.1.4.

The overall Bootstrapping procedure in successful case is presented in Figure 3. The Bootstrapping Zh interface performs the retrieval of an authentication vector and user profile data by BSF from the HSS. The procedure corresponds to the step 3 to 5 in Figure 3. Zh interface is specified in [2].

This chapter specifies in detail the format of the bootstrapping procedure that is further utilized by various applications. It contains the AKA authentication procedure with BSF, and latter the key material generation procedure.

[image: image4.wmf]

(3)

MAR (with IMPI)

UE

BSF

HSS

Ub

Zh

(1) If non

-

IMS subscriber, UE

genera

tes IMPI from IMSI.

(2)

GET / HTTP/1.1 (with IMPI)

(5)

MAA (with Ks, prof)

(4) HSS generates AV and

retrieves profile for IMPI.

(6)

HTTP/1.1 401 Unauthorized

WWW

-

Authenticate: Digest (RAND,AUTN delivered)

(8)

GET / HTTP/1.1

Authorization: Digest (RES

 is used)

(7) UE runs AKA algorithms,

verifies AUTN, and session

keys, derives response (RES)

(9) BSF verifies that: RES==XRES

(10) BSF generates TID for IMPI

(11)

HTTP/1.1 200 OK (with TID in payload)

Authentication

-

Info: (XRES is used)

Content

-

Type:

application/3gpp

-

bsf+xml

(12) Ks = CK||IK

(13) UE stores the tuple: <TID,Ks>

(14) BSF stores the tuple:

 <ID, IMPI, CK, IK, UserProf>

Figure 3: The bootstrapping procedure overview – successful case.

5.1
Successful case

When a UE wants to interact with an NAF, it shall first perform a bootstrapping authentication (see Figure 3).

1.
A non-IMS subscriber shall construct a private user identity from IMSI number according to [3].

2.
The UE sends an HTTP request containing the User Private Identity (IMPI) towards its home BSF. The IMPI is given in the Authorization header:

GET / HTTP/1.1

Authorization: username="<impi>"

3-5.
BSF retrieves the user profile and a challenge, i.e. the Authentication Vector (AV) interface from the HSS using Zh interface [2].

6.
Then BSF forwards the challenge to the UE in the HTTP 401 Unauthorized message (without the CK, IK and XRES). This is to demand the UE to authenticate itself. The challenge contains RAND and AUTN that are populated in nonce field [4].

HTTP/1.1 401 Unauthorized

WWW-Authenticate: Digest

 realm="bsfServer@operatornetwork",

 nonce="CjPk9mRqNuT25eRkajM09uTl9nM09uTl9nMz5OX25PZz==",

 qop="auth-int",

 opaque="5ccc069c403ebaf9f0171e9517f40e41",

 algorithm=AKAv1-MD5

7.
The UE calculates the message authentication code (MAC) so as to verify the challenge from authenticated network; the UE also calculates CK, IK and RES. This will result in session keys IK and CK in both BSF and UE.

8.
The UE sends request again, with the Digest AKA RES as the response to the BSF.

GET / HTTP/1.1

Authorization: Digest

 username="<impi>",

 realm="bsfServer@operatornetwork",

 nonce="CjPk9mRqNuT25eRkajM09uTl9nM09uTl9nMz5OX25PZz==",

 uri="/",

 qop="auth-int",

 nc=00000001,

 cnonce="0a4f113b",

 response="6629fae49393a05397450978507c4ef1",

 opaque="5ccc069c403ebaf9f0171e9517f40e41"

9.
The BSF server shall check the received Digest equals to the expect value. If so, it means the RES equals to the XRES that is in the AV which means the UE is authenticated.

10.
The BSF generates a TID for the IMPI.

11.
The BSF shall send the successful response in 200 OK message to the UE to indicate the success of the authentication.

The BSF shall insert the transaction ID into the message body that is integrity-protected, and the calculation of response digest is specified in [5]. The definition of the content type value “application/3gpp-bsf+xml” follows [6].

HTTP/1.1 200 OK

Authentication-Info:

 qop="auth-int",

 rspauth="6629fae49393a05397450978507c4ef1",

 cnonce="0a4f113b"

Content-Type: application/3gpp-bsf+xml

Content-Length: NNN

<?xml version="1.0" encoding="UTF-8"?>

<bsf xmlns="urn-to-xml-schema-of-3gpp-bsf"

 bsf-tid="base64 encoded TID"/>

The XML Schema of the bsf element is specified below. The uniform resource name (URN) for 3gpp-bsf namespace is ffs.

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema targetNamespace="urn-to-xml-schema-of-3gpp-bsf"

 xmlns:tns="urn-to-xml-schema-of-3gpp-bsf"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 elementFormDefault="qualified"

 attributeFormDefault="unqualified">

 <!-- This import brings in the XML language attribute xml:lang-->

 <xs:import namespace="http://www.w3.org/XML/1998/namespace"

 schemaLocation="http://www.w3.org/2001/xml.xsd"/>

 <xs:element name="bsf" type="tns:bsf"/>

 <xs:complexType name="bsf">

 <xs:sequence>

 <xs:attribute name="bsf-tid" type="xs:base64Binary"/>

 </xs:sequence>

 </xs:complexType>

</xs:schema>

12.
The key material Ks is generated in UE by concatenating CK and IK. The Ks is used for securing the Ua interface.

Editor’s note: The key material Ks is 256 bits long. It is up each NAF to make the usage of the key material specifically.

13.
The UE stores the tuple <TID,Ks>

14.
The BSF stores the tuple <TID,IMPI,CK,IK,UserProfile>

5.2
User authentication failure case

If the response is verified to be different than expected, the BSF shall send a HTTP 401 Unauthorized message in step 8, indicating that BSF does not wish to accept the request. It may return a HTTP 401 Unauthorized response that includes a WWW-Authenticate header field containing another challenge applicable to the requested resource.

HTTP/1.1 401 Unauthorized

WWW-Authenticate: Digest

 realm="bsfServer@operatornetwork",

 qop="auth-int",

 nonce="9uQzNPbk9jM05Pbl5Pbl5DIz9uTl9uTl9jM0NTHk9uXk==",

 opaque="dcd98b7102dd2f0e8b11d0f600bfb0c093",

 algorithm=AKAv1-MD5

After N failed attempts of authentication procedure, the application may indicate end user a failure message. The exact value of N is defined by local policy.

5.3
Network authentication failure case

In case the UE fails at authenticating the network based on the MAC generated locally, the UE shall abort the procedure from step 6.

5.4
Synchronisation failure

If the UE considers the sequence number in the challenge to be not in the correct range, it shall send synchronisation failure back to BSF. The parameter AUTS contains the concealed value of the counter value SQNMS in the UE.

[image: image5.wmf]

(3)

MAR (with IMPI)

UE

BSF

HSS

Ub

Zh

(1) If non

-

IMS subscriber, UE

generates IMPI from IMSI.

(2)

GET / HTTP/1.1 (with IMPI)

(5)

MAA (with Ks, prof)

(4) HSS generates AV and

retrieves profile for IMPI.

(6)

HTTP/1.1 401 Unauthorized

WWW

-

Authenticate: Digest (RAND,AUTN delivered)

(8)

GET / HTTP/1.1

Aut

horization: Digest (AUTS delivered)

(7) UE runs AKA algorithms, verifies AUTN,

but discovers that it contains invalid SQN.

UE generates AUTS token

(9) BSF checks SQN, and

sends a new challenge.

(10)

HTTP/1.1 401 Unauthorized

WWW

-

Authenticate: Dige

st (RAND,AUTN)

(11) UE and BSF run steps 7) to 13) of successful case.

Figure 4: The bootstrapping procedure in sequence number synchronization failure case.

The message flow in Figure 4 shall be different since step 7 in the Figure 4. The client identifies the sequence number is out of synchronization. The client shall generate the AUTS parameter according to [4].

In step 8, AUTS parameter is populated in Authorization header, as specified in [4].

GET / HTTP/1.1

Authorization: Digest

 username="<impi>",

 realm="bsfServer@operatornetwork",

 nonce="CjPk9mRqNuT25eRkajM09uTl9nM09uTl9nMz5OX25PZz==",

 uri= "",

 qop="auth-int",

 nc=00000001,

 cnonce="0a4f113b",

 response="4429ffe49393c02397450934607c4ef1",

 opaque="5ccc069c403ebaf9f0171e9517f40e41",

 auts="5PYxMuX2NOT2NeQ="

In step 10, the BSF shall send another challenge based on new range of sequence number.

HTTP/1.1 401 Unauthorized

WWW-Authenticate: Digest

 realm="bsfServer@operatornetwork",

 qop="auth-int",

 nonce="9uQzNPbk9jM05Pbl5Pbl5DIz9uTl9uTl9jM0NTHk9uXk==",

 opaque="dcd98b7102dd2f0e8b11d0f600bfb0c093",

 algorithm=AKAv1-MD5

Annex <X> (informative):
Change history

It is usual to include an annex (usually the final annex of the document) for specifications under TSG change control which details the change history of the specification using a table as follows:

	Change history

	Date
	TSG #
	TSG Doc.
	CR
	Rev
	Subject/Comment
	Old
	New

	2003-10
	CN1#32
	
	
	
	Initial TS created
	
	0.0.0

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

_1127817752.doc
		

		DOCUMENTTYPE

		

		1 (1)

		

		

		

		

		TypeUnitOrDepartmentHere

		

		

		

		TypeYourNameHere

		TypeDateHere

		

		

(3)	MAR (with IMPI)

UE

BSF

HSS

Ub

Zh

(1) If non-IMS subscriber, UE generates IMPI from IMSI.

(2)	GET / HTTP/1.1 (with IMPI)

(5)	MAA (with Ks, prof)

(4) HSS generates AV and retrieves profile for IMPI.

(6)	HTTP/1.1 401 Unauthorized

WWW-Authenticate: Digest (RAND,AUTN delivered)

(8)	GET / HTTP/1.1

Authorization: Digest (RES is used)

(7) UE runs AKA algorithms, verifies AUTN, and session keys, derives response (RES)

(9) BSF verifies that: RES==XRES

(10) BSF generates TID for IMPI

(11)	HTTP/1.1 200 OK (with TID in payload)

Authentication-Info: (XRES is used)

Content-Type: application/3gpp-bsf+xml

(12) Ks = CK||IK

(13) UE stores the tuple: <TID,Ks>

(14) BSF stores the tuple:

 <ID, IMPI, CK, IK, UserProf>

_935227290.doc

_1127817821.doc
		

		DOCUMENTTYPE

		

		1 (1)

		

		

		

		

		TypeUnitOrDepartmentHere

		

		

		

		TypeYourNameHere

		TypeDateHere

		

		

IP

TCP

HTTP

HTTP Digest AKA

Bootstrapping application logic

in UE

IP

TCP

HTTP

HTTP Digest AKA

Bootstrapping application logic

in BSF

Ub

_935227290.doc

_1127817770.doc
		

		DOCUMENTTYPE

		

		1 (1)

		

		

		

		

		TypeUnitOrDepartmentHere

		

		

		

		TypeYourNameHere

		TypeDateHere

		

		

(10)	HTTP/1.1 401 Unauthorized

WWW-Authenticate: Digest (RAND,AUTN)

(11) UE and BSF run steps 7) to 13) of successful case.

(9) BSF checks SQN, and sends a new challenge.

(7) UE runs AKA algorithms, verifies AUTN, but discovers that it contains invalid SQN. UE generates AUTS token

(8)	GET / HTTP/1.1

Authorization: Digest (AUTS delivered)

(6)	HTTP/1.1 401 Unauthorized

WWW-Authenticate: Digest (RAND,AUTN delivered)

(4) HSS generates AV and retrieves profile for IMPI.

(5)	MAA (with Ks, prof)

(2)	GET / HTTP/1.1 (with IMPI)

(1) If non-IMS subscriber, UE generates IMPI from IMSI.

Zh

Ub

HSS

BSF

UE

(3)	MAR (with IMPI)

_935227290.doc

_1127551396.doc
		

		DOCUMENTTYPE

		

		1 (1)

		

		

		

		

		TypeUnitOrDepartmentHere

		

		

		

		TypeYourNameHere

		TypeDateHere

		

		

Ub

Ua

Zh

Zn

NAF

UE

HSS

BSF

_935227290.doc

